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Abstract

Natural language explanations (NLEs) are vi-
tal for elucidating the reasoning behind large
language model (LLM) decisions. Many tech-
niques have been developed to generate NLEs
using LLMs. However, like humans, LLMs
might not always produce optimal NLEs on
first attempt. Inspired by human learning pro-
cesses, we introduce CROSS-REFINE1, which
employs role modeling by deploying two LLMs
as generator and critic, respectively. The gener-
ator outputs a first NLE and then refines this ini-
tial explanation using feedback and suggestions
provided by the critic. CROSS-REFINE does not
require any supervised training data or addi-
tional training. We validate CROSS-REFINE
across three NLP tasks using three state-of-
the-art open-source LLMs through automatic
and human evaluation. We select SELF-REFINE
(Madaan et al., 2023) as the baseline, which
only utilizes self-feedback to refine the explana-
tions. Our findings from automatic evaluation
and a user study indicate that CROSS-REFINE
outperforms SELF-REFINE. Meanwhile, CROSS-
REFINE can perform effectively with less pow-
erful LLMs, whereas SELF-REFINE only yields
strong results with ChatGPT. Additionally, we
conduct an ablation study to assess the impor-
tance of feedback and suggestions. Both of
them play an important role in refining expla-
nations. We further evaluate CROSS-REFINE on
a bilingual dataset in English and German.

1 Introduction

As the complexity of LLMs continues to increase,
NLEs are pivotal in explainable artificial intelli-
gence (XAI) (Madsen et al., 2022; Lyu et al., 2024;
Zhao et al., 2024). NLEs can serve as a bridge be-
tween XAI and humans, providing justifications in
a format that humans can easily understand (Cam-
buru et al., 2018; Wiegreffe et al., 2021). LLMs are
widely employed to generate NLEs across diverse

1https://github.com/qiaw99/Cross-Refine

Figure 1: CROSS-REFINE example of the question
“Where would you borrow coffee if you do not have any?”
from ECQA. The initial explanation by the generator
has been accurately corrected and refined based on the
feedback and explanations provided by the critic.

domains (Singh et al., 2023; Wang et al., 2024b;
Kwon et al., 2024; Stern et al., 2024; Wang et al.,
2024c). However, similar to humans, LLMs may
not consistently generate optimal explanations in
their initial attempt (Madaan et al., 2023), e.g., due
to lack of faithfulness (Chuang et al., 2024). LLMs
have the potential to enhance their reasoning abil-
ities through self-improvement without relying on
external inputs (Huang et al., 2023). Based on this
observation, Madaan et al. (2023) proposed SELF-
REFINE, where LLMs use their own feedback to
refine and improve their performance iteratively.
This is shown to work only with large and powerful

https://github.com/qiaw99/Cross-Refine
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models; smaller models tend to hallucinate or gen-
erate repeated outputs. Moreover, Tyen et al. (2024)
highlighted that LLMs generally struggle to iden-
tify reasoning errors and, therefore, cannot always
self-correct their reasoning (Huang et al., 2024b).

In this paper, we first propose CROSS-REFINE,
which draws inspiration from how humans bene-
fit from learning from others (Foster and Rosen-
zweig, 1995; De Felice et al., 2023) and additional
feedback or suggestions. CROSS-REFINE involves
deploying a base LLM as the generator to generate
an NLE and a second LLM as the critic (Figure 1).
While the generator outputs initial explanations,
the critic provides the generator with feedback and
suggestions based on initial explanations. Feed-
back and suggestions are then cross-referenced by
the generator to refine the initial explanations. The
cross-referencing process involves the refinement
by the critic, helping to mitigate the limitation of
not being able to self-correct to some extent com-
pared to SELF-REFINE (Madaan et al., 2023).

Secondly, we validate CROSS-REFINE on three
NLP tasks - commonsense question answering, nat-
ural language inference, and fact-checking. We
perform an automatic evaluation using three model-
based metrics, as well as a user study to assess
explanations based on perceived faithfulness, in-
sightfulness, and coherence. Both results suggest
that CROSS-REFINE can outperform SELF-REFINE

when LLMs have substantial knowledge relevant to
the given task. However, when LLMs are required
to reason about topics beyond their domain of ex-
pertise, e.g., in the medical domain, CROSS-REFINE

and SELF-REFINE both perform poorly. We find that
CROSS-REFINE works effectively with less powerful
LLMs, while SELF-REFINE delivers strong results
only with ChatGPT (OpenAI, 2023).

Thirdly, compared to SELF-REFINE, we incorpo-
rate the critic’s feedback and suggestions instead
of self-feedback. We conduct an ablation study to
assess the importance of each deployed component.
The ablation study reveals that both components
contribute significantly and equally to the refine-
ment of the explanations.

Lastly, we evaluate CROSS-REFINE on a bilin-
gual dataset HealthFC (Vladika et al., 2024) in
English and German. The evaluation shows that
CROSS-REFINE can outperform SELF-REFINE and
consistently performs better in generating NLEs in
German compared to SELF-REFINE.

2 Background

2.1 In-Context Learning for NLE
Several Chain-of-Thought (CoT) (Wei et al., 2022)
prompting techniques have been introduced that
yield remarkable performance improvements in
NLE generation, e.g., Zero-Shot CoT (Kojima
et al., 2022), Plan-and-Solve (Wang et al., 2023a),
and optimization by prompting (Yang et al., 2024b).
Self-consistency further demonstrates that self-
evaluation can help LLMs improve reasoning
(Wang et al., 2023b). CROSS-REFINE also considers
in-context learning to generate NLEs, and the critic
deployed in CROSS-REFINE plays a similar role to
that of Wang et al.’s (2023b) self-evaluation.

2.2 NLE Evaluation
Regarding automated metrics for evaluating NLEs,
BLEURT (Sellam et al., 2020) calculates the se-
mantic similarity between human annotated expla-
nations and generated explanations. BARTScore
(Yuan et al., 2021) treats the evaluation process as
a text generation task and measures the likelihood
of generating the reference text given the generated
text. RORA (Jiang et al., 2024d) measures the new
information provided by a NLE to justify a label by
evaluating the conditional ν-information (Hewitt
et al., 2021). Huang et al. (2024a) asked ChatGPT
to evaluate the output of the generation on multiple
scales. TIGERScore (Jiang et al., 2024b) uses nat-
ural language instructions to provide error analysis,
pinpointing errors in the outputs.

For human evaluation of NLEs, prevalent met-
rics such as plausibility, faithfulness, simulatabil-
ity, and insightfulness are used to evaluate fac-
tual correctness and logical coherence (Chan et al.,
2022; Atanasova et al., 2023); consistency with
the model’s decision process (Lakkaraju et al.,
2019; Jacovi and Goldberg, 2020; Agarwal et al.,
2024); how well a human can imitate model’s be-
haviour based on explanations (Doshi-Velez and
Kim, 2017; Arora et al., 2022); and how relevant
is the information of an explanation (Clinciu et al.,
2021), respectively. To validate CROSS-REFINE,
BLEURT, BARTScore, and TIGERScore are in-
cluded for automatic evaluation (§5.1), while per-
ceived faithfulness, coherence, and insightfulness
are included for the human evaluation (§5.2).

3 Methodology

CROSS-REFINE is inspired by how humans learn
from others and employs two LLMs separately for
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Figure 2: Pipeline of CROSS-REFINE. (1) Generator: produces an initial explanation. (2): Critic: provides feedback
and an suggested explanation based on the generator’s initial output. (3) Generator: utilizes the feedback and
suggested explanation from the critic to refine and improve the initial explanation.

role modeling: one as the critic and the other as
the generator (Figure 2). The generator outputs the
initial explanation, while the critic offers feedback
and suggestions on it, which can be used by the
generator to refine the initial explanation.

3.1 CROSS-REFINE Example

Figure 1 provides an example for how generator
and critic collaboratively improve NLEs. In the
example, the generator initially chooses an incor-
rect choice (“convenience store”), resulting in the
explanation that is untruthful for the given question.
In the feedback and suggested explanation provided
by the critic, the errors made by the generator are
identified (“misunderstanding the nature of bor-
rowing”), with the help of which the generator can
recognize its mistakes and subsequently refine and
correct both the prediction and the explanation2.

3.2 Pipeline

We describe the pipeline of CROSS-REFINE as
shown in Figure 2 and denote the generator by
G and the critic by C.

Initial Generation The generator outputs the ini-
tial explanation independently using CoT prompt-
ing (Wei et al., 2022) with 3 to 20 shots depending
on the input length (i.d. fewer shots with longer in-
puts) following the FEB template (Marasovic et al.,
2022). Given an input x and prompt pgen, CROSS-

2More CROSS-REFINE examples are in Appendix A.

REFINE generates the initial explanation y0 :

y0 = G( x |pgen) (1)

Quality Assessment Given an input x , the ini-
tial explanation y0 and a prompt pimp, the critic
determines whether the initial explanation needs
improvement yimp :

yimp = C( y0 , x |pimp) (2)

Feedback and Suggestion Afterwards, the critic
offers feedback yf on the initial explanation y0
from the generator based on the provided input x
with the prompt pf :

yf = C( y0 , x |pf ) (3)

Meanwhile, the critic generates a suggested ex-
planation ys by considering the input x , the ini-
tial explanation y0 , and feedback yf generated
by the critic with the prompt ps:

ys = C( yf , y0 , x |ps) (4)

Refinement Lastly, the feedback yf and the sug-
gested explanation ys generated by the critic are
forwarded to the generator, which the generator
uses to obtain the refined explanation yrefine with
the prompt prefine:

yrefine = G( ys , yf , y0 , x |prefine) (5)

In such a way, the generator can take into ac-
count the critic’s feedback and suggested explana-
tion. The feedback and suggested explanation are
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cross-referenced by the generator, which serves as
a guide, ultimately enhancing the quality of the
generator’s initial explanations.

4 Experimental Setup

4.1 Baseline

We employ SELF-REFINE (Madaan et al., 2023) as
the baseline, which can enhance the initial outputs
of the LLM only through iterative self-feedback.
Unlike CROSS-REFINE, it does not involve multiple
reasoning steps and the model does not distinguish
between the roles of critic and generator.

4.2 Datasets

Following Atanasova et al. (2023), we demonstrate
the validity of our approach, CROSS-REFINE, by
applying it to three typical NLP tasks: natural lan-
guage inference, commonsense question answer-
ing, and fact-checking. We select the subsequent
three datasets3 because of their sufficient size and
the high quality of human-annotated NLEs.

e-SNLI Natural Language Inference (Dagan
et al., 2006) involves determining whether a given
relationship between a premise and a hypothesis
can be classified as entailment, contradiction, or
neutrality. The e-SNLI dataset (Camburu et al.,
2018) is an extension of the Stanford Natural Lan-
guage Inference (SNLI) corpus (Bowman et al.,
2015), enriched with human-authored NLEs.

ECQA Compared to question answering, com-
monsense question answering requires the applica-
tion of implicit background knowledge that extends
beyond the information explicitly presented in the
given context (Talmor et al., 2019). Each instance
in the ECQA dataset comprises a question, several
answer options, and human annotated explanations
(Aggarwal et al., 2021).

HealthFC The significance of fact-checking has
greatly increased due to the swift spread of mis-
and disinformation and accurate information (Guo
et al., 2022). HealthFC (Vladika et al., 2024) is a
bilingual fact-checking dataset (English and Ger-
man) and consists of questions, documents as well
as veracity annotations (whether the answer is true,
false or unknown based on the provided document)
and the corresponding explanations.

3Examples from each dataset and label distributions of
three employed dataset can be found in Appendix B.

There are several reasons why we chose
HealthFC4 for our experiments. Firstly, this
dataset is new and it is unlikely that it was seen
during training by the employed LLMs. Secondly,
it involves claims and documents from the medi-
cal domain and includes some specific terminol-
ogy and domain knowledge that differs from more
general-purpose data which LLMs are typically
trained on. Thirdly, it is a bilingual dataset which
means that we can check the performance of CROSS-
REFINE also with German.

4.3 Models

We select three state-of-the-art open-source
general-purpose LLMs with increasing sizes from
different model families: Qwen2-7B (Yang et al.,
2024a), Mixtral-8x7B (Jiang et al., 2024a), and
Llama3-70B (AI@Meta, 2024)5.

4.4 Demonstrations for In-Context Learning

To refine the initial explanation, we employ in-
context learning to prompt the critic for feedback
and suggestions and prompt the generator for re-
fined explanations. For this purpose, we create a
collection of demonstrations FiXer6, which com-
prises the initial explanations of the generator, the
feedback and suggested explanations of the critic,
and the refined explanations of the generator.

4.5 Prompts

Conforming to the FEB template (Marasovic et al.,
2022), the prompt instructions used for explanation
refinement include the task description, a list of
information provided, and a few demonstrations
for in-context learning (§4.4), as depicted in Ap-
pendix F.

5 Evaluation

5.1 Automatic Evaluation

The refined explanations are evaluated using the
following three automated reference-based or
reference-free metrics7.

4Note that due to the input length constraints, we extract
only those sentences from the documents that were annotated
as relevant in the original dataset. This results in shorter, more
claim-focused documents that are then included in the prompt.

5More details about models and inference time can be
found in Appendix C.

6Abbreviation of “Feedback of initial eXplanation and
explanation refinement” (FiXer). More details about data
collection are provided in Appendix D.

7The models used for automatic evaluation metrics are
detailed in Appendix E.
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BLEURT BLEURT (Sellam et al., 2020) utilizes
BERT (Devlin et al., 2019), which is fine-tuned on
a collection of human ratings, to deliver ratings of
generated outputs, ranging from -1 to 1.

BARTScore BARTScore (Yuan et al., 2021)
leverages BART (Lewis et al., 2020) to score the
generated text based on how well the generated
text matches the reference text. Additionally,
BARTScore evaluates both “from generated to ref-
erence" and “from reference to generated" direc-
tions, providing a more robust assessment.

TIGERScore TIGERScore (Jiang et al., 2024b)
utilizes natural language instructions to perform
error analysis, identifying mistakes in the gener-
ated text using fine-tuned Llama2 (Touvron et al.,
2023) and delivering corresponding explanations
for each mistake. TIGERScore assigns a penalty
score between [−5,−0.5] for each mistake.

5.2 Human Evaluation

To further validate CROSS-REFINE, we conduct a
user study in which participants subjectively eval-
uate the refined explanations according to three
dimensions.

5.2.1 Subjective Ratings

Based on how Feldhus et al. (2023) and Chiang
and Lee (2023) design Likert scales for explanation
evaluation, we ask human annotators to assess rea-
soning outputs generated by CROSS-REFINE based
on the following dimensions used in the user study
conducted by Tsai et al. (2024):

• Perceived Faithfulness (Binary): Investigate
whether the generated reasoning exhibits halluci-
nation and if it includes any misinformation;

• Coherence (5-point Likert): Assess whether
the generated reasoning is sensible, clear and co-
herent and reflects the reasons behind the user’s
preference;

• Insightfulness (5-point Likert): Evaluate the
extent to which the generated reasoning provides
informative insights into the user’s preferences.

Coherence and insightfulness are rated on a 5-point
Likert scale ranging from “strongly disagree” to
“strongly agree”, corresponding to points from 1 to
5. Perceived faithfulness is assessed using a binary
scale, with a score of 0 assigned for unfaithful
explanations and 1 for faithful explanations.

5.2.2 User Study Setup
Given the large number of combinations shown
in Table 1, we limit the user study to the easiest
and most difficult datasets, ECQA and HealthFC,
respectively. Additionally, we focus on Qwen2 and
Llama3 as the generators, since Mixtral does not
perform well with SELF-REFINE and CROSS-REFINE

(Table 1). In this way, we maintain a feasible scope
of our user study.

We sample subsets (n = 10) of ECQA and
HealthFC randomly among the instances that ful-
fill the selection criteria described in Appendix H,
which makes the task more manageable for the an-
notators, reducing the risk of performance decline
over time (Mangin et al., 2022), and ensuring the
quality of the annotations. Based on the inputs,
explanations are generated using different combi-
nations of three deployed LLMs and the baseline,
as illustrated in Table 2. Each explanation is rated
by two annotators based on three subjective eval-
uation dimensions (§5.2.1). The inputs and their
corresponding explanations are provided to the an-
notators in the form of questionnaires8. We use
the Crowdee crowdsourcing platform9 to recruit
annotators, distribute questionnaires, and store the
annotators’ responses. We recruit a total of 32 an-
notators who are all English native speakers and do
not necessarily have expertise in XAI.

5.3 Ablation Study

As illustrated in Figure 2, the generator receives
feedback and a suggested explanation from the
critic in the final step to refine its initial explanation.
To analyze the impact of individual components,
namely feedback and suggested explanation, on the
quality of the refined explanation, we conduct an
comprehensive ablation experiment (§6.3).

Influence of Suggestions Compared to SELF-
REFINE, CROSS-REFINE additionally introduces sug-
gestions from the critic to guide the generator, we
explore the extent to which the suggestions can
influence the refined explanations.

5.4 CROSS-REFINE on German Data

While the data we have described thus far is only
in English, we also investigate the effectiveness
of CROSS-REFINE on the German data provided in
HealthFC dataset (§6.4).

8The annotation instructions can be found in Appendix G.
9https://www.crowdee.com/

https://www.crowdee.com/
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Dataset ECQA eSNLI HealthFC

Critic Generator BLEURT ↑ BART ↑ TIGER ↑ BLEURT ↑ BART ↑ TIGER ↑ BLEURT ↑ BART ↑ TIGER ↑
Score Score Score Score Score Score

Self-Refine Qwen2 -0.68 -3.91 -4.38 -0.88 -4.19 -4.63 -0.25 -3.09 -1.09
Qwen2 Qwen2 -0.33 -3.64 -2.20 -0.97 -3.33 -4.33 -0.24 -3.02 -0.79
Qwen2 Mixtral -0.67 -4.13 -2.88 -0.71 -3.44 -3.65 -0.33 -3.15 -1.11
Qwen2 Llama3 -0.30 -3.65 -1.71 -0.99 -3.21 -2.55 -0.83 -3.60 -2.87

Self-Refine Mixtral -0.75 -4.03 -4.72 -0.83 -3.72 -4.50 -0.60 -3.37 -2.28
Mixtral Qwen2 -0.50 -4.08 -1.68 -0.71 -3.44 -3.66 -0.76 -3.60 -2.67
Mixtral Mixtral -0.66 -3.98 -2.25 -0.64 -3.49 -3.87 -0.38 -3.21 -1.41
Mixtral Llama3 -0.36 -3.46 -4.48 -0.69 -3.52 -4.46 -0.81 -3.61 -2.87

Self-Refine Llama3 -0.59 -3.79 -5.64 -0.99 -4.20 -4.19 -0.33 -3.14 -1.85
Llama3 Qwen2 -0.37 -3.72 -2.72 -0.51 -3.25 -3.74 -0.76 -3.55 -2.65
Llama3 Mixtral -0.45 -3.64 -3.78 -0.70 -3.47 -3.43 -0.30 -3.13 -0.63
Llama3 Llama3 -0.68 -3.62 -2.16 -0.66 -3.26 -3.90 -0.29 -3.07 -0.97

Table 1: Automatic evaluation results of refined explanations generated by SELF-REFINE, and CROSS-REFINE with
Qwen2-7B, Mixtral-8*7B, and Llama3-70B using BLEURT, BARTScore, and TIGERScore on the ECQA, eSNLI,
and HealthFC datasets.

6 Results

6.1 Automatic Evaluation
Table 1 demonstrates that CROSS-REFINE can easily
outperform SELF-REFINE on ECQA and eSNLI,
although the scores for each automated metric are
lower compared to the results of HealthFC. This
discrepancy can be attributed to the shorter length
of the gold rationales in ECQA and eSNLI rela-
tive to those in HealthFC. The longer context in-
herent in CROSS-REFINE, which includes feedback
and suggestions from the critic, tends to generate
relatively longer explanations, contributing to this
variation in scores.

Interestingly, Table 1 reveals that for HealthFC,
CROSS-REFINE with the same LLM as both gen-
erator and critic (“self CROSS-REFINE”) outper-
forms SELF-REFINE10, indicating that suggestions
play a crucial role in refining explanations (a fur-
ther proof is shown in §6.3). However, CROSS-
REFINE underperforms compared to SELF-REFINE

on HealthFC when using different combinations
of LLMs instead of “self CROSS-REFINE”. The
poorer performance might be caused by the lack
of domain-specific knowledge, particularly in the
medical domain, as the three LLMs that we deploy
are general purpose models (Yang et al., 2024c).
Furthermore, since HealthFC was released very
recently (Vladika et al., 2024), it is highly unlikely
that three LLMs were trained on HealthFC, un-
like the other two datasets. This result aligns with
our intuition that models which lack knowledge

10“Self CROSS-REFINE” differs from SELF-REFINE in that it
additionally incorporates explicit suggestions from the critic.
SELF-REFINE instead just improves itself in few shots.

in a particular domain are less likely to provide
constructive and helpful feedback and suggestions
to others (Valero Haro et al., 2019). Moreover, it
suggests that cross-referencing could potentially
lead to worse performance if feedback and sug-
gestions are incorrect or hallucinated (Tan, 2022;
Augenstein et al., 2023).

6.2 User Study

Table 2 shows that, for ECQA, CROSS-REFINE over-
all outperforms SELF-REFINE, particularly in terms
of coherence, where the margin is relatively large.
Similarly, for HealthFC, the findings align with
those mentioned in §6.1: “self CROSS-REFINE” can
outperform SELF-REFINE, but other combinations
other than “self CROSS-REFINE” perform worse
than SELF-REFINE. Furthermore, we discover a
correlation between TIGERScore and the results of
the user study.

Since each combination from Table 2 is evalu-
ated by two annotators, we report that our inter-
annotator agreements (IAA) are at Krippendorff’s
α of 0.45 for ECQA and 0.39 for HealthFC. The
low IAA scores can be attributed to the factor that
we evaluate perceived faithfulness and insightful-
ness using a 5-point Likert scale, which is more
fine-grained compared to a binary choice. The IAA
on HealthFC is lower compared to ECQA due to
its intrinsic difficulty. Additionally, we calculate
the exact match between the two annotators, but
in many cases, their scores are very close, such
as 4 (agree) and 5 (strongly agree) or 1 (strongly
disagree) and 2 (disagree).

From Table 2, we observe that the scores for per-
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Dataset ECQA HealthFC
Generator Critic Faith. Coh. Insight. Faith. Coh. Insight.

Self-Refine (Qwen) 0.75 3.15 4.10 0.75 3.75 3.90
Qwen2 Qwen2 0.75 4.40 4.05 1.00 3.20 4.15
Qwen2 Mixtral 0.50 3.80 4.15 0.50 3.85 3.40
Qwen2 Llama3 0.50 3.65 3.20 0.25 4.20 3.80

Self-Refine (Llama3) 0.50 2.80 2.35 1.00 4.35 4.10
Llama3 Qwen2 1.00 4.19 4.05 1.00 3.45 3.60
Llama3 Mixtral 0.75 4.50 4.00 0.50 3.15 2.75
Llama3 Llama3 1.00 4.05 4.15 1.00 4.55 4.35

Table 2: The results (in average scores from two anno-
tators for each combination) of the user study on the
quality of the refined explanations generated by SELF-
REFINE and CROSS-REFINE using Qwen2 and Llama3 as
the generator. The refined explanations are evaluated
based on Perceived Faithfulness (Faith.), Coherence
(Coh.), and Insightfulness (Insight.), conducted on the
ECQA and HealthFC datasets.

ceived faithfulness are sightly higher for HealthFC
compared to ECQA. In some cases, where med-
ical domain knowledge is required, annotators
might not fully grasp the context of instances from
HealthFC, especially when the explanations seem
to be plausible. Meanwhile, recruiting annotators
with specific expertise, especially in the medical
field, is very challenging through crowdsourcing
platforms. Moreover, we lack the expertise in the
medical domain to filter qualified recruited annota-
tors. These findings can partially highlight the risks
of over-trusting LLM outputs when individuals are
not well-versed in the given topic (Li et al., 2024).

Figure 10 presents examples of SELF-REFINE and
CROSS-REFINE. Like the examples shown in Fig-
ure 10, we observe several cases where the expla-
nations generated by SELF-REFINE are untruthful,
while the critic in CROSS-REFINE can correct errors,
making the explanations more trustworthy.

Therefore, based on automatic evaluation and
the user study results, we can draw the conclusion
that CROSS-REFINE can outperform SELF-REFINE,
when LLMs possess substantial knowledge rele-
vant to the given task. However, when LLMs are
required to provide reasoning on topics outside of
their domain of expertise, CROSS-REFINE outper-
forms SELF-REFINE only in the “self CROSS-REFINE”
setting, i.e. utilizing the same model for both critic
and generator.

6.3 Ablation Study

For the evaluation, we randomly select samples
from eSNLI and deploy Qwen2-7B as both the gen-
erator and the critic, maintaining an analogous ex-
perimental setting to SELF-REFINE (Madaan et al.,
2023), as SELF-REFINE shares the most similarity

Feedback Suggestion BLEURT BARTScore TIGERScore

✓ ✓ -0.97 -3.33 -4.33
✓ × -0.72 (↓ 0.25) -3.11 (↑ 0.22) -4.86 (↓ 0.53)
× ✓ -0.84 (↓ 0.13) -3.35 (↓ 0.02) -4.67 (↓ 0.34)

Table 3: Ablation Study of CROSS-REFINE: Impact of
different components on the refinement of explanations.

Model ECQA eSNLI HealthFC
Generator Critic Init. Sug. Init. Sug. Init. Sug.

Qwen2 Qwen2 0.76 0.87 0.45 0.85 0.90 0.96
Qwen2 Mixtral 0.54 0.49 0.19 0.66 0.47 0.50
Qwen2 Llama3 0.72 0.72 0.62 0.73 0.49 0.51

Mixtral Qwen2 0.46 0.50 0.37 0.84 0.56 0.78
Mixtral Mixtral 0.51 0.60 0.56 0.56 0.53 0.91
Mixtral Llama3 0.76 0.81 0.51 0.73 0.52 0.93

Llama3 Qwen2 0.67 0.74 0.31 0.73 0.39 0.45
Llama3 Mixtral 0.69 0.65 0.51 0.70 0.40 0.50
Llama3 Llama3 0.63 0.61 0.46 0.64 0.73 0.92

Table 4: The semantic similarities between the refined
explanations and the initial explanations (Init.) and be-
tween the refined explanations and suggestions (Sug.).

to our approach. We then generate explanations
with and without a certain component and the au-
tomated metrics (§5.1) are applied to each set of
generated explanations to assess their quality.

Table 3 shows that while BARTScore slightly
increases when using CROSS-REFINE without sug-
gestions to refine the explanations, BLEURT and
TIGERScore experience a sharp reduction. In con-
trast, when using CROSS-REFINE without feedback,
all scores decline to some extent, but not as sig-
nificantly as in the case of CROSS-REFINE without
suggestions. Meanwhile, since we use the same
LLM for both the generator and the critic in the
ablation study (“self CROSS-REFINE”), and SELF-
REFINE relies solely on self-feedback, making the
feedback comparable between two approaches, we
deduce that suggestions play an equally important
role in the refinement of explanations.

Influence of Suggestions To measure the influ-
ence of suggestions, we evaluate the semantic simi-
larity using SBERT11 between the refined explana-
tion and the initial explanation, as well as between
the refined explanation and the suggestions individ-
ually. Table 4 indicates that, in general, the refined
explanations align more closely with the sugges-
tions than with the initial explanations, which im-
plies that the “cross-refinement” steps effectively
prompt changes to the initial explanation. This pro-

11https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Dataset HealthFC (German)
Generator Critic BERTScore ↑ BARTScore ↑ MoverScore ↑

Self-Refine (Qwen) 0.6935 -5.6894 0.5246
Qwen2 Qwen2 0.7068 -4.4023 0.5271
Qwen2 Mixtral 0.6240 -6.5103 0.5068
Qwen2 Llama3 0.7036 -4.3785 0.5258

Self-Refine (Mixtral) 0.6519 -6.4200 0.5009
Mixtral Qwen2 0.6789 -5.3713 0.5132
Mixtral Mixtral 0.6776 -5.1785 0.5173
Mixtral Llama3 0.6782 -5.2327 0.5161

Self-Refine (Llama3) 0.6626 -6.1267 0.5083
Llama3 Qwen2 0.6574 -5.6861 0.5078
Llama3 Mixtral 0.6220 -6.5031 0.5059
Llama3 Llama3 0.6656 -5.4474 0.5088

Table 5: Automatic evaluation results on HealthFC
(German) dataset using BERTScore, BARTScore, and
MoverScore.

cess encourages LLMs to “rethink” and correct the
initial explanations if they are stated incorrectly.

6.4 CROSS-REFINE on German Data

For automatic evaluation, we discard BLEURT
and TIGERScore, as they only support English.
For BARTScore, we use a different model that is
compatible with German. In addition, we deploy
MoverScore (Zhao et al., 2019) and BERTScore
(Zhang et al., 2020). MoverScore measures the se-
mantic distance by contextualized representations
and distance metrics, while BERTScore evaluates
the token-level similarity between the reference
texts and the LLM outputs by leveraging contextual
embeddings. Table 5 demonstrates that, overall,
CROSS-REFINE produces better NLEs than SELF-
REFINE on HealthFC (German).

For the German portion of the HealthFC dataset,
we compare different configurations based on the
number of explanations generated in German, En-
glish, or another language. Language identifica-
tion is performed using FASTTEXT-LANGDETECT12.
Table 6 presents the percentage of explanations
generated in German. The results, summarized
in Table 6 show that Qwen2 and Llama3 consis-
tently outperform Mixtral in generating NLEs in
German. Additionally, SELF-REFINE outputs expla-
nations in English notably more often compared
to CROSS-REFINE, e.g., Mixtral-8x7B generates
a higher percentage of self-refined explanations
in English (57.5%) compared to German (39%),
despite explicit prompts instructing that “Your re-
sponse should be in German" and several German-
language demonstrations.

12https://github.com/zafercavdar/
fasttext-langdetect

Dataset HealthFC (German)
Generator Critic German ↑ English ↓ Other ↓

Self-Refine (Qwen) 88.00 11.00 1.00
Qwen2 Qwen2 96.86 2.29 0.86
Qwen2 Mixtral 93.43 3.71 2.86
Qwen2 Llama3 97.43 2.29 0.29

Self-Refine (Mixtral) 39.00 57.50 3.50
Mixtral Qwen2 74.29 23.43 2.29
Mixtral Mixtral 86.00 13.14 0.86
Mixtral Llama3 76.00 22.29 1.71

Self-Refine (Llama3) 57.50 41.00 1.50
Llama3 Qwen2 80.06 18.21 1.73
Llama3 Mixtral 92.20 4.62 3.18
Llama3 Llama3 82.95 14.74 2.31

Table 6: Percentage of the generated explanations in
different languages (English, German and other) for
HealthFC (German).

Interestingly, in some cases, outputs are mixed,
containing both English and German, e.g.: “Re-
fined explanation: Die Antwort ist unbekannt, weil
das Dokument aufzeigt ...", while English is typ-
ically used at the beginning to indicate the type
of output, e.g., to indicate the type of the gener-
ated output such as “Refined explanation:" in the
example above.

Overall, CROSS-REFINE proves beneficial for gen-
erating explanations in a language different from
English, even when the underlying model is pre-
dominantly trained on English data.

7 Related Work

Refined Explanations Krishna et al. (2023) pro-
posed to take advantage of post-hoc explanations
in in-context learning. Tong et al. (2024) found that
LLMs can benefit from correct examples and learn
from mistakes, while An et al. (2024) fine-tuned
LLMs using pairs consisting of errors and their re-
spective corrections. The mixture of agents (MoA)
(Wang et al., 2024a) approach collects the strengths
of multiple LLMs by constructing a layered MoA
architecture and improves the reasoning by pro-
viding criticism. Moreover, LLMs can use self-
generated feedback, refinement, or introspection as
means to enhance reasoning abilities (Huang et al.,
2023; Madaan et al., 2023; Zhang et al., 2023; Xu
et al., 2024). Welleck et al. (2023) suggested to use
a base generator that proposes an initial hypothesis
and a trained corrector that iteratively improves its
quality. Compared to Welleck et al.’s (2023) ap-
proach, CROSS-REFINE does not necessarily require
the critic can completely correct the hypothesis, as

https://github.com/zafercavdar/fasttext-langdetect
https://github.com/zafercavdar/fasttext-langdetect
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it can be very challenging (Huang et al., 2024b;
Tyen et al., 2024). Instead, CROSS-REFINE focuses
on providing feedback and suggested explanations
generated by the critic, which the generator can
use to refine its initial explanations. Furthermore,
CROSS-REFINE does not require supervised training
data collection that is used for corrector fine-tuning
(Welleck et al., 2023). Meanwhile, SELF-REFINE

leverages self generated feedback to refine the ex-
planation iteratively (Madaan et al., 2023). Madaan
et al. (2023) showed that with SELF-REFINE, less
powerful LLMs struggle with explanation refine-
ment, because they have difficulties in generating
suitable feedback and thus tend to repeat the same
output or generate hallucinated output. In com-
parison, since CROSS-REFINE deploys the critic,
the generator has an external source (i.e., feed-
back and suggestion) except for itself, which can
be cross-referenced. Because of cross-reference,
CROSS-REFINE can be highly effective for tasks
where LLMs have substantial knowledge. More-
over, CROSS-REFINE performs well with less pow-
erful LLMs, compared to SELF-REFINE.

8 Conclusion

We introduced CROSS-REFINE, an approach that im-
proves NLEs through cross-refinement based on
automated and human evaluation across various
tasks. CROSS-REFINE uses two LLMs for role mod-
eling: One as the generator and the other as the
critic. The generator refines its initial explanations
by cross-referencing feedback and suggestions pro-
vided by the critic. Overall, CROSS-REFINE can out-
perform similar state-of-the-art approaches such
as SELF-REFINE and can refine the explanations
well with less powerful LLMs compared to SELF-
REFINE. For tasks that fall outside of the LLMs’
domain expertise, e.g., in the medical domain, and
require more structured domain knowledge, CROSS-
REFINE using the same LLM both as the generator
and the critic can surpass SELF-REFINE. Further-
more, since CROSS-REFINE introduces feedback
along with suggestions from the critic to refine
the generator’s initial explanation, through the ab-
lation study, we observe that suggestions are as
crucial as feedback in refining explanations. Addi-
tionally, we find that CROSS-REFINE outperforms
SELF-REFINE when data is in German (HealthFC),
and with CROSS-REFINE, NLEs are more likely to
be generated in German compared to SELF-REFINE.

9 Future Work

Future work includes exploring whether human-
crafted feedback and suggestions can align with
LLM generated ones. We plan to conduct a more
fine-grained error analysis to inspect to what extent
CROSS-REFINE can address the errors contained in
the explanations. We will explore how the inter-
pretation of terminology of quality metrics, e.g.,
faithfulness or insightfulness, can impact the qual-
ity of the user study. Furthermore, we will investi-
gate whether CROSS-REFINE using LLMs trained on
medical data can perform better on the HealthFC
dataset. In addition, we plan to incorporate human
interactions into the CROSS-REFINE workflow.

Limitations

CROSS-REFINE, while not inherently iterative like
SELF-REFINE, already demonstrates superior per-
formance compared to the latter. Moreover, its
structure allows for straightforward adaptation into
an adaptive framework, potentially enhancing its
refinement capabilities further.

Despite we created a collection of demonstra-
tions, FiXer, which includes various instances con-
sisting of initial explanations (generator), feedback
and suggested explanations (critic) and refined ex-
planations (generator), we are limited to using a
small number of demonstrations (n ∈ [3, 10]) de-
pending on input length for few-shot prompting to
refine NLEs with CROSS-REFINE. This limitation is
primarily due to constraints on context length, e.g.
Mixtral 7*8B has the context window with only
8k tokens13. We will consider using LONGLLMLIN-
GUA (Jiang et al., 2024c) to compress the prompt
while the model performance can be enhanced.

We only performed experiments using datasets
in English and German (only for HealthFC). In
other languages, current models might not offer the
same advantages.

We have to use different automatic evalua-
tion metrics or models for the German data in
HealthFC, as BLEURT and TIGERScore do not
support languages other than English.

Ethical statement

The conducted user study was ethically approved
by the Ethics Committee of Faculty IV of Technis-
che Universität Berlin. The 32 annotators in our

13https://huggingface.co/docs/transformers/en/
model_doc/mixtral

https://huggingface.co/docs/transformers/en/model_doc/mixtral
https://huggingface.co/docs/transformers/en/model_doc/mixtral
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user study were paid at least the minimum wage
according to the standards of our host institutions’
regions. The annotation took each annotator 30
minutes on average.
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A CROSS-REFINE Examples

Figure 3, Figure 4, and Figure 5 show CROSS-
REFINE examples from ECQA, eSNLI, and
HealthFC.

Figure 3: CROSS-REFINE example on ECQA dataset.

B Dataset

B.1 Dataset Example

Figure 6 shows data points from ECQA, eSNLI,
and HealthFC.

Figure 4: CROSS-REFINE example on eSNLI dataset.

Figure 5: CROSS-REFINE example on HealthFC dataset.

B.2 Label Distribution
Figure 7 displays label distributions of eSNLI and
HealthFC, as ECQA does not have fixed labels.

C Experiment

C.1 Models
Table 7 demonstrates LLMs that are used for
CROSS-REFINE. To reduce memory consump-
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Figure 6: Data points from ECQA, eSNLI, and
HealthFC.

tion, we use a GPTQ-quantized version (Frantar
et al., 2023). All LLMs are directly downloaded
from Huggingface and run on a single NVIDIA
RTXA6000, A100 or H100 GPU.

C.2 Inference Time

Table 8 shows inference time for feedback & sug-
gestions generation and refinement of explanations
using Qwen2-7B, Mixtral 8*7B and Llama3-70B
on ECQA, eSNLI and HealthFC.

D Demonstrations for In-Context
Learning

Firstly, we prompt Llama3-8B (AI@Meta, 2024)
to generate the initial explanations, which poten-
tially has more room for improvement compared
to larger LLMs14. Afterwards, we ask ChatGPT to
provide corresponding feedback and suggestions.
Then we manually create a small subset of data
points that can be used as demonstrations for refin-
ing explanations, which are reviewed by two au-

14Note that for HealthFC (German), we use ChatGPT in-
stead of Llama3-8B to ensure that the generated outputs are
consistently in German.

(a) eSNLI dataset

(b) HealthFC dataset

Figure 7: Label distributions of eSNLI and HealthFC.

thors of this paper. Lastly, Llama3-8B is prompted
with created demonstrations to refine the initial ex-
planations based on feedback and suggestions. The
generated outputs then undergo a review process
and are post-processed if necessary. For instance,
if the initial explanation is of good quality and does
not require improvement, or if the refined explana-
tion is of lower quality than the initial explanation,
we annotate whether examples need further refine-
ment. Finally, we gather a total of 60 data points
for FiXer.

E Models Used for Automatic Evaluation
Metrics

Table 9 displays the models used for automatic
evaluation metrics.

F Prompt Instruction

The prompts used by CROSS-REFINE for explana-
tion refinement are given in Figure 8.

G User Study

Figure 9 displays the descriptions and instructions
that we give the annotators for the user study.

H Sample Selection for User Study

For the HealthFC dataset we observe different
quality of generated explanations and to make
sure that the explanations involved in the user
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Name Citation Size Link

Qwen2 Yang et al. (2024a) 7B https://huggingface.co/Qwen/Qwen2-7B
Mixtral Jiang et al. (2024a) 8*7B https://huggingface.co/mistralai/Mixtral-8x7B-v0.11
Llama3 AI@Meta (2024) 70B https://huggingface.co/meta-llama/Meta-Llama-3-70B

Table 7: Three open sourced LLMs used in CROSS-REFINE.

ECQA eSNLI HealthFC
Model Feedback & Suggestions Refinement Feedback & Suggestions Refinement Feedback & Suggestions Refinement

Qwen2-7B 2h 5h 2h 4h 6h 14h
Mixtral 8*7B 7h 15h 7h 12h 15h 21h
Llama3-70B 9h 15h 8h 16h 21h 48h

Table 8: Inference time for feedback & suggestions generation and refinement of explanations using Qwen2-7B,
Mixtral 8*7B and Llama3-70B on ECQA, eSNLI and HealthFC.

Metric Model Link

BLEURT BERT https://huggingface.co/prajjwal1/bert-tiny
BARTScore BART https://huggingface.co/facebook/bart-large-cnn

TIGERScore Llama2 https://huggingface.co/TIGER-Lab/TIGERScore-7B
BARTScore (DE) mBART https://huggingface.co/facebook/mbart-large-50

MoverScore BERT https://huggingface.co/google-bert/bert-base-german-cased
BERTScore BERT https://huggingface.co/google-bert/bert-base-german-cased

Table 9: Models used for automatic evaluation metrics.

study are meaningful we apply some selection
criteria to filter out suboptimal generations (to-
kenization was performed with NLTK15 and co-
sine similarity was computed with SENTENCE-
TRANSFORMER16 using the pre-trained model
multi-qa-mpnet-base-cos-v117):

1. Explanation length within 20 to 50 tokens.

2. Bigram ratio: num_bigram_types
total_num_bigrams >= 0.8 to

ensure the diversity of generated samples with-
out too many repetitions of the same token(s).

3. Digit ratio: num_digit_tokens
total_num_tokens <= 0.3 to en-

sure that the explanation does not contain too
many digits.

4. Cosine similarity between the embeddings of
the original question and generated explana-
tion is at least 0.6 to avoid including such
cases where e.g. the model generates an expla-
nation for one of the demonstrations instead
of the input question-document pair.

15https://www.nltk.org/
16https://sbert.net/
17https://huggingface.co/sentence-transformers/

multi-qa-mpnet-base-cos-v1

From those samples that fulfill all the require-
ments, we randomly sample 10 explanations per
setting. The same procedure is applied to all combi-
nations of models in both SELF-REFINE and CROSS-
REFINE settings.

I Examples of SELF-REFINE and
CROSS-REFINE

Figure 10 shows examples of SELF-REFINE and
CROSS-REFINE.

https://huggingface.co/Qwen/Qwen2-7B
https://huggingface.co/mistralai/Mixtral-8x7B-v0.11
https://huggingface.co/meta-llama/Meta-Llama-3-70B
https://huggingface.co/prajjwal1/bert-tiny
https://huggingface.co/facebook/bart-large-cnn
https://huggingface.co/TIGER-Lab/TIGERScore-7B
https://huggingface.co/facebook/mbart-large-50
https://huggingface.co/google-bert/bert-base-german-cased
https://huggingface.co/google-bert/bert-base-german-cased
https://www.nltk.org/
https://sbert.net/
https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-cos-v1
https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-cos-v1
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Figure 8: Prompt instructions for ECQA, eSNLI, and
HealthFC.
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Figure 9: Descriptions and instructions of the user study.

(a) SELF-REFINE

(b) CROSS-REFINE

Figure 10: Examples of SELF-REFINE and CROSS-REFINE. The gold label is plants.
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