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Abstract

Entity matching (EM) is a critical step in en-
tity resolution (ER). Recently, entity matching
based on large language models (LLMs) has
shown great promise. However, current LLM-
based entity matching approaches typically fol-
low a binary matching paradigm that ignores
the global consistency among record relation-
ships. In this paper, we investigate various
methodologies for LLM-based entity matching
that incorporate record interactions from differ-
ent perspectives. Specifically, we comprehen-
sively compare three representative strategies:
matching, comparing, and selecting, and ana-
lyze their respective advantages and challenges
in diverse scenarios. Based on our findings,
we further design a compound entity match-
ing framework (COMEM) that leverages the
composition of multiple strategies and LLMs.
COMEM benefits from the advantages of dif-
ferent sides and achieves improvements in both
effectiveness and efficiency. Experimental re-
sults on 8 ER datasets and 10 LLMs verify the
superiority of incorporating record interactions
through the selecting strategy, as well as the
further cost-effectiveness brought by COMEM.

1 Introduction

Entity resolution (ER), also known as record link-
age (Fellegi and Sunter, 1969) or deduplication (El-
magarmid et al., 2007), aims to identify and canon-
icalize records that refer to the same real-world
entity. ER is a fundamental task of data integration
and cleansing, with broad applications in maintain-
ing data consistency, accurate data analysis, and
informed decision making. Entity matching (EM)
serves as a critical step in entity resolution that uses
complex techniques to identify matching records
from potential matches filtered by the blocking
step (Papadakis et al., 2021). The recent emergence

*Corresponding author.

Do these two records refer to the same real-world entity?
(1) Title: Cruzer Force USB Flash Drive 32GB Type-A 2.0 Chrome
(2) Title: Sandisk USB Flash Drive 32GB Cruzer Glide 2.0/3.0
LLM Response No (a) Matching

Which of these two records is more consistent with the given record: 
Title: Cruzer Force USB Flash Drive 32GB Type-A 2.0 Chrome
(A) Title: Sandisk USB Flash Drive 32GB Cruzer Glide 2.0/3.0
(B) Title: Pendrive Sandisk Cruzer Force - SDCZ71-032G-B35
LLM Response Record B (b) Comparing

Select a record from the following list that refers to the same real-
world entity as the given record: 
Title: Cruzer Force USB Flash Drive 32GB Type-A 2.0 Chrome
(1) Title: Sandisk USB Flash Drive 32GB Cruzer Glide 2.0/3.0
(2) Title: Pendrive Sandisk Cruzer Force - SDCZ71-032G-B35
(3) Title: Sandisk Extreme Pro 3.1 Solid State Flash Drive 128GB
(4) Title: Kingston DataTraveler G4 32 GB USB-stick
…
LLM Response Record 2 (c) Selecting

Figure 1: Three strategies for LLM-based entity match-
ing. We omit other attributes of records for simplicity.

of large language models (LLMs) has introduced
a new zero- or few-shot paradigm to EM, showing
great promise (Narayan et al., 2022; Peeters and
Bizer, 2023; Fan et al., 2024; Li et al., 2024; Peeters
et al., 2025). LLM-based entity matching methods
can achieve similar or even better performance than
deep learning methods trained on large amounts of
data, and are less susceptible to the unseen entity
problem (Wang et al., 2022; Peeters et al., 2024).

However, current LLM-based entity matching
methods identify matches by classifying each pair
of records independently. This matching strategy
ignores the global consistency1 among record re-
lationships and thus leads to suboptimal results.
On the one hand, entity resolution requires more
than independent classification due to the intercon-
nected nature of record relationships (Getoor and
Machanavajjhala, 2012). For example, in record
linkage (i.e., clean-clean ER), a single record from

1We refer to the interdependence of matching decisions in
ER as global consistency. See Appendix A for more details.
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one data source typically matches at most one
record from another data source, since there are
usually no duplicates in a single database. Unfor-
tunately, matching-based approaches do not take
advantage of this nature of record linkage. On
the other hand, this strategy ignores the capabili-
ties of LLMs to handle multiple records simulta-
neously to distinguish similar records. Using the
records in Figure 1(c) as an example, if “Cruzer
Glide”, “Cruzer Force”, and “Extreme Pro” appear
in different records of the same context, LLMs are
more likely to recognize that they are different San-
Disk flash drive models, which helps with accurate
matching. As a result, the matching strategy cannot
fully unleash the potential of LLMs in EM.

In this paper, we thoroughly investigate three
strategies for LLM-based entity matching that in-
corporate record interactions from different per-
spectives, as shown in Figure 1. Specifically, apart
from the conventional matching strategy shown in
Figure 1(a), we investigate two additional strategies
that leverage information from other records: 1)
the comparing strategy, which identifies the record
out of two that is more likely to match the anchor
record, as shown in Figure 1(b); 2) the selecting
strategy, which directly chooses the record from a
list that is most likely to match the anchor record,
as shown in Figure 1(c). Our research suggests
that for LLM-based entity matching, incorporating
record interactions is critical and can significantly
improve entity matching performance in various
scenarios. Among these strategies, the selecting
strategy is often the most cost-effective. Neverthe-
less, we also observe that the selection accuracy
varies significantly as the position of the matching
record increases in the candidate list. The position
bias and limited long context understanding of cur-
rent LLMs (Levy et al., 2024) hinder the generality
of the selecting strategy.

Based on our findings, we design a compound en-
tity matching framework (COMEM) that leverages
the composition of multiple strategies and LLMs.
Specifically, given an entity record and its n poten-
tial matches obtained from the blocking step, we
first preliminarily rank and filter these candidates
using the local matching or comparing strategy,
implemented with a medium-sized LLM. We then
perform fine-grained identification on only the top
k candidates using the global selecting strategy, fa-
cilitated by a more powerful LLM. This approach
not only mitigates the challenges and biases faced
by the selecting strategy with too many options, but

also reduces the cost of LLM invocations caused
by composing multiple strategies. Consequently,
by integrating the advantages of different strategies
and LLMs, COMEM achieves a more effective and
cost-efficient entity matching process.

To investigate different strategies and to evalu-
ate COMEM, we conducted in-depth experiments
on eight ER datasets. Experimental results verify
the effectiveness of incorporating record interac-
tions through the selecting strategy, with an average
16.02% improvement in F1 over the current match-
ing strategy. In addition, we examined the effect of
10 different LLMs using these strategies on identi-
fication or ranking. Ultimately, COMEM is able to
further improve average F1 of the single selecting
strategy by up to 4% while reducing the cost.
Contributions. In general, our contributions can
be summarized as follows2:

• We investigate three strategies for LLM-based
entity matching, and delve into their advan-
tages and shortcomings in different scenarios.

• We design a COMEM framework by integrat-
ing the advantages of different strategies and
LLMs to address the challenges of EM.

• We conduct thorough experiments to investi-
gate these strategies for EM and verify the
effectiveness of our proposed framework.

2 Related Work

2.1 Entity Resolution

Entity resolution has received extensive attention
over the past decades (Fellegi and Sunter, 1969;
Getoor and Machanavajjhala, 2012; Papadakis
et al., 2021; Binette and Steorts, 2022). The
blocking-and-matching pipeline has become the
mainstream of entity resolution, where blocking fil-
ters out obviously dissimilar records and matching
identifies duplicates through complex techniques.
Blocking. Traditional blocking approaches group
records into blocks by shared signatures, followed
by cleaning up unnecessary blocks and compar-
isons (Papadakis et al., 2022). Meta-blocking fur-
ther reduces superfluous candidates by weighting
potential record pairs and graph pruning (Papadakis
et al., 2014). Recently, nearest-neighbor search
techniques, especially cardinality-based ones, have
gained more attention and achieved state-of-the-art

2Our code is available at github.com/tshu-w/ComEM to
facilitate reproduction of our results.

https://github.com/tshu-w/ComEM
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Records Title Authors Venue Year

Anchor Lineage Tracing for General Data Warehouse Transformations Yingwei Cui, Jennifer Widom VLDB 2001

Potential
Matches

Lineage Tracing for General Data Warehouse Transformations Yingwei Cui, Jennifer Widom VLDB Journal 2003
Tracing the lineage of view data in a warehousing environment Yingwei Cui, Jennifer Widom, et al. TODS 2000
Lineage tracing for general data warehouse transformations Y. Cui, J. Widom VLDB 2001
. . . . . . . . . . . .

Table 1: Example of our formulation for entity matching: Given an anchor record, identify the matching record (if
any) from its potential matches. This example is taken from the DBLP-ACM dataset.

(SOTA) results (Thirumuruganathan et al., 2021;
Paulsen et al., 2023; Wang and Zhang, 2024).
Entity Matching. The open and complex nature
of entity matching has spurred the development
of various approaches to address this persistent
challenge, including rule-based (Benjelloun et al.,
2009; Li et al., 2015), distance-based (Bilenko
et al., 2003), and probabilistic methods (Fellegi and
Sunter, 1969; Wu et al., 2020), etc. With the advent
of deep learning methods (Mudgal et al., 2018),
especially pre-trained language models (PLMs) (Li
et al., 2020), entity matching has made significant
progress (Barlaug and Gulla, 2021; Tu et al., 2023;
Wu et al., 2023; Zhang et al., 2024). The emer-
gence of LLMs brings a new zero- or few-shot
paradigm to entity matching (Narayan et al., 2022;
Xu et al., 2024; Peeters et al., 2025), alleviating
training data requirements. Most deep learning and
LLM-based approaches treat entity matching as an
independent binary classification problem, except
for GNEM (Chen et al., 2021), which models this
task as a collective classification task on graphs.

2.2 Large Language Model

The advent of LLMs such as ChatGPT marks a sig-
nificant advance in artificial intelligence, offering
unprecedented natural language understanding and
generation capabilities. By scaling up the model
and data size of PLMs, LLMs exhibit emergent
abilities (Wei et al., 2022) and can thus solve a
variety of complex tasks by prompt engineering.
For more technical details on LLMs, we refer the
reader to the related survey (Zhao et al., 2023).

While LLMs have shown promising results in
classification and ranking tasks (Sun et al., 2023;
Qin et al., 2024), applying LLMs to entity match-
ing presents unique challenges and opportunities.
Our work differs from previous research in three
aspects: First, we propose a novel paradigm that
formulates entity matching as a comparison or se-
lection task. Second, we demonstrate that the effec-
tiveness of pairwise and listwise strategies in entity

matching exhibits different patterns compared to
ranking. Finally, through a comprehensive cross-
model and cross-strategy evaluation, we reveal sev-
eral key insights about LLM-based EM, which mo-
tivate the design of our COMEM framework.

3 Entity Matching with LLMs

In this section, we first present the problem for-
mulation. Then, we introduce three strategies for
LLM-based entity matching. Finally, we propose
our COMEM framework, which leverages the com-
position of multiple strategies and LLMs.

3.1 Problem Formulation

We formulate the task of entity matching as the
process of identifying matching records from a
given anchor record r and its n potential matches
R = {r1, r2, . . . , rn} obtained from blocking, as
illustrated in Table 1. This formulation mitigates
the limitations of independent pairwise matching
and fits real-world ER scenarios. First, current
SOTA blocking methods adhere to the k-nearest
neighbor (kNN) search paradigm, which retrieves
a list of potential matches for each entity record.
In addition, this formulation accommodates both
single-source deduplication and dual-source record
linkage, and makes good use of the one-to-one as-
sumption, i.e., record r matches at most one of the
records in potential matches R. This assumption
is widespread in record linkage, and deduplication
with canonicalization.

3.2 LLM as a Matcher

Recent work formulates entity matching as a binary
classification task based on LLMs (Narayan et al.,
2022; Peeters and Bizer, 2023; Fan et al., 2024; Li
et al., 2024; Peeters et al., 2025). In this strategy,
an LLM acts as a pairwise matcher to determine
whether two records match. Specifically, given
an entity record r and its potential matches R =
{r1, r2, . . . , rn}, this approach independently clas-
sifies each pair of records (r, ri)1≤i≤n as matching



99

or not by interfacing LLMs with an appropriate
matching prompt, as shown in Figure 1(a):

LLMm : {(r, ri) | ri ∈ R} → {Yes,No}

Unlike previous studies, the core of LLM-based
applications is to prompt LLMs to generate the cor-
rect answer, namely prompt engineering. An appro-
priate prompt should include the task instruction,
such as “Do these two records refer to the same
real-world entity? Answer Yes or No”. Optionally,
a prompt could include detailed rules or several
in-context learning examples to guide LLMs in
performing this task. Given the need for long con-
texts in other strategies, and the instability of exist-
ing prompt engineering methods for entity match-
ing (Peeters et al., 2025), we only attempt few-shot
prompting for the matching strategy and leave the
exploration of better prompt engineering with dif-
ferent strategies to future work.

This independent matching strategy ignores the
global consistency of ER, as well as the capabilities
of LLMs to incorporate record interactions. The
traditional solution to satisfy these constraints is
to construct a graph based on the similarity scores
si of record pairs (r, ri) and to further cluster on
the similarity graph. We can obtain the similar-
ity scores from LLMs by calibrating the generated
probabilities p of labels (Liang et al., 2023). For-
mally, the similarity score si can be defined as:

si =

{
1 + p(Yes | (r, ri)), if generate “Yes”
1− p(No | (r, ri)), if generate “No”

Unfortunately, the generation probabilities are not
available for many black-box commercial LLMs.
Moreover, the probabilities on short-form labels are
misaligned for common open-source chat-tuned
LLMs because they are fine-tuned to respond in
detail. The need to investigate better strategies for
LLM-based entity matching arises in ER.

3.3 LLM as a Comparator
In this section, we introduce a comparing strategy
for LLM-based entity matching that simultaneously
compares two potential matches to a given record.
Specifically, given an entity record r and its po-
tential matches R = {r1, r2, . . . , rn}, the compar-
ing strategy compares two records ri and rj from
potential matches R to determine which is more
consistent with record r by interfacing LLMs with
a comparison prompt, as shown in Figure 1(b):

LLMc : {(r, ri, rj) | ri,j ∈ R} → {A,B}

where A and B are labels corresponding to record
ri and rj . Since LLMs may be sensitive to the
prompt order, we compare the record pair (ri, rj)
to record r twice by swapping their order.

Compared to the matching strategy, this com-
paring strategy introduces an additional record
for more record interactions and shifts the task
paradigm. It focuses on indicating the relative rela-
tionship between two potential matches of a given
record, rather than making a direct match or no
match decision. Therefore, this strategy is suitable
for ranking and fine-grained filtering to determine
the most likely records for identification.

To rank candidate records using the comparing
strategy, we can compute similarity scores to es-
timate how closely each candidate matches the
anchor record. Unlike the matching strategy, the
comparing strategy can obtain similarity scores of
record pairs using black-box LLMs, which do not
provide probabilities. In such case, the similarity
score si of record pair (r, ri) can be defined as:

si = 2×
∑

j ̸=i 1ri>rrj +
∑

j ̸=i 1ri=rrj

where 1ri>rrj and 1ri=rrj indicate that record ri
wins twice and once in comparison with record rj
to record r. When LLMs do provide probabilities,
the similarity score si can be defined as:

si =
∑

j ̸=i (p(A | (r, ri, rj)) + p(B | (r, rj , ri)))

However, the advantage of the comparing strat-
egy in obtaining similarity scores comes at the cost
of using LLMs as the basic unit of comparison and
O(n2) complexity. Fortunately, for entity match-
ing, we only care about a small number of most
similar candidates, and there are many comparison
sort algorithms available to find the top-k elements
efficiently. In this paper, we use the bubble sort
algorithm to find the top-k elements, optimizing
the complexity of the comparing strategy to O(kn).
To avoid confusion, we refer to the comparison of
all pairs as comparingall-pair in our experiments.

3.4 LLM as a Selector
In this section, we introduce a selecting strategy
that uses an LLM to select the matching record
of a given record from a list of potential matches.
Specifically, given an entity record r and its po-
tential matches R = {r1, r2, . . . , rn}, this strat-
egy directly selects the match of record r from R
by interfacing LLMs with an appropriate selection
prompt, as shown in Figure 1(c):

LLMs : {(r,R)} → {1, 2, . . . , n}
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Strategy
Similarity

Score
Interaction

Level
# LLM

Invocations
# Input
Records

Matching O(n) 2n

Comparing ✓ O(kn) 3k(2n− k − 1)

Selecting ✗ O(1) n+ 1

Table 2: Comparison of different strategies. “–” means
that the matching strategy can only calibrate similarity
scores if the generation probability is available. “# LLM
Invocations” and “# Input Records” represent the num-
ber of (#) LLM invocations and records input to LLMs
using different strategies for record r and its n potential
matches R, respectively. k denotes the number of top
candidates considered by the comparing strategy.

where 1, . . . , n indicates the corresponding record.
In this way, LLMs can be explicitly required to

identify only one match per record r from the po-
tential matches R. Furthermore, feeding LLMs all
potential matches in the same context at a time al-
lows LLMs to make better decisions by considering
interactions between records (Chen et al., 2022).
Using Table 1 as an example, it is easier for LLMs
to recognize the less critical attributes, such as au-
thors, and identify the third record as the true match
by comparing the values of title and year across
different records.

One challenge in applying the selecting strategy
to LLM-based entity matching is that sometimes
there is no actual match of record r in potential
matches R. A trivial solution to this challenge
could be to perform a pairwise matching after the
selection, which would undermine the advantages
of the selecting strategy. Another method could be
to add “none of the above” as an additional option
to allow LLMs to refuse to select any record from
the potential matches, which can be formulated as:

LLMsN : {(r,R)} → {0, 1, 2, . . . , n}

where 0 indicates the “none of the above” option.
However, the selecting strategy relies heavily on

the capabilities of LLMs for fine-grained under-
standing and implicit ranking in long contexts. Our
experimental results show that current LLMs suf-
fer from position bias, with the selection accuracy
varying significantly as the position of the match-
ing record increases in the candidate list (§ 4.3).
In practice, the recall-oriented blocking step of-
ten generates a considerable number of potential
matches for each record, exceeding the context
length that LLMs can effectively reason (Levy
et al., 2024). Therefore, it is a challenge to mitigate

Record

Filtering

Candidate Record

Comparing

Matching

Selecting

✓

Figure 2: Illustration of COMEM. It first filters candi-
date records by matching or comparing strategies and
then identifies the match via the selecting strategy.

the position bias and the long context requirement
for the selecting strategy.

3.5 Compound Entity Matching Framework
Based on the advantages and shortcomings of dif-
ferent strategies, we further propose a compound
entity matching framework (COMEM). COMEM
addresses various challenges in LLM-based entity
matching by integrating the advantages of different
strategies and LLMs. Table 2 shows a comparison
of these strategies. The matching and comparing
strategies are applicable for local ranking, while
the selecting strategy is suitable for fine-grained
identification. Therefore, as shown in Figure 2, we
first utilize a medium-sized LLM to rank and filter
potential matches R of record r with the matching
or comparing strategy. We then utilize an LLM to
identify the match of record r from only the top k
candidates with the selecting strategy.

Our COMEM integrates the advantages of dif-
ferent strategies through a filtering then identifying
pipeline. It first utilizes the local matching or com-
paring strategy to rank potential matches for pre-
liminary screening, which can effectively mitigate
the position bias and the long context requirement
of the selecting strategy. It then utilizes the global
selecting strategy to incorporate record interactions
for fine-grained optimization, which can effectively
mitigate the consistency ignorance of the match-
ing strategy. Therefore, COMEM is able to strike
a balance between entity matching requirements
and current LLM capabilities, achieving significant
performance improvements.

By integrating LLMs of different sizes, COMEM
can also effectively reduce the cost of LLM in-
vocations for entity matching. In practice, direct
use of commercial LLMs is expensive because en-
tity matching is a computationally intensive task.
COMEM delegates a significant part of the com-
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Dataset Domain # D1 # D2 # Attr # Pos

Abt-Buy (AB) Product 1076 1076 3 1076
Amazon-Google (AG) Software 1354 3039 4 1103

DBLP-ACM (DA) Citation 2616 2294 4 2224
DBLP-Scholar (DS) Citation 2516 61353 4 2308
IMDB-TMDB (IM) Movie 5118 6056 5 1968
IMDB-TVDB (IV) Movie 5118 7810 4 1072
TMDB-TVDB (TT) Movie 6056 7810 6 1095

Walmart-Amazon (WA) Electronics 2554 22074 6 853

Table 3: Statistics of experimental datasets. # denotes
“number of”, D1 and D2 represent records from the 1st
and 2nd sources, respectively. Attr and Pos refer to
attributes of structured records and positive (matching)
record pairs, respectively.

putation to medium-sized LLMs. Experimental
results show that the ranking process can be per-
formed well by using open-source medium-sized
(3B~11B) LLMs (§ 4.4). As a result, the proper
integration of LLMs not only improves the perfor-
mance of entity matching, but also reduces the cost
for practical application.

4 Experiments

In this section, we conduct thorough experiments
to investigate three strategies for LLM-based entity
matching. First, we present the main experimental
results (§ 4.2). Next, we perform the analysis of
different strategies (§ 4.3). Finally, we examine the
effect of different LLMs on these strategies (§ 4.4).

4.1 Experimental Setup

Datasets. We focused on record linkage, a com-
mon form of entity resolution that identifies match-
ing records between two data sources. Specifically,
we used eight clean-clean ER datasets collected by
pyJedAI (Nikoletos et al., 2022). Table 3 shows the
statistics of these datasets, where record collections
D1 and D2 represent records from the first and sec-
ond sources, respectively. For each dataset, we ap-
plied the SOTA blocking method Sparkly (Paulsen
et al., 2023) as preprocessing to retrieve 10 poten-
tial matches from D2 for each record in D1. The
recall@10 of Sparkly on all datasets ranges from
86.57% to 99.96%, demonstrating its effectiveness
in retrieving potential matches. We sampled 400
records from D1 for evaluation, 300 of which had
matches, and formed 4,000 pairs of records by
combining them with their potential matches from
D2. To build training sets for learning-based meth-
ods, we further sampled 5,000 record pairs from
the remaining records and their potential matches.

Through this process, we constructed entity match-
ing datasets that satisfied our formulation, with
all methods evaluating on the same datasets after
blocking to ensure a fair comparison.
Baseline. We considered several SOTA methods
as our baselines, including the unsupervised Ze-
roER (Wu et al., 2020), the self-supervised Su-
dowoodo (Wang et al., 2023), and the LLM-based
matching strategy (Peeters et al., 2025). For a com-
prehensive comparison, we also included two repre-
sentative supervised methods, Ditto (Li et al., 2020)
and HierGAT (Yao et al., 2022).3

Evaluation Metrics. Consistent with prior studies,
we report the F1 score as performance measure. We
also report the cost ($) of LLM invocations. For the
compute cost of open-source LMs, we estimated
it based on the training or inference time required
and the hourly price of the cloud NVIDIA A40.
Implementation Details. We used GPT-4o Mini
(0718) and GPT-3.5 Turbo (0613) as the main
LLMs for analysis. We also examined the ef-
fect of eight open-source instruction-tuned LLMs,
including Llama-3.1-8B (Dubey et al., 2024),
Qwen2-7B (Yang et al., 2024), Mistral-7B (Jiang
et al., 2023), Mixtral-8x7B (Jiang et al., 2024),
Command-R-35B, Flan-T5-XXL (Chung et al.,
2024), Flan-UL2 (Tay et al., 2023) and Solar-
10.7B (Kim et al., 2024). The specific prompts
can be found in Appendix B, with the generation
temperature of all LLMs set to 0 for reproducibility.
For in-context learning, we retrieve 3 positives and
3 negatives as few-shot examples based on record
similarity as Peeters et al. (2025). Since the com-
paring strategy produces only relative orders, we
applied the matching strategy to the top 1 candidate
after bubble sort comparing. In COMEM, we used
Flan-T5-XL to rank candidates with the matching
strategy and kept the top 4 candidates for selection.

4.2 Main Results
We first compare the performance and cost of dif-
ferent methods, with the following findings.

Finding 1. Incorporating record interactions
is essential for LLM-based entity matching. As
shown in Table 4, the performance of LLM-based
entity matching increases with incorporating record
interaction. The comparing strategy outperforms
the independent matching strategy by an average
of 10.7% F1 score, and the selecting strategy fur-
ther improves the F1 score by an average of 5.32%

3We followed their open-source implementations and de-
fault parameters for reproduction.

https://www.runpod.io/gpu-instance/pricing
https://huggingface.co/CohereForAI/c4ai-command-r-v01
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AB AG DA DS IM IV TT WA Mean Cost

Supervised
Ditto (Li et al., 2020) 77.34 63.79 93.80 90.02 97.06 78.59 87.15 57.75 80.69 0.29
HierGAT (Yao et al., 2022) 75.51 64.45 98.01 89.47 97.69 77.73 85.34 78.55 83.34 1.10

Un/Self-supervised
ZeroER (Wu et al., 2020) 32.66 22.14 99.32 84.14 43.32 0.50 53.76 61.52 49.67 /
Sudowoodo (Wang et al., 2023) 58.82 50.45 90.97 77.06 84.72 71.88 76.32 52.36 70.32 0.63

GPT-3.5 Turbo
Matching (Peeters et al., 2025) 56.03 44.36 78.93 71.89 72.05 61.11 77.05 50.77 64.02 4.52
Matching (6-shot) (Peeters et al., 2025) 77.59 60.21 73.13 52.88 84.05 71.45 71.21 69.37 69.99 32.75
Comparing 79.45 51.61 76.61 65.59 62.92 46.12 87.27 65.34 66.86 11.75
Selecting 80.31 63.65 88.62 80.61 92.43 83.36 83.66 80.18 81.60 1.71
COMEM 87.62 69.63 90.85 84.68 96.74 84.16 84.82 86.37 85.61 0.92

GPT-4o Mini
Matching (Peeters et al., 2025) 81.37 51.95 61.28 48.76 89.64 61.65 72.84 74.92 67.80 0.46
Matching (6-shot) (Peeters et al., 2025) 83.03 63.63 84.50 71.37 95.70 71.82 72.54 80.97 77.94 3.21
Comparing 89.24 65.61 93.04 88.41 89.86 75.05 89.80 83.85 84.36 1.21
Selecting 82.37 69.01 83.28 81.11 94.43 83.61 87.58 76.66 82.26 0.17
COMEM 88.24 71.47 90.58 87.84 95.62 78.07 90.97 88.56 86.42 0.09

Table 4: Overall performance and cost of different methods. We bold the best F1 score and underline the second best
for non-supervised methods. The cost of learning-based methods includes both the training and testing GPU costs.

over the comparing strategy. The advantages of the
comparing and selecting strategies over the match-
ing strategy are also evident across different LLMs
in Figure 4. To further verify that these improve-
ments are due to the strategy, we perform 6-shot
matching, ensuring that the number of records is
consistent with the selecting strategy. We can see
that the selecting strategy still outperforms 6-shot
matching by 7.97% in F1. Moreover, the proposed
strategies enable LLM-based entity matching to
surpass SOTA un/self-supervised methods and to
be comparable to supervised methods that require
extensive labeling data. These results highlight the
effectiveness of our proposed strategies and open
new avenues for LLM-based entity matching.

Finding 2. By integrating the advantages of
different strategies and LLMs, COMEM can ac-
complish entity matching more effectively and cost-
efficiently. As shown in Table 4, compared to the
single comparing and selecting strategies, COMEM
achieves 2~18% F1 improvements while spend-
ing less. The filtering and identifying pipeline im-
proves precision considerably without sacrificing
the high recall of the selecting strategy. These
results reveal that integrating multiple strategies
can complement single strategies and mitigate the
position bias of the selecting strategy in long con-
texts. However, using a single powerful but costly
commercial LLM to complete the entire pipeline
obscures the cost efficiency of the selecting strat-
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Figure 3: F1 score w.r.t. matching record positions.

egy. By introducing a medium-sized LLM for pre-
liminary filtering, COMEM improves performance
while spending less than direct selection. As a re-
sult, COMEM underscores the importance of task
decomposition and LLM composition, illuminating
an effective route for compound EM using LLMs.

4.3 Analysis of Strategies

We then analyze the advantages and shortcomings
of different strategies from different perspectives.

Finding 3. The selecting strategy is the most
cost-effective strategy for LLM-based entity match-
ing. Monetary cost is also an important factor when
interfacing LLMs for entity matching in practice,
as it is computationally intensive. As shown in Ta-
ble 4, the selecting strategy costs less than half of
the matching strategy. This is because the selecting
strategy saves n− 1 times of repeatedly inputting
anchor records and task instructions into LLMs.
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Figure 4: Effect of open-source LLMs on different strategies and COMEM.

The comparing strategy, however, considers two
potential matches at a time and interfaces the LLM
twice, making its cost more than twice that of the
matching strategy. Therefore, the selecting strategy
stands out for its effectiveness and efficiency.

Finding 4. Strategies that incorporate multiple
records suffer from the position bias of LLMs. As
shown in Figure 3, the performance of the compar-
ing and selecting strategies varies significantly as
the position of the matching records moves down
in the candidate list. For the comparing strategy
optimized with bubble sort, matching records can-
not be ranked at the top if there is any incorrect
comparison. The selecting strategy is also highly
sensitive to the matching record positions, while
COMEM can alleviate this. Therefore, the position
bias of LLMs limits the performance and generality
of the comparing and selecting strategies.

4.4 Effect of LLMs

We further examine the effect of open-source LLMs
on these strategies to identify matches or rank.

Finding 5. There is no single LLM that is uni-
formly dominant across all strategies. Figure 4
shows the efficacy of proposed strategies for open-
source LLMs, with detailed results in Appendix C.
We can see that the F1 scores of the matching, com-
paring, and selecting strategies for different LLMs
mostly fall between 50%~70%, 60%~80%, and
70%~80%, respectively. In general, similar to GPT-
3.5 Turbo, the comparing strategy is better than the
matching strategy, while the selecting strategy is
further better than the comparing strategy. The con-
sistent performance between strategies confirms the
effectiveness of incorporating record interactions
in these ways. Concretely, some chat LLMs, such
as Llama3-8B and Mistral-7B, produce numerous
false positives and thus perform poorly with the
matching strategy. Nevertheless, they achieve sig-
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Figure 5: Ranking recall@1 w.r.t. model parameters.

nificant improvement and satisfactory performance
by comparing and selecting strategies, respectively.
Moreover, although Flan-T5-XXL and Flan-UL2
lag behind GPT-4o by about 5% F1 in the selecting
strategy, we find that they perform quite well in
the matching and comparing strategies. These task-
tuned LLMs follow instructions better than chat-
tuned LLMs, and can output only the requested
labels instead of long-form responses, making it
convenient to utilize label generation probabilities.
In conclusion, there is a noticeable variance in the
capabilities of different LLMs for a single strategy,
and the efficacy of different strategies for a single
LLM can also be significantly distinct.

Finding 6. Matching strategy is better for rank-
ing and filtering than comparing strategy. The su-
periority of Flan-T5 in the matching and comparing
strategies leads us to explore the possibility of using
it to rank and filter potential matches for the select-
ing strategy. As shown in Figure 5, the matching
strategy outperforms the comparing strategy under
different model parameter sizes, even though the
latter performs O(n2) comparisons. The difference
is small on Flan-T5-XL (3B) and Flan-T5-XXL
(11B), but significant on smaller models. This may
be due to the fact that these models are trained on
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many pairwise tasks, such as natural language in-
ference and question answering, but few triplewise
tasks. Therefore, in terms of effectiveness and effi-
ciency, the matching strategy is more suitable for
ranking and filtering potential matches.

4.5 Ablation Study

We perform ablation studies on the number of can-
didate records for further identification. As shown
in Figure 6, the performance of GPT-3.5 Turbo is
highly variable, while that of GPT-4o Mini is rela-
tively stable. These results suggest that as LLMs
evolve, COMEM may become more robust to the
number of potential matches retained.

5 Conclusion

In this paper, we investigate three strategies of
LLMs for entity matching to bridge the gap be-
tween local matching and global consistency of ER.
Our research shows that incorporating record inter-
actions is essential for LLM-based entity matching.
By examining the effect of broad LLMs on these
strategies, we further design a COMEM framework
that integrates the advantages of multiple strategies
and LLMs. The effectiveness and cost-efficiency of
COMEM highlight the importance of task decom-
position and LLM composition, opening up new
avenues for entity matching using LLMs.

Limitations

This study aims to investigate different strategies
for LLM-based entity matching. We conducted
thorough experiments with two commercial LLMs
and eight open-source LLMs to provide a broad
base for our analysis. The selection of LLMs is
based on considerations of popularity, availability,
and cost. Future research could explore whether
similar findings hold as LLMs evolve and how per-
formance changes relative to our results.

Since LLMs were trained on massive amount
of web data, they are likely to have seen similar
and same records, or even some matching results,
even though the labels of the matches are stored
separately. Nevertheless, the performance of these
strategies is relatively consistent across 10 LLMs
and varies greatly for the same LLM when using
different strategies, highlighting that data exposure
is not the determining factor in their effectiveness.
In the future, it will be valuable to evaluate LLM-
based entity matching on new or non-public data.

The investigation of different strategies was con-
ducted using basic zero- or few-shot prompting, a
simple and effective paradigm for applying LLMs.
We could not ignore the role of potential advanced
prompt engineering methods in improving the ac-
curacy and robustness of LLMs. In addition, fine-
tuning LLMs for better execution of different strate-
gies is also a worthwhile direction.

Finally, we have demonstrated the effectiveness
of the compound framework in entity matching
that integrates different strategies and LLMs. We
would like to continue to develop specific modules
for entity matching and extend this paradigm to
different stages of entity resolution.
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Matching
Do the two entity records refer to the same real-world entity?
Answer "Yes" if they do and "No" if they do not.

Record 1: {{ record_left }}
Record 2: {{ record_right }}

Comparing
Which of the following two records is more likely to refer to
the same real-world entity as the given record? Answer with
the corresponding record identifier "Record A" or "Record B".

Given entity record: {{ anchor }}

Record A: {{ candidate_left }}
Record B: {{ candidate_right }}

Selecting
Select a record from the following candidates that refers to the
same real-world entity as the given record. Answer with the
corresponding record number surrounded by "[]" or "[0]" if
there is none.

Given entity record: {{ anchor }}

Candidate records:{% for candidate in candidates %}
[{{ loop.index }}] {{ candidate }}{% endfor %}

Table 5: Specific prompts of different strategies. We use
JinJa template syntax to display the placeholders for the
anchor record and potential matches (candidates).

A Global Consistency of ER

In this paper, we refer to the interdependence of
matching decisions in entity resolution as global
consistency. This means that whether two records
match is not an isolated decision, but is influenced
by the matching results of other record pairs. This
includes properties such as: 1) Reflexive: A record
always matches itself; 2) Symmetric: If record A
matches record B, then B also matches A; 3) Tran-
sitive: If A matches B, and B matches C, then A
should match C; 4) Mutually exclusive: In some
cases such as clean-clean ER, if A matches B, it
cannot match C. Global consistency motivates the
incorporation of more record interactions for LLM-
based entity matching, rather than just considering
two records independently.

B Strategy Prompts

The prompts for different strategies of LLM-based
entity matching used in this paper are presented in
Table 5. To ensure fairness, the same prompts were
used for all experimental LLMs. These prompts
were constructed through a manual process of
prompt engineering, which involved the testing
and comparing of multiple variations to determine
the most effective ones. In addition to the task
description, we included specific response instruc-
tions such as “Answer "Yes" if they do and "No"

if they do not” to guide the responses of LLMs.
For in-context learning, prompts and labels were
repeatedly inputted for each example, followed by
the records to be matched. We post-processed the
LLM responses to obtain the final predicted labels.

C Detailed Results of Open-Source LLMs
under Different Strategies

We provide the detailed F1 scores of open-source
LLMs under different strategies and COMEM in Ta-
ble 6. Among the eight LLMs evaluated in our ex-
periment, six achieve the best performance through
the selecting strategy, and two achieve better per-
formance through the comparing strategy. In sum-
mary, our proposed strategies are universally appli-
cable across different LLMs for entity matching.
We have observed that it is difficult to limit the out-
put of many chat-tuned LLMs simply by prompts,
which may affect their actual performance. There-
fore, how to calibrate the label probabilities from
the long-form responses of LLMs is also important
for performance improvement.
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LLM Strategy AB AG DA DS IM IV TT WA Mean

Mistral-Instruct-7B

Matching 40.70 37.77 24.68 28.89 64.86 64.49 49.91 55.96 45.91
Comparing 54.68 32.10 49.28 49.75 74.38 52.25 81.69 44.39 54.82
Selecting 67.26 57.31 83.36 74.27 87.84 76.95 80.89 62.54 73.80
COMEM 70.33 61.52 83.12 78.05 87.10 76.85 83.54 66.97 75.94

Mixtral-Instruct-8x7B

Matching 77.67 34.76 67.20 60.09 82.26 53.57 72.99 50.57 62.39
Comparing 67.81 25.20 81.48 75.54 75.15 54.05 73.93 41.22 61.80
Selecting 79.58 61.16 85.05 79.37 90.34 77.15 81.23 78.84 79.09
COMEM 84.13 72.51 87.32 82.03 92.33 81.67 83.82 82.48 83.29

Solar-Instruct-10.7B

Matching 68.80 45.60 47.02 38.32 70.35 40.49 75.18 70.57 57.04
Comparing 86.22 49.14 84.70 75.16 61.68 32.57 77.49 74.41 67.67
Selecting 74.27 62.05 74.93 65.50 79.56 59.68 73.96 74.89 70.60
COMEM 78.83 61.01 62.25 61.92 79.52 67.48 76.46 74.85 70.29

Flan-T5-XXL (11B)

Matching 77.85 58.35 87.63 80.34 71.82 51.62 74.62 67.23 71.18
Comparing 84.21 56.85 94.49 85.82 65.33 49.88 84.28 67.89 73.60
Selecting 77.52 69.83 84.77 80.29 85.07 68.05 78.90 77.33 77.72
COMEM 80.23 72.29 84.81 82.18 79.59 71.16 79.77 78.05 78.51

Flan-UL2 (20B)

Matching 83.39 52.73 81.97 67.53 82.35 40.56 70.88 74.07 69.19
Comparing 88.09 64.52 94.81 88.26 71.43 39.51 83.66 80.66 76.37
Selecting 80.34 71.82 84.00 80.57 84.09 65.70 80.99 71.94 77.43
COMEM 81.27 74.27 85.14 81.71 80.52 68.13 81.42 80.98 79.18

Command-R-35B

Matching 49.87 32.87 47.87 44.46 91.45 69.69 63.14 36.81 54.52
Comparing 72.31 51.27 76.82 65.91 90.91 77.00 86.09 57.24 72.20
Selecting 78.16 65.52 83.67 79.54 85.26 75.33 79.06 80.58 78.39
COMEM 78.34 69.24 84.29 80.97 85.80 76.81 78.39 78.44 79.03

Llama-3.1-8B-Instruct

Matching 53.97 29.93 22.97 26.54 80.14 62.00 65.94 40.56 47.75
Comparing 84.41 55.27 85.80 75.49 72.20 70.33 78.39 85.30 75.90
Selecting 78.29 68.00 81.16 75.57 79.65 75.68 77.45 74.82 76.33
COMEM 80.86 70.86 84.57 81.14 85.01 79.34 79.53 80.06 80.17

Qwen2-7B-Instruct

Matching 63.41 47.33 68.35 52.46 82.89 55.54 71.84 55.06 62.11
Comparing 84.32 56.88 88.78 76.57 93.17 65.07 86.50 75.39 78.34
Selecting 72.39 61.03 81.49 76.57 82.97 73.48 78.55 72.96 74.93
COMEM 82.46 70.69 86.68 82.68 88.26 79.22 80.06 79.88 81.24

Table 6: F1 score of open-source LLMs under different strategies and COMEM.
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