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Abstract

Visual grounding (VG) is an important task
in vision and language that involves under-
standing the mutual relationship between query
terms and images. However, existing VG
datasets typically use simple and intuitive tex-
tual descriptions, with limited attribute and spa-
tial information between images and text. Re-
cently, the Scene Knowledge Visual Grounding
(SK-VG) task has been introduced, which con-
structs VG datasets using visual knowledge and
relational referential expressions. Due to the
length of textual visual knowledge and the com-
plexity of the referential relationships between
entities, previous models have struggled with
this task. Therefore, we propose ReadVG, a
zero-shot, plug-and-play method that leverages
the robust language understanding capabilities
of Large Language Models (LLMs) to trans-
form long visual knowledge texts into concise,
information-dense visual descriptions. To im-
prove the accuracy of target localisation, we
employ a multi-step parsing algorithm that can
progressively extract the query targets and their
features from the visual knowledge and rela-
tional referencing expressions, thereby assist-
ing multimodal models to more accurately lo-
calise the target for grounding purposes. Exten-
sive experiments and case studies show that our
approach can significantly improve the perfor-
mance of multimodal grounding models. Code
is available at https://github.com/xiang-xiang-
zhu/ReadVG.

1 Introduction

Visual grounding (VG) task (Deng et al., 2021,
2023a; Hu et al., 2015) aims to localize target ob-
jects in images based on query expressions, and
serves as a fundamental task for visual question
answering (Zhu et al., 2020; Shi et al., 2020; Sun
et al., 2020) and visual language navigation (Zhou
et al., 2023, 2024). However, existing benchmarks
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such as RefCOCO (Kazemzadeh et al., 2014), Re-
fCOCO+ (Yu et al., 2016), and RefCOCOg (Mao
et al., 2016) feature relatively simple query expres-
sions, allowing models to focus on simple visual-
linguistic associations, thereby reducing the com-
plexity of the grounding task.

Scene Knowledge Visual Grounding (SK-VG)
task (Chen et al., 2023c) is introduced, which fo-
cuses on the complex interplay between images and
language. It consists of three main components:
scene knowledge, query expressions, and images.
The scene knowledge describes the appearance and
relationships of entities within the image, while
the query expression emphasizes the relationships
between these entities rather than their direct visual
features. This task uses images derived from movie
scenes that contain multiple anonymized charac-
ters and objects. SK-VG requires models not only
to understand visual content, but also to reason in
a rich visual context, thus placing high demands
on the joint reasoning capabilities of vision and
language.

Existing approaches (Chen et al., 2023c) use
smaller end-to-end architectures, which can limit
performance when dealing with complex scene
text information. Conversely, Multimodal Large
Language Models (MLLMs) (Wang et al., 2023;
Chen et al., 2024b, 2023b; Li et al., 2024) have
demonstrated robust capabilities across a variety
of tasks, excelling in inference and text compre-
hension. However, these larger models often un-
derperform in visual grounding tasks, as shown in
Figure 1. This may be due to the lack of grounding-
specific data in their pre-training datasets (Yang
et al., 2023). In addition, almost all multimodal
models fail under the SK-VG framework, possibly
due to the influence of scene text length on model
performance.

In recent years, Large Language Models
(LLMs) (Bai et al., 2023; Touvron et al., 2023a,b;
Rozière et al., 2023) have significantly improved

https://github.com/xiang-xiang-zhu/ReadVG
https://github.com/xiang-xiang-zhu/ReadVG
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Query: the cat

GPT-4o InternVL2OFA

Scene Knowledge: The housekeeper Danny, 

who is a man in a black suit, comes out of 

the house. The woman in front of him, Sunny, 

is walking towards her husband Leon, who is 

wearing a gray suit. Leon has just come home 

from work when he sees his wife walking 

towards him. He feels very happy.

Query: The man who is a housekeeper

GPT-4o OFA InternVL2

Ours (                +             ) 

(a) Traditional Visual Grounding

(b) Scene Knowledge Visual Grounding

Figure 1: Examples from our analysis of the localization capabilities of existing query-based MLLMs. GPT-4o fails
to produce valid bounding boxes for two visual grounding tasks. MLLMs that can easily accomplish traditional
visual grounding task struggle with target localization in the SK-VG task. Additional examples and detailed prompts
are provided in the Appendix.

their text understanding capabilities through pre-
training on massive datasets aligned with human
preferences and subsequent optimization through
methods such as instruction fine-tuning,achieving
impressive results in various downstream tasks. In-
spired by these advances, we proposed ReadVG,
a plug-and-play solution for visual grounding that
does not require additional training or fine-tuning.
This approach consists of a reading module and a
visual descriptor generation module. The reading
module uses the LLM to identify the object to be
localized and its category, effectively narrowing
the search scope. Subsequently, the Visual De-
scriptor Generation Module synthesizes a visual
descriptor of the target object based on the out-

put of the Reading Module and the provided scene
knowledge. This descriptor is then input into the lo-
calization model along with the image to generate
bounding boxes for the target objects. In summary,
our contributions are as follows:

• We propose ReadVG, a zero-shot approach for
Scene Knowledge Visual Grounding (SK-VG)
tasks. ReadVG is plug-and-play and can be
applied to SK-VG tasks with extremely long
text lengths;

• With ReadVG, the multimodal grounding
model significantly reduces the search area
of the image, while also reducing the perfor-
mance impact of long scene knowledge texts;
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A crowd of people are gathered around the 

square to watch the show. Peter, in a blue shirt 

on the far left of the image, is a reporter. He is 

recording the performance with his brother John 

on his left, who is holding a camera. Peter's 

sister, Crystal, who is wearing the uniform of the 

band with a paper cup in her left hand, is a 

member of the band.

The person who is Peter's sister

Given a paragraph of text and a query, 

your answer is the kind and name of 

the target in the query, with the kind 

containing Person and Item.

Here are a couple of examples, your 

output should follow the format of the 

examples and just output the name of 

the target:…

Person or Item?

Person

Name?

Crystal

Person : 

Crystal

As an expert in generating visual descriptions, your 

task is to give a visual description of the target in the 

text based on a paragraph of text and the name of a 

target. The description focuses on the target itself, 

including hair color, gender, clothing, and any unique 

accessories (glasses or large jewellery). Be sure not to 

mention any names (replace with man, woman, boy, 

girl), attractiveness, eye color, body size, minor visual 

details, specific brands of clothing unless they are 

distinctive. Visual descriptions must be no longer than 

8 words and no punctuation. Below is an example and 

your output should follow the format of the example: …

the band uniformed girl

MLM

Scene Knowledge

Query

Prompt

Visual Descriptor

Reading Module

LLM LLM

Visual Descriptor 

Generation Module

Output:(x1,y1,x2,y2)

Figure 2: ReadVG, comprises a Reading module and a Visual Descriptor Generation module. The Reading module
receives scene knowledge and a query, generating the category and name of the target in the query. Then, the
Visual Descriptor Generation module produces a concise visual descriptor for the target based on its name, scene
knowledge, and the query. Finally, a multimodal grounding model generates the bounding box of the target using
the visual descriptor and the image

• Extensive experiments on a wide range of
MLLMs demonstrate the effectiveness of
ReadVG in the SK-VG task, and case studies
are used to show how the proposed method is
effective in completing the task

2 Related Works

2.1 Visual Grounding

Visual Grounding (VG) aims at identifying im-
age regions corresponding to textual descriptions,
and serves as a cornerstone for interdisciplinary
research between Computer Vision and Natural
Language Processing, particularly for applications
such as Visual Question Answering (VQA) (Sel-
varaju et al., 2019). VG approaches are typically
categorized into one-stage and two-stage methods.
One-stage methods (Yang et al., 2022; Li et al.,
2023b; Chen et al., 2024a; Shi et al., 2023; Deng
et al., 2023a, 2021), process images and text di-
rectly to predict bounding boxes. Conversely, two-
step methods (Yu et al., 2018; Yang et al., 2019;

Wang et al., 2019, 2018; Hu et al., 2017; Hong et al.,
2019), first generate region proposals before select-
ing the best match based on similarity scores, To
improve interpretability and generalization,some
studies (Yang et al., 2020; Ding et al., 2021; Chen
et al., 2022; Yang et al., 2019; Wang et al., 2019)
have focused on modeling object attributes and
their relationships. However, current datasets of-
ten contain simple text queries, which limits the
exploration of sophisticated semantic relationships
between text and images.

2.2 Large Language Model

Recent advances in Large Language Models
(LLMs) have significantly enhanced both the the-
oretical development and practical applications of
Natural Language Processing(NLP). After the ad-
vent of ChatGPT, LLMs, characterized by their
massive parameter sizes and extensive training
data, have demonstrated unprecedented capabil-
ities in language understanding and generation,
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Level Person Count Item Count PP IP LP

Easy 2006 1022 66.25% 33.75% 45.89%
Medium 1457 371 79.70% 20.30% 27.71%

Hard 1735 7 99.60% 0.40% 26.40%

Table 1: Statistics for the Test Set of the SK-VG Dataset.
Where PP represents the proportion of Person data in
the subset of this difficulty level, IP represents the pro-
portion of Item data in the subset of this difficulty level,
and LP represents the proportion of data at this diffi-
culty level within the total test set.

These models excel at various linguistic tasks such
as translation (Jiao et al., 2023), question answer-
ing (Tan et al., 2023; Long et al., 2023), sentiment
analysis (Zhong et al., 2023; Deng et al., 2023b),
and text-to-SQL conversion (Li et al., 2023a; Liu
et al., 2023a). In addition, they possess reason-
ing (Shakarian et al., 2023; Frieder et al., 2023; Liu
et al., 2023b; Pan et al., 2023) and computational ar-
gumentation skills (Chen et al., 2023a). Prominent
LLMs such as ChatGPT, GPT-4, LLaMA (Touvron
et al., 2023a), CodeLLaMA (Rozière et al., 2023)
not only outperform on NLP tasks, but also han-
dle complex code-related intelligence tasks without
specialized domain training (Rozière et al., 2023;
Zheng et al., 2018; Luo et al., 2023; Nijkamp et al.,
2022). This suggests the potential of LLMs for
cross-domain transfer learning, allowing them to
effectively tackle diverse challenges.

3 Method

We propose ReadVG, which addresses the SK-VG
task by exploiting the robust language understand-
ing capabilities of LLMs. Our approach consists
mainly of: (1) a reading comprehension module
based on scene knowledge and query expressions;
(2) a visual descriptor generation module guided by
the target category of the query expression. In this
section, we first provide a definition of the task, fol-
lowed by an introduction to our method, including
the reading comprehension module and the visual
descriptor generation module.

3.1 Task Definition
The Scene Knowledge Visual Grounding (SK-VG)
task requires models to identify a specific target in
an image based on a query Q and associated scene
knowledge K. Here, scene knowledge refers to ad-
ditional contextual information such as background
details, character relationships. Formally, the task
involves an image I and a query Q describing the
target to be located. The goal is to predict a bound-

ing box B around the target referred to by Q, which
is provided with K that provides context about the
scene depicted in I . The task requires models to
perform complex reasoning over the joint space
of images, textual queries, and scene knowledge.
This means that the models must not only under-
stand the visual content of I and Q, but also reason
about the connections between these components
and the provided K in order to accurately identify
the target. The K includes background informa-
tion, character relationships, emotional states and
contextual details that are not necessarily directly
observable in the image. It is therefore essential
that the model understands both the query Q and
the scene knowledge K in order to accurately lo-
cate the target.

3.2 Reading Module

The query Q may contain entities beyond the tar-
get object to be delineated; for example, in the
phrase "The person who wants to hug his younger
brother", there are two entity mentions, "younger
brother" and "the person." The intended target is
"the person". Extraneous entity information within
Q could potentially lead the grounding model in
selecting the incorrect target. To address this issue,
our approach first isolates the target object from
Q. In the SK-VG task, K provides comprehen-
sive annotations of the visual content, aiding in the
selection of the target object. However, K might
include redundant information not directly relevant
to Q, which may interfere with the model selection
process. To obtain accurate information about the
target in Q, we introduce a reading module (figure
2) that generates the classification and name of the
object to be boxed based on K and Q. Specifi-
cally, the LLM receives a triplet (Q,K). The LLM
initially parses Q to determine the category C of
the target object. In this task, C comprises two
categories: person and item. For the person cat-
egory, similar to a reading comprehension task,
the LLM treats Q and C as the question and K
as the text, searching for an answer that matches
the name specified in Q, thereby identifying the
person’s name N . For item, given that they do
not possess unique names like persons, we directly
extract the name N of the item:
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C = LLM(Q,K) (1)

N =

{
LLM(Q,K,C), if C = person

item name, if C = item

(2)

3.3 Visual Descriptor Generation Module

Once the reading module has produced the target
identification, the visual descriptor generation mod-
ule then generates the visual descriptors for the
target, based on the output of the reading module.
For grounding models, the accuracy of information
contained in the query and the minimization of re-
dundancy facilitate more precise target localization.
The scene knowledge K encompasses descriptions
of most entities within an image, aiding the ground-
ing model in identifying the target using the query
Q, category C, and name N of target. However,
K often comprises lengthy text with complex en-
tity relationships and visual details, presenting a
challenge to the grounding model’s textual compre-
hension capabilities. Longer texts can also impact
model performance (Pope et al., 2023). There-
fore, we propose the Visual Descriptor Generation
Module (figure 2), which aims to generate easy-to-
understand, informative and concise visual descrip-
tors directly for the query’s target, and to reduce
the text length impact of the K. Formally, the LLM
receives the reading module’s output (C,N) and
the K, producing the visual descriptor V for the
target:

V = LLM(N,Q,K) (3)

As illustrated in figure 2, we establish guidelines
for generating visual descriptors to assist the LLM
in formulating appropriate V :

• The description should focus on the target it-
self, including hair color, gender, attire, and
distinctive accessories (e.g., glasses, signifi-
cant jewelry).

• Avoid mentioning names (use ’man,’ ’woman,’
’boy,’ ’girl’ instead), attractiveness, eye color,
body size, minor visual details, and specific
clothing brands unless they are distinctive.

• Visual descriptions must not exceed eight
words and should omit punctuation.

4 Experiment

4.1 Implement Details

We applied our method to both LLM-based
and Non-LLM-based multimodal grounding mod-
els. Specifically, for the Non-LLM-Based mod-
els, we utilized KeViLi (Chen et al., 2023c),
UNINEXT (Yan et al., 2023), OFA (Wang et al.,
2022), ONE-PEACE (Wang et al., 2023), and
GroundVLP (Shen et al., 2023). For KeViLi,
in the non-zero-shot setting, we initialized the
model with pretrained weights on Refcoco and
fine-tuned it on the SK-VG dataset; we also ini-
tialized the weights and pre-trained exclusively
on the SK-VG dataset. In the zero-shot setting,
we initialized with detr-unc50; for OFA, we used
ofa_visual-grounding_refcoco_large_en; and for
ONE-PEACE, we employed ONE-PEACE-4B. For
the LLM-based models, we adopted Shikra (Chen
et al., 2023b), InternVL2 (Chen et al., 2024b), and
GroundingGPT (Li et al., 2024). The Shikra model
was instantiated with shikra-7b-delta-v1, and In-
ternVL2 was configured with its 2B version.

Evaluation was performed on the SK-VG dataset
consisting of 6,598 test instances with 4 to 6 ob-
jects per image. The experiments were divided into
three setups: Q (using original dataset queries),
Q+K (concatenating scene knowledge and queries),
and Ours (using visual descriptors from ReadVG).
Performance was measured by average Intersec-
tion over Union (IoU) at 50% threshold, catego-
rized by difficulty levels, easy (Acce), medium
(Accm), and hard (Acch) and overall average ac-
curacy (Accavg). The reading module and LLM
used for visual descriptor generation were based
on Qwen-turbo (Bai et al., 2023).

4.2 Main Results

Table 2 shows the performance of different visual
language models with different settings on the SK-
VG dataset. Since Shikra does not output bounding
box coordinates when both query and scene knowl-
edge are input, no results are available for this
method. In the non-zero-shot group, we observe
that KeViLi achieves an average accuracy (Accavg)
of 28.43 after fine tuning (FT), while its perfor-
mance drops significantly to 9.43 with pre-training
(PT). This suggests that the performance of visual
language models depends on the amount of training
data. For KeViLi, all results in the zero-shot setting
are better than those with PT, further confirming the
previous statement. The performance of Q is sig-
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Method Acce Accm Acch Accavg

Non Zero-shot

KeViLi
FT 27.80 29.42 29.17 28.43
PT 9.33 9.48 9.72 9.43

Zero-shot
N

on
L

L
M

-B
as

ed
KeViLi

Q 23.93 23.60 22.45 23.64
Q+K 15.96 16.33 16.44 16.13
Ours 27.18 26.29 25.35 26.69

OFA

Q 42.01 32.17 27.10 35.34
Q+K 14.07 21.11 24.57 18.80
Ours 36.39 38.29 48.51 40.12

ONE-PEACE

Q 44.48 35.45 31.34 38.51
Q+K 11.72 19.20 24.00 17.04
Ours 40.92 41.69 53.44 44.44

UNINEXT

Q 32.53 27.30 26.12 29.39
Q+K 13.87 20.13 25.14 18.58
Ours 28.83 33.59 42.77 33.83

GroundVLP

Q 42.11 29.43 22.79 33.49
Q+K 9.71 12.91 16.42 12.37
Ours 41.51 33.92 31.98 36.87

L
L

M
-B

as
ed

Shikra

Q 13.57 16.47 13.38 14.32
Q+K - - - -
Ours 12.32 17.51 23.36 16.67

GroundingGPT

Q 46.70 38.02 31.29 40.22
Q+K 29.92 32.60 38.12 32.83
Ours 34.97 39.50 51.44 40.57

InternVL2

Q 25.36 26.09 24.40 25.31
Q+K 19.29 18.27 21.87 19.69
Ours 24.50 29.60 40.87 30.24

Table 2: Comparison on object localisation on SK-VG dataset, where FT represents the result of fine-tuning KeViLi
and PT represents the result of pre-training. The best scores in each group are highlighted in bold.

Scene Knowledge: The gray-haired man 

Danny is lying on the iceberg because he 

accidentally fell down. He looks at the man 

Bob in front of him in fear, because Bob wants 

to kill him. Kevin is standing behind Danny and 

is protecting Danny with a weapon in his hand. 

Amy, the woman on the far right of the image, 

is thinking about how to attack Kevin.The person lying on the iceberg The weapon in Kevin's hand

The boy taking up the magic weaponGray-haired man lying on iceberg The gray-haired man Magic weapon

(a) (b)

Figure 3: A case of the ablation study for GroundingGPT. Green text and bounding boxes represent ground truth
data; red text and bounding boxes denote our proposed method (Ours); and blue text and bounding boxes indicate
the results without the reading module (w/o Reading).
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Method Acce Accm Acch Accavg

N
on

L
L

M
-B

as
ed

KeViLi
w/o Reading 26.43 26.34 25.46 26.28

Ours 27.18 26.29 25.35 26.69

OFA
w/o Reading 35.24 39.01 48.16 39.69

Ours 36.39 38.29 48.51 40.12

ONE-PEACE
w/o Reading 37.85 41.96 52.93 42.97

Ours 40.92 41.69 53.44 44.44

UNINEXT
w/o Reading 27.61 32.49 43.28 33.10

Ours 28.83 33.59 42.77 33.83

GroudVLP
w/o Reading 31.87 27.79 29.05 29.99

Ours 41.51 33.92 31.98 36.87

L
L

M
-B

as
ed

Shikra
w/o Reading 11.62 17.07 20.90 15.58

Ours 12.32 17.51 23.36 16.67

GroundingGPT
w/o Reading 37.35 40.43 50.06 41.56

Ours 34.97 39.50 51.44 40.57

InternVL2
w/o Reading 23.05 29.24 38.81 28.92

Ours 24.50 29.60 40.87 30.24

Table 3: Ablation Experiments on ReadVG, where w/o Reading represent removing the reading module and
generating visual descriptors directly from scene knowledge and query. The best scores in each group are

highlighted in bold.

nificantly better than that of Q+K, suggesting that
the length of the input text has a significant impact
on model performance. In addition, we see that
PT outperforms all zero-shot settings, suggesting
that fine-tuning can improve model performance.
However, our approach comes closest to the per-
formance of fine-tuned models, with only a 6.1%
drop compared to the baseline, whereas Q and Q+K
drop by 16.8% and 43.3% respectively.

In the zero-shot group, our method exceeds most
baselines. Notably, it performs slightly worse than
using only the query in easy level, possibly due to
ReadVG’s reading module outputting only names,
potentially neglecting multiple identical items in
the scene. However, our method surpasses the base-
lines in medium and hard levels, showing improve-
ments of up to 79% over OFA and 70.5% over
ONE-PEACE. We also note that the best meth-
ods, ONE-PEACE and GroundingGPT, in the Non-
LLM-based and LLM-based groups, respectively,
have ONE-PEACE weaker than GroundingGPT in
the Q and Q+K settings. However, upon applying
our method, ONE-PEACE outperforms all LLM-
Based approaches, demonstrating that the size of
the text encoder is not the most critical factor in
visual grounding tasks. Our proposed method effec-
tively enhances the performance of smaller models
and explores their potential.

4.3 Ablation Study

Table 3 shows the results of ablation study. Re-
moving the reading module resulted in a drop in
performance for almost all models, which indicated
effectiveness of reading module. The decrease in
performance may be because without the reading
module, the LLM struggles to simultaneously per-
form target detection and visual descriptor gener-
ation, resulting in lower quality visual descriptors.
Notably, for GroundingGPT, the variant without
the reading module outperforms ours at easy dif-
ficulty levels. This could be because the reading
module first locates the query target before gen-
erating the descriptor, resulting in more concise
and intuitive output. However, this approach can
lead to confusion when several objects have simi-
lar visual descriptor. As shown in Figure 3, in (a)
our method generates the visual descriptor "The
grey-haired man", while the no-reading variant pro-
duces "Gray-haired man lying on iceberg". Given
the strong visual-linguistic understanding of the
LLM-based GroundingGPT, it misidentifies an ob-
ject in the lower right corner with the same de-
scriptor based on our output, leading to an error.
Conversely, as shown in (b), our visual descriptor
"magic weapon" is more accurate than that pro-
duced by the w/o reading, capturing finer-grained
objects.

Moreover, as demonstrated in Figure 4, we pro-
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Scene Knowledge: The family had just moved to a 

new house and are packing two large suitcases in 

front of them. The man on the middle of the image 

with his head bowed is David. His eldest son 

Jack is on his right and leaning on his shoulder. 

Standing on their left with glasses is David's 

younger son Alan, delighted at the reconciliation 

between his father and his brother.

Query: The son who has reconciled with his father

Scene Knowledge

Query
LLM the son with glasses

(a) w/o reading module

Scene Knowledge

Query
LLM Person: Jack LLM

the boy leaning on mans shoulder

(b) Ours

Figure 4: A case of the ablation study for GroundingGPT.

Model Acce Accm Acch Accavg

OFA

Q 42.01 32.17 27.10 35.34
Q+K 14.07 21.11 24.57 18.80

Ours(GLM4-flash) 33.36 33.26 38.92 34.80
Ours(Qwen-turbo) 36.39 38.29 48.51 40.12

GroundVLP

Q 42.11 29.43 22.79 33.49
Q+K 9.71 12.91 16.42 12.37

Ours(GLM4-flash) 37.92 29.32 27.67 32.69
Ours(Qwen-turbo) 41.51 33.92 31.98 36.87

InternVL2

Q 25.36 26.09 24.40 25.31
Q+K 19.29 18.27 21.87 19.69

Ours(GLM4-flash) 22.03 26.64 33.58 26.36
Ours(Qwen-turbo) 24.50 29.60 40.87 30.24

Table 4: Results of ReadVG Across Different LLMs; the Best Performance Are Highlighted in Bold, and the
Second-Best results Are Indicated by Underlining.

vide a comparative analysis of target localization
accuracy. Specifically, Figure 4(a) shows that
the LLM incorrectly identified the query target as

’Alan’. Conversely, Figure 4(b) exhibits the correct
identification of the target as ’Jack’, along with the
corresponding visual descriptor ’the boy leaning
on man’s shoulder’. This result indicates that incor-
porating the reading module enhances the LLM’s
capability to accurately interpret scene information
and precisely locate relevant entities.

4.4 Analysis

In this section, we analyze the impact of different
LLMs on the performance of our proposed method.

In Table 4, it can be observed that in most cases,
our method (Ours) significantly outperforms us-

ing the query (Q) alone or in combination with
scene knowledge (Q+K). This indicates that our
approach effectively leverages the capabilities of
LLMs to enhance the accuracy of visual ground-
ing tasks. When comparing the performance of
GLM-4 flash and Qwen-turbo, although GLM-4
flash scores slightly lower than Qwen-turbo on cer-
tain metrics, its performance remains impressive
given its smaller size and faster response time. This
demonstrates the adaptability of our method, facil-
itating its transfer across LLMs of varying sizes.
Despite these differences, our method consistently
delivers strong results across all tested LLMs, fur-
ther validating its effectiveness and versatility.
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5 Conclusion

We propose ReadVG, a method that can be used
without additional training. ReadVG leverages the
robust text comprehension capabilities of LLMs to
first identify the targets within the scene knowledge
and then generate corresponding visual descriptors,
thereby providing precise search scopes for subse-
quent grounding models. This approach alleviates
the workload on the grounding model and effec-
tively addresses the performance degradation issue
caused by excessively long scene knowledge texts.
Experimental results demonstrate that ReadVG
achieves commendable performance across vari-
ous multimodal large language models, validating
its effectiveness and practicality in the SK-VG task.

Limitations

While this study introduces a novel approach to the
Scene Knowledge Visual Grounding (SK-VG) task
and demonstrates its potential benefits, several lim-
itations remain. First, our method relies heavily on
the robust text understanding and reasoning capa-
bilities of Large Language Models (LLMs), which
may introduce some uncertainty when dealing with
unconventional or complex linguistic expressions.
Secondly, although the ReadVG method can re-
duce the workload on grounding models to some
extent, it may still encounter performance bottle-
necks when dealing with dense scenes containing
a large number of entities and complex relation-
ships. In addition, without fine-tuning the LLMs
to domain-specific data, the model’s performance
on the long textual background knowledge unique
to the SK-VG task might be somewhat limited. Fi-
nally, the image data used in this study were primar-
ily derived from film scenes, and the characteristics
of these specific scenarios may not fully represent
all types of visual grounding tasks, thus limiting the
generalisability of the method to a wider range of
applications. Future research should aim to address
these limitations in order to further improve the
model’s performance in more complex scenarios.
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A Grounding capability of GPT-4o

In this section, we explore the performance of the
GPT-4o model in the visual grounding task. The
visual grounding task requires the model to accu-
rately identify and annotate the location of specified
objects within an image. Despite being a powerful
language model with notable capabilities in natural
language processing, our experiments show that the
GPT-4o model fails to accomplish this seemingly
simple task.

In order to gain a deeper understanding of this
issue, we conducted multiple trials using different
prompts each time, as shown in Figure 5. However,
regardless of the different prompts, the results re-
mained consistent - the GPT-4o model was unable
to correctly locate the target object in the images.
These experimental results suggest that the GPT-
4o model may lack the necessary skills to perform
visual grounding task.

This limitation may be due to the pre-training
dataset used for GPT-4o. While the dataset con-
tains a large amount of textual information, the
visual grounding task requires an understanding
and ability to parse image content, which may be
either poorly represented or absent in the original
GPT-4o training dataset.

B Case Study

Through the case study of SK-VG, we explore why
the ReadVG system is able to successfully perform
localisation tasks under complex scene knowledge.
As shown in Figure 6, when provided with scene
knowledge and a query, ReadVG is able to accu-
rately identify the target entity name "Ann" within
the query.

ReadVG then uses this identified name to fur-
ther search for relevant descriptive information
within the scene knowledge, ultimately distilling it
down to concise and critical visual features, namely
"blonde woman". This process demonstrates not

only an improvement in the accuracy of the infor-
mation, but also an optimisation in terms of textual
conciseness. It thus confirms that ReadVG has the
ability to efficiently extract core information, effec-
tively assisting the model in accurate localisation.
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Please analyze the provided image and generate 

a bounding box around the cat. The bounding 

box should bedefined by its coordinates in the 

format of [xmin, ymin,xmax, ymax], where xmin 

and ymin represent the coordinates of the top-left 

corner of the bounding box, and xmax and ymax 

represent the coordinates of the bottom-right 

corner. The goal is to accurately and precisely 

locate the cat within the image.

[620, 220, 790, 450]

Please give the coordinates of the bounding box 

of the cat in the picture. The dimensions of the 

image are 1800*1200

(top-left corner) (1100, 500)

(bottom-right corner) (1500, 1000)

Give the coordinates of the bounding box of the 

cat in the figure in the form [xmin, ymin, xmax, 

ymax].

[600, 200, 900, 700]

Figure 5: Results of GPT-4o for the visual grounding task at different prompts
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Scene Knowledge: The man on the far right of the 

image is Mark. He takes his family out to climb the 

mountain. His sister Lisa is sitting on Mark's right 

with glasses. Ann has blonde hair and sits on Lisa's 

right, too tired to speak. Alan, dressed in red, sits on 

Ann's left and holds his pet dog Coco. 

Query: The person who is too tired to speak

Given a text and a query, your answer is the kind and name of the target in the 

query, with the kind containing Person and Item. Here are a couple of 

examples, your output should follow the format of the examples and just 

output the name of the target: …

Person: 'Ann'

As an expert in generating visual descriptions, your task is to give a visual 

description of the target in the text based on a paragraph of text and the name 

of a target. The description focuses on the target itself, including hair color, 

gender, clothing, and any unique accessories (glasses or large jewellery). Be 

sure not to mention any names (replace with man, woman, boy, girl), 

attractiveness, eye color, body size, minor visual details, specific brands of 

clothing unless they are distinctive. Visual descriptions must be no longer than 

8 words and no punctuation. Here are a few examples, and your output should 

follow the format of the examples: …

the blonde woman

Grounding Model

Human

Human

LLM

LLM

[595, 197, 867, 887]

Figure 6: A case on SK-VG dataset.
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