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Abstract
Despite the massive success of fine-tuning Pre-
trained Language Models (PLMs), they remain
susceptible to out-of-distribution input. Dataset
cartography is a simple yet effective dual-
model approach that improves the robustness
of fine-tuned PLMs. It involves fine-tuning a
model on the original training set (i.e. reference
model), selecting a subset of important train-
ing instances based on the training dynamics,
and fine-tuning again only on these selected
examples (i.e. main model). However, this
approach requires fine-tuning the same model
twice, which is computationally expensive for
large PLMs. In this paper, we show that 1) train-
ing dynamics are highly transferable across
model sizes and pre-training methods, and that
2) fine-tuning main models using these selected
training instances achieves higher training effi-
ciency than empirical risk minimization (ERM).
Building on these observations, we propose a
novel fine-tuning approach: Fine-Tuning by
transFerring Training dynamics (FTFT). Com-
pared with dataset cartography, FTFT uses
more efficient reference models and aggres-
sive early stopping. FTFT achieves robustness
improvements over ERM while lowering the
training cost by up to ∼ 50%.1

1 Introduction

Despite the success of few-shot and zero-shot
learning (Brown et al., 2020), state-of-the-art per-
formance in Natural Language Processing (NLP)
is still largely achieved by fine-tuning large Pre-
trained Language Models (PLMs) (Mosbach et al.,
2023). Scaling laws (Kaplan et al., 2020; Hoffmann
et al., 2022) suggest that better downstream perfor-
mance is achieved with larger PLMs. However,
fine-tuning large PLMs is also more expensive, in
terms of both computational resources and carbon
emission (Strubell et al., 2019; Wu et al., 2022).

1Our code is publicly available at https://github.com/
nlpsoc/FTFT.

Moreover, despite impressive progress on reg-
ular benchmarks, many studies have shown that
fine-tuned PLMs lack robustness against out-of-
distribution (OOD) input. For instance, human an-
notators can easily exploit the weaknesses of fine-
tuned PLMs to trick these models to yield incorrect
predictions, on tasks such as Natural Language In-
ference (NLI) (Nie et al., 2020) and Hate Speech
Detection (HSD) (Vidgen et al., 2021b).

The problem of robustness can be mitigated us-
ing dual-model approaches. With such approaches,
first a reference model is trained to estimate the im-
portance of each training instance, and then a main
model is trained based on the outputs of the refer-
ence model (Nam et al., 2020; Utama et al., 2020;
Sanh et al., 2021; Karimi Mahabadi et al., 2020;
Zhang et al., 2022; Liu et al., 2021). Among these
approaches, dataset cartography (Swayamdipta
et al., 2020) is especially attractive in view of
its simplicity and the consistent improvements in
model robustness. It consists of three steps. First, a
Data Map (DM) is constructed from the training
dynamics (i.e. instance prediction probabilities)
of a fine-tuning run of the reference model on the
full dataset. This DM divides the training data
into three subsets: ambiguous, hard-to-learn, and
easy instances. Finally, the main model is fine-
tuned using only either the ambiguous or hard-to-
learn subset. An important question has to do with
the choice of reference model. Swayamdipta et al.
(2020) use the same PLM for both the reference and
main model. However, a major drawback of dataset
cartography is the high computational cost, because
it requires fine-tuning the same model twice. In this
paper, we jointly address robustness and efficiency
issues without sacrificing the simplicity of dataset
cartography, by exploiting the transferability of
training dynamics. We make three contributions.

First, we study the following question: Are DMs
transferable across different model sizes and pre-
training methods? We focus on the novel setting

https://github.com/nlpsoc/FTFT
https://github.com/nlpsoc/FTFT
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where DMs are constructed based on computation-
ally efficient reference models to fine-tune more
capable — and often larger — main models. Our
motivation is two-fold: 1) efficient reference mod-
els ease the computational burden of constructing
DMs, and 2) less capable reference models might
be better at identifying ambiguous or hard training
instances, because they are less likely to memo-
rize training data (Tirumala et al., 2022; Carlini
et al., 2023). Our results show that, in most cases,
training dynamics are highly transferable across
different model sizes (§4.1) and pretraining meth-
ods (§4.2). We further show that the condition for
successful transfers is a reasonably strong reference
model, which we also make precise in §4.3.

Second, we observe that fine-tuning with se-
lected instances achieves consistently higher train-
ing efficiency than conventional fine-tuning (§6).

Third, building on these findings, we propose
Fine-Tuning by transFerring Training dynamics
(FTFT, §6): an efficient fine-tuning approach that
leads to improved OOD performance. Compared to
dataset cartography, FTFT uses efficient reference
models and early stopping. Experiments on two
tasks, NLI and HSD, show that FTFT achieves bet-
ter performance on OOD input than conventional
Empirical Risk Minimization (ERM), while lower-
ing the training cost by up to ∼ 50%.

2 Background

Dual-Model Approaches for Robustness Many
studies have proposed dual-model approaches to
improve model robustness that do not require
knowledge of identifiable subsets of the data sam-
ples, such as NLI pairs in which hypotheses contain
a negation (Gururangan et al., 2018), or HSD sam-
ples targetting a specific group (Dixon et al., 2018;
Park et al., 2018). Nam et al. (2020) first train a
reference model using generalized cross-entropy
loss, and then train a main model while assigning
higher weights to instances that were hard for the
reference model. Sanh et al. (2021) use a Product-
of-Expert (PoE) approach, by first training a refer-
ence model with limited capacity to capture dataset
biases, and then training the main model to avoid
these biases using PoE loss. Liu et al. (2021) pro-
pose the Just-Train-Twice approach (JTT), which
involves first training a weak reference model using
heavy regularization and vanilla SGD, and then up-
weighing the training instances that the reference
model predicts incorrectly when training the main

model. Dataset cartography (Swayamdipta et al.,
2020) is based on a similar idea, but it uses train-
ing dynamics instead of correctness to categorize
training instances. We discuss this method below.

Dataset Cartography is a dual-model approach
to improve model robustness. First, a reference
model is trained on the full training dataset. Then,
a Data Map (DM) is built based on the training dy-
namics, by tracking prediction probabilities of the
true class (ptrue) of each training instance across
epochs. DM categorizes training instances into
three subsets: ambiguous (i.e. the variance of ptrue
is in the top q% of all training instances); hard-
to-learn (i.e. the mean of ptrue is in the bottom
q% of all training instances); and easy (i.e. nei-
ther ambiguous nor hard-to-learn). The threshold
q% is fixed and typically set to 33%. Note that a
training instance can be categorized as both hard-to-
learn and ambiguous (a low mean but high variance
for ptrue). Finally, the main model is fine-tuned
only on the ambiguous or hard-to-learn subset.
Swayamdipta et al. (2020) show that, with a slight
loss of In-Distribution (ID) performance, dataset
cartography improves Out-Of-Distribution (OOD)
performance of models. In this paper, we train main
models with ambiguous data, since Swayamdipta
et al. (2020) reported better performance using this
data than hard-to-learn data.

Swayamdipta et al. (2020) use the same PLM
as both the reference and the main model. In con-
trast, Sar-Shalom and Schwartz (2023) show that
a DM constructed by ELECTRALarge (Clark et al.,
2020) can be used to improve the robustness of
DeBERTaV3Large (He et al., 2023). However, in-
stead of using only the ambiguous subset, they
added k copies of this subset to the original train-
ing set to train the main model. Moreover, they
did not investigate either DM transfer across model
sizes and pretraining methods, or how such trans-
ferability can be exploited to improve efficiency.

Model-Based Data Selection/Reweighing Our
work is also connected to studies that have selected
or reweighed data using reference models to im-
prove in-distribution (ID) performance. Chang
et al. (2017) use ptrue variance and proximity to
the classification threshold from a reference model
to reweigh training instances; Toneva et al. (2019)
calculate the frequency of forgetting events (i.e.
from a correct to incorrect prediction), and remove
the least forgettable instances; Paul et al. (2021)
and Baldock et al. (2021) instead use error vector
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norm and effective prediction depth to estimate the
contribution of a training instance.

Previous studies have also explored the use of
a smaller reference model to improve efficiency.
Coleman et al. (2020) use a small model for active
learning and core-set selection. Xie et al. (2023)
reweigh domains for language model pretraining,
by training a small reference model to estimate the
difficulty of each domain.

3 Experimental Setup

We perform our experiments on two tasks, Natural
Language Inference (NLI) and Hate Speech Detec-
tion (HSD). Following Swayamdipta et al. (2020),
we select 33% the most ambiguous datapoints.

Data To study model robustness, we include chal-
lenging OOD test sets for each task, in addition to
the training set and an ID validation set. For NLI,
we use the MultiNLI dataset (Williams et al., 2018)
as the train and ID validation set, because of its
diverse composition, covering 10 genres. We use
AdversarialNLI (Nie et al., 2020) as the OOD test
set, which consists of three rounds of adversarial
data collection. AdversarialNLI is known to be
challenging and it targets weaknesses of models
trained on MultiNLI.

For HSD, we use CAD (Vidgen et al., 2021a)
as the training and ID validation set. CAD con-
sists of Reddit posts covering diverse topics and
writing styles, annotated using a fine-grained tax-
onomy. Following Ramponi and Tonelli (2022),
we frame it as a binary classification task, mark-
ing identity-related abuse as hateful and other cat-
egories as non-hateful. As OOD test sets, we use
DynaHate (Vidgen et al., 2021b), since it aligns
with CAD’s definition of hate speech. DynaHate
contains three rounds of adversarial data collection
and perturbations.

Models We mainly use DeBERTaV3 (He et al.,
2023) and ELECTRA (Clark et al., 2020) in our
experiments, due to their strong performance and
availability in multiple model sizes. To study the
transferability across different pretraining meth-
ods, we also use TinyBERT (Turc et al., 2020),
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) as reference models.2 Besides ERM,
we include a baseline that uses a random DM (i.e.,

2Costs for fine-tuning different PLMs are in Appendix A.1.
We report FLOPs rather than GPU hours because we noticed
occasional low GPU utilization especially when fine-tuning
smaller PLMs.

random q% of the training data). We perform a
search of optimal training steps on ERM, and use
the same hyper-parameters for both ERM and data
cartography approaches. Full details of the models
and training setups are in Appendix A.1.

4 Transferability of Training Dynamics

In this section, we study the transferability of train-
ing dynamics in dataset cartography, i.e., whether
we can use different reference and main mod-
els while maintaining the robustness advantage of
the main model. Specifically, we study whether
training dynamics are transferable across different
model sizes (§4.1, e.g., from DeBERTaV3Small to
DeBERTaV3Large) and pretraining methods (§4.2,
e.g., from ELECTRALarge to DeBERTaV3Large).

We focus on these issues for two reasons. First,
transferability across model sizes enables using
more efficient (and usually less capable) reference
models, which (1) can improve training efficiency,
and (2) is potentially more effective in identifying
ambiguous/hard instances, because they are usually
worse at memorizing training instances. Second,
transferability across pretraining methods can help
achieve these advantages even in cases where more
efficient variants of the main pretraining method are
unsuitable or unavailable for the task. Moreover,
understanding transferability can shed light on data
importance: If DMs of different reference models
consistently identify the same subset of training
instances as ambiguous, it suggests that DMs reveal
intrinsic data characteristics.

We define successful transfers as transfers that
produce comparable or better OOD performance
than ERM. Our results show that, with a few excep-
tions, training dynamics are indeed transferable. To
understand the conditions for successful transfers,
we analyze the failure cases (§4.3). We find that the
DMs of reference models that lead to successful
transfers typically identify a larger subset as easy,
which serves as a rough indicator of their capability.
This finding can serve as a guideline for choosing
reference models without training the main model,
which is computationally expensive.

4.1 Transferability Across Model Sizes

In this section, we study whether smaller and more
efficient models can be used as reference models
to construct DMs for training larger main models
(e.g. DeBERTaV3Small as the reference model for
DeBERTaV3Large). Levering transferability of this
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Method Main Model Ref. Model Cost MultiNLI AdversarialNLI (Test)
- R1 R2 R3

Baselines: ERM, ERM with Early Stopping, and Random DM

ERM DeBERTaV3Small - 14.47 87.760.09 33.251.67 30.070.71 31.890.46
ERM DeBERTaV3Base - 28.29 90.030.14 43.730.66 33.950.53 33.791.20
ERM DeBERTaV3Large - 100.00 91.150.08 59.901.95 45.101.39 42.080.95
ERM(ES) DeBERTaV3Large - 66.67 91.300.29 59.201.28 44.351.66 40.290.98
DM DeBERTaV3Large Random 100.00 90.660.23 55.050.78 43.830.72 39.480.43

Training Dynamics Transferability: Across Different Model Sizes

DM DeBERTaV3Large DeBERTaV3Large 200.00 90.920.16 59.021.97 46.082.37 41.850.30
DM DeBERTaV3Large DeBERTaV3Small 114.47 90.770.17 60.101.58 46.230.44 41.461.01
DM DeBERTaV3Large DeBERTaV3Base 128.29 90.640.24 59.671.19 45.881.09 43.001.56

Training Dynamics Transferability: Across Different Pretraining Methods

DM DeBERTaV3Large ELECTRASmall 104.61 90.840.03 50.681.67 39.920.59 37.100.94
DM DeBERTaV3Large ELECTRABase 136.18 90.280.21 60.751.06 47.300.74 42.920.94
DM DeBERTaV3Large RoBERTaLarge 216.78 90.260.06 61.021.11 46.850.58 42.650.89
DM DeBERTaV3Large BERTLarge 213.49 89.370.15 62.000.92 48.600.65 44.730.48

FTFT: Efficient Reference Models + Aggressive Early Stopping

FTFT DeBERTaV3Large DeBERTaV3Small 51.97 90.740.12 59.381.56 45.802.55 42.382.31
FTFT DeBERTaV3Large DeBERTaV3Base 74.12 90.540.29 59.801.88 45.851.48 42.391.25
FTFT DeBERTaV3Large ELECTRABase 79.93 90.030.57 60.751.33 47.352.28 44.170.82

Table 1: Our results with DeBERTaV3 as the main model on NLI (measured by accuracy scores), which consist
of four parts: (1) Baselines: DeBERTaV3 of different sizes trained using ERM, DeBERTaV3Large trained using
ERM with early stopping (ERM(ES)), and DeBERTaV3Large trained using random DM (random 33% of the training
data); (2) Training dynamics transferability across different sizes: training DeBERTaV3Large as the main model,
using DMs constructed by different sizes of DeBERTaV3 as reference models; (3) Training dynamics transferability
across different pretraining methods: training DeBERTaV3Large as the main model, using DMs constructed by
different pretraining methods as reference models (ELECTRASmall/Base, BERT, and RoBERTa); (4) FTFT (§6):
training DeBERTaV3Large using our approach FTFT (§6), with DMs constructed by different reference models,
as well as aggressive early stopping. R1–R3 in AdversarialNLI refer to different rounds of data collection. Cost
column contains the relative computational cost of each method, compared to training DeBERTaV3Large using ERM.
For example, the compute of DeBERTaV3Base with ERM is 28.29, meaning its compute costs are 28.29% of training
DeBERTaV3Large using ERM. We observe that: (1) Training dynamics are transferrable across different sizes and
pretraining methods, as constructing DMs using different reference models results in comparable performance; (2)
FTFT achieves robustness improvements over ERM, while lowering the training cost by up to ∼ 50%.
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Figure 1: Figure 1a: Consistency across different sizes of DeBERTaV3 on NLI. The numbers are the percentages
(0–1) of ambiguous training instances shared by two models. Training dynamics are transferable across different
model sizes: the percentages between models of different sizes are only slightly smaller than those between models
of different random seeds (shown as superscript). Figures 1b & 1c: Performance on HSD when training the main
model (DeBERTaV3Large) using different numbers of training steps. We experimented with different lengths of
training (max training steps), and different methods (using ERM and DM). Training with data instances selected by
DMs achieves consistently higher training speed than ERM: for datasets on which training with DM achieves either
better (OOD datasets, right) or worse (ID datasets, left) performance, models trained with DM outperform ERM
with fewer training steps (i.e. the early stage of training, the leftmost part of the x-axis).
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type can improve the efficiency of dataset cartogra-
phy by reducing the cost of constructing DMs.

The results for DeBERTaV3 are shown in Ta-
ble 1 under section across different model sizes
(NLI) and Table 5 (HSD, Appendix B). Training
dynamics are transferable across different model
sizes: when using DeBERTaV3Large as the main
model, changing the reference model to either
DeBERTaV3Small or DeBERTaV3Base yields com-
parable or even better performance. This observa-
tion is consistent with our hypothesis that efficient
models are more sensitive to ambiguous and diffi-
cult instances. As a result, they can serve as alter-
native efficient reference models. We also observe
that, consistent with Swayamdipta et al. (2020),
ERM achieves better ID performance (in the base-
lines section of Table 1), while data cartography
performs comparably or better on OOD data. Note
that hyper-parameters are tuned for ERM perfor-
mance (see Appendix A.1), making the training
setup more favorable overall to ERM.

To investigate transferability of DMs further, we
analyze whether reference models of different sizes
identify similar groups of ambiguous instances.
Figure 1a shows the percentage of ambiguous in-
stances shared by reference models of different
sizes and random seeds. The percentages shared
between different model sizes are only slightly
smaller than those between the same size but differ-
ent random seeds, providing further evidence for
the transferability of DMs.3

4.2 Transferability Across Pretraining
Methods

We now study the transferability of training dynam-
ics across different pretraining methods. Successful
transfers of this type enable the use of efficient ref-
erence models, when there is no efficient version
of the main model that suits the downstream task.

The results for DeBERTaV3Large as the main
model with different reference models are shown
in Table 1 under section across different pre-
training methods (NLI) and Table 5 (HSD, Ap-
pendix B). Training dynamics are generally
transferable across different pretraining meth-
ods: DeBERTaV3Large achieves comparable per-
formance using DMs constructed by different ref-
erence models in most cases. However, there is
one exception: when using ELECTRASmall as the
reference model, the performance is clearly worse

3The expected overlap between two random DMs is 0.33.

on the NLI OOD datasets than when using ERM.
We hypothesize that ELECTRASmall is not strong
enough for constructing effective DMs. We analyze
this hypothesis further in §4.3 below.

4.3 When Do Transfers Fail?

We have shown that training dynamics are usually
transferable across different model sizes and pre-
training methods. We now study the conditions for
successful transfers, by zooming in on two ques-
tions: 1) Can we use efficient but weak models
as reference models? and 2) What are the differ-
ences between effective and ineffective reference
models? Answers to these questions can guide the
selection of efficient yet effective reference models.

Can we use efficient but weak models as refer-
ence models? To answer this question, we com-
pare the performance of a wide range of meth-
ods, see Table 2 (NLI) and Table 6 (HSD, in Ap-
pendix B). We include models from three cate-
gories: First, a wide range of seven models trained
using ERM (section ERM Performance): Tiny-
BERT, the small and base versions of DeBERTaV3
and ELECTRA, RoBERTaLarge, and BERTLarge.
Second, we use these ERM models as reference
models to construct DMs, and use these DMs
to fine-tune DeBERTaV3Large (section When Do
Transfers Fail, first half). By using reference mod-
els with different sizes and pretraining methods to
fine-tune the same main model, we can inspect the
impact of reference model capability on transfer-
ability. Third, we also include the results of using
ELECTRALarge as the main model (section When
Do Transfers Fail, second half). By comparing
results from different main models, we can better
understand whether successful transfers originate
from the compatibility between reference and main
models, or the capability of the reference model
itself. We make three observations.

First, weak reference models with poor ID per-
formance, i.e., TinyBERT and ELECTRASmall,
lead to unsuccessful transfers. However, the ref-
erence models do not need to be as capable as
the main model: slightly weaker reference mod-
els could be more useful, indicated by the strong
OOD performance when using BERTLarge as the
reference model. Moreover, in these unsuccessful
transfers, the main model OOD performance corre-
lates with the reference model ID performance. For
example, on NLI, TinyBERT has a lower ID perfor-
mance than ELECTRASmall, and both main mod-
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Method Main Model Ref. Model Compute MultiNLI (Val.) AdversarialNLI (Test)
- R1 R2 R3

ERM Performance: Capabilities of Various Models

ERM TinyBERT - 1.45 67.290.26 23.500.82 28.300.36 30.690.42
ERM ELECTRASmall - 4.61 82.080.09 23.820.75 28.931.16 30.540.70
ERM ELECTRABase - 36.18 88.470.20 35.450.24 30.950.42 31.270.68
ERM DeBERTaV3Small - 14.47 87.760.09 33.251.55 30.070.66 31.890.43
ERM DeBERTaV3Base - 28.29 90.030.13 43.730.61 33.950.49 33.791.11
ERM BERTLarge - 113.49 86.250.26 20.120.85 29.051.02 29.890.57
ERM RoBERTaLarge - 116.78 89.860.09 43.850.64 28.551.07 26.001.04

When Do Transfers Fail: Using Reference Models with Different Capabilities

DM DeBERTaV3Large TinyBERT 101.45 89.260.16 42.470.87 34.380.66 33.560.52
DM DeBERTaV3Large ELECTRASmall 104.61 90.840.03 50.681.55 39.920.55 37.100.87
DM DeBERTaV3Large ELECTRABase 136.18 90.280.19 60.750.98 47.300.68 42.920.87
DM DeBERTaV3Large DeBERTaV3Small 114.47 90.770.16 60.101.46 46.230.41 41.460.94
DM DeBERTaV3Large DeBERTaV3Base 128.29 90.640.22 59.671.10 45.881.01 43.001.44
DM DeBERTaV3Large BERTLarge 213.49 89.370.15 62.000.92 48.600.65 44.730.48
DM DeBERTaV3Large RoBERTaLarge 216.78 90.260.06 61.021.03 46.850.54 42.650.83

DM ELECTRALarge TinyBERT 111.64 88.300.22 35.370.31 32.601.25 30.780.64
DM ELECTRALarge ELECTRASmall 114.80 90.350.19 45.380.67 34.950.90 32.581.16
DM ELECTRALarge ELECTRABase 146.38 89.960.20 55.400.28 42.000.42 36.710.65
DM ELECTRALarge DeBERTaV3Small 124.67 90.270.13 54.200.57 40.001.13 36.880.06
DM ELECTRALarge DeBERTaV3Base 138.49 89.940.14 53.630.80 41.330.51 36.330.25
DM ELECTRALarge BERTLarge 223.68 88.830.12 57.100.79 43.270.84 38.720.31
DM ELECTRALarge RoBERTaLarge 226.97 89.620.13 54.200.57 42.550.78 37.290.65

Table 2: We use reference models with different capabilities (measured by their ERM accuracy) to construct DMs,
and use them to train main models. The gray-shaded rows are (1) the main models in unsuccessful transfers and (2)
their corresponding reference models. Successful transfer requires the reference model to be reasonably strong:
reference models with clearly worse ID performance lead to degraded OOD performance for the main models.

els DeBERTaV3Large and ELECTRALarge have a
lower OOD performance when using TinyBERT
as the reference model compared to when using
ELECTRASmall as the reference model.

Second, whether a transfer is successful or not
depends mostly on the reference model, rather than
the compatibility between the reference and the
main models: The transfers from TinyBERT and
ELECTRASmall to both main models are unsuccess-
ful, and the transfers from other reference models
to both main models are successful.4

Third, interestingly, ID performance in all trans-
fers remains high. In other words, ineffective refer-
ence models only impact the OOD performance
of the main models. For instance, the transfer
from ELECTRASmall to DeBERTaV3Large yields
the best accuracy on MultiNLI despite its OOD
performance being relatively poor. We suspect
that weak models with poor ID performance often
identify easy training instances as ambiguous data.

4We also include results using DeBERTaV3Base as the main
model, and TinyBERT and DeBERTaV3Small as reference mod-
els on HSD in Table 6. Transfers from DeBERTaV3Small sub-
stantially outperform ERM, while those from TinyBERT un-
derperform ERM, further suggesting that the reference model
is decisive for successful transfers.

While easy instances can be sufficient for obtaining
satisfactory ID performance, they are insufficient
for good OOD performance (Swayamdipta et al.,
2020). We discuss this in detail below.
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Figure 2: Change of median ptrue: ineffective reference
models (ELECTRASmall and TinyBERT) are unable to
fit difficult training instances, making easy instances
being identified as ambiguous.

What are the differences between effective and
ineffective reference models? To answer this
question, we consider the possible differences be-
tween a weak (and ineffective) reference model
and a reasonably strong reference model, in terms
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of categorizing training data into ambiguous, hard-
to-learn, and easy subsets. Also, we assume that
instances in our training set exhibit varying levels
of difficulty (i.e. simple to difficult).

Assume we have a weak reference model that
can learn simpler training instances but cannot
learn the more difficult ones. This weak reference
model will therefore assign increasing ptrue to sim-
ple training instances across different epochs, while
keeping ptrue for difficult training instances around
the values expected in a random guessing scenario.
Consequently, ptrue will exhibit high standard devia-
tions on simpler training instances, which will then
be identified as ambiguous data; while more diffi-
cult training instances will have consistent lower
mean values and thus low standard deviations for
ptrue, and therefore be identified as hard-to-learn
data. In contrast, a reasonably capable reference
model can learn simpler training instances during
the early stage of training (even before their first oc-
currence in the training batch, i.e., their correct pre-
dictions are learned from other training instances).
Therefore, these instances will have both high mean
values and low standard deviations for ptrue. Mean-
while, ptrue for difficult instances will gradually in-
crease across epochs, making these instances yield
relatively low mean values and high standard de-
viations for ptrue. As a result, these instances will
be identified as both ambiguous and hard-to-learn
(i.e. we expect a large overlap in these subsets). Be-
cause we select a fixed percentage q% of instances
as ambiguous or hard-to-learn, this larger overlap
means a larger easy subset too.

We now validate our reasoning. Given a refer-
ence model, we first split the training instances
into two subsets based on mean ptrue: hard-to-
learn (10% of training instances) and other (the
remaining 90%). We use a lower q% to make
the difference clearer. Then, for each subset, we
calculate the median ptrue in each epoch. We
use median values because they are robust statis-
tics of the central tendency. Figure 2 shows
our results on MultiNLI, using two effective
(DeBERTaV3Base and ELECTRABase) and two in-
effective (ELECTRASmall and TinyBERT) refer-
ence models. We only include four models to make
the figure clearer — we observe similar trends
for other models: With effective reference mod-
els, hard-to-learn instances are gradually learned
during training, while other instances already have
high ptrue values from the first epoch. In contrast,
with ineffective reference models, hard-to-learn

data instances are not learned at all, suggested by
their close-to-zero ptrue over different epochs; while
other instances are gradually fitted, indicated by
their increasing values.

To further validate our reasoning, we com-
pute the percentages of training instances iden-
tified as easy by different reference models (Ta-
ble 4 in Appendix B): We report results with
q ∈ {10%, 25%, 33%, 50%}. Less effective ref-
erence models indeed identify fewer data points as
easy. For example, on NLI with q% = 50%, Tiny-
BERT identifies less than 20.0% of the instances
as easy, compared to 46.65% by DeBERTaV3Base.
Furthermore, the overlap between hard-to-learn
and ambiguous instances in successful transfers
is usually high. For example, with q% = 50%,
all effective reference models identify more than
46% as easy training instances (the maximum is
50%, when the ambiguous and hard-to-learn sub-
sets overlap perfectly).

5 Training Speed Gains From Data
Selection

Our results from §4 suggest that the efficiency of
dataset cartography can be improved with more
efficient reference models. However, if we train the
main models for the same number of steps as ERM,
the computational cost of the full pipeline is still
higher than conventional fine-tuning (i.e., ERM),
because of the extra reference model training cost.

Previous studies have shown that training with
a careful selection of “informative" training in-
stances can lead to higher training speed than ERM
(i.e. achieving the same performance with fewer
training steps), despite the computational cost of
selecting these instances being notoriously high
(Sorscher et al., 2022; Feldman and Zhang, 2020;
Paul et al., 2021; Toneva et al., 2019). Motivated by
this, we now study whether we can achieve similar
learning speed gains by training on instances se-
lected by DMs. If such gains exist, we can further
improve the efficiency of dataset cartography by
training with fewer steps.

We show the performance of DeBERTaV3Large
on HSD, fine-tuned using the full training set
(ERM) and using only the instances selected by
DMs, across different training durations (i.e. max
training steps) in Figure 1. Results on other datasets
are in Appendix B, where we observe similar trends.
We make three observations. First, when the num-
ber of training steps is reduced, models fine-tuned
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with dataset cartography clearly outperform those
fine-tuned with ERM, even on ID validation data
where ERM achieves better performance with more
training steps. Second, dataset cartography often
yields better results with fewer training steps than
with more, suggesting a tendency of overfitting at
the late training stage. Third, the efficiency gains
hold consistently across different training durations.
Our observations indicate that training with data
instances selected by DMs consistently achieves
higher training speed than ERM.

6 Our Approach: FTFT

Building on our insights presented in the previous
sections, we propose a novel fine-tuning approach
based on dataset cartography (Swayamdipta et al.,
2020), Fine-Tuning by transFerring Training
dynamics (FTFT). Compared with the original
dataset cartography approach, FTFT integrates two
crucial improvements: (1) using more efficient ref-
erence models, which not only result in comparable
DMs but also enhance efficiency, and (2) imple-
menting aggressive early stopping during the main
model training. Such aggressive early stopping is
possible because models trained with data instances
selected using DMs already achieve strong perfor-
mance with substantially fewer training steps (§5).
In summary, FTFT consists of three steps: (1) train
an efficient reference model on the full dataset, (2)
compute the ambiguity of each instance based on
the standard deviation of the correct class probabil-
ity across epochs, and (3) select the top q% most
ambiguous instances to retrain a larger main model,
while applying aggressive early stopping.

We show our results on NLI in Table 1 (FTFT)
and on HSD in Table 5 (Appendix B). We use an
early stopping patience k = 2 (i.e. the number of
checkpoints without improvement before stopping),
based on the average dev set performance on the
OOD datasets. We use a relatively small k, as
stopping the training earlier will lead to higher
efficiency. We also show the computational cost of
each method (Compute), in which we have taken
the training of both the reference model and the
main model into account, including the k extra
checkpoints after the best performance is achieved.

We have three key observations. First, FTFT
achieves consistent robustness improvements over
ERM, indicated by its strong performance on most
OOD datasets (note again that the hyper-parameters
are optimized for ERM). We also include the re-

sults of ERM with early stopping (ERM(ES)) as
a baseline to illustrate that our aggressive early
stopping strategy is only effective when training
with data instances selected by DMs: ERM(ES)
achieves worse performance than ERM on all OOD
datasets. Second, FTFT substantially improves the
training efficiency of models. For example, on
NLI, training DeBERTaV3Large using FTFT and
DeBERTaV3Small as the reference model only costs
51.57% of ERM’s training cost, which is equivalent
to 25.78% of the training cost of the original dataset
cartography approach. Third, our early stopping
strategy is effectively aggressive. Specifically, all
FTFT results in Table 1 are achieved using less
than 1/3 of the optimal training steps needed for
ERM.

7 Conclusion

Fine-tuned PLMs have shown to be vulnerable to
OOD input. Although dataset cartography can
improve model robustness (Swayamdipta et al.,
2020; Sar-Shalom and Schwartz, 2023), it is com-
putationally expensive. In this paper, we have
presented FTFT, a novel approach for fine-tuning
PLMs which yields both better efficiency and bet-
ter robustness over ERM (§6). FTFT is built on
dataset cartography, based on two observations:
(1) reference model training dynamics are highly
transferable across different model sizes (§4.1) and
pretraining methods (§4.2), and (2) main models
trained using data instances selected using DMs
learn faster (i.e. they have substantially better per-
formance with reduced number of training steps).
We believe that FTFT will be an important tool
for future researchers and practitioners to perform
efficient model fine-tuning, especially in situations
where robustness is essential.

8 Limitations

We identify three limitations from this work. These
limitations open up promising directions for future
research. First, we have observed that effective
reference models identify more instances as easy.
More controlled experiments are needed to build a
detailed protocol for choosing efficient but strong
enough reference models. Our results provide a
good foundation for such further work. Second, we
have empirically demonstrated the transferability
of training dynamics to select training instances.
Future studies are needed to build the theoretical
foundations of both data cartography itself and the
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feasibility of such transfers. Third, we have only
developed FTFT for classification tasks. Future
studies should extend FTFT to generation tasks,
e.g., instruction following and language modeling.
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A Training Specifications

A.1 Experimental Setup

Optimization For training all models, we use
AdamW (Loshchilov and Hutter, 2019) as the opti-
mizer with a batch size of 32. We also use a linear
learning rate scheduler with 10% warmup. For
fine-tuning the small and base versions of both De-
BERTaV3 and ELECTRA, as well as TinyBERT,
RoBERTa, and BERT, we use a learning rate of
2e-5, following the suggestions from the original
papers. We use a smaller learning rate of 1e-5
for DeBERTaLarge and ELECTRALarge, because
training larger models with lower learning rates are
observed to be more stable (Mosbach et al., 2021;
Du and Nguyen, 2023). However, a few failed
training runs (i.e., runs where the training fails to
converge and where the resulting model performs
worse than the majority class baseline (Mosbach
et al., 2021)) still occurred during the training of
ELECTRALarge. We excluded these runs from
our results.

Number of Training Steps and Checkpointing
Regarding the number of training steps, we per-
form a grid search for both DeBERTaLarge and
ELECTRALarge ERM models, spanning from one
to five epochs, according to their average perfor-
mance on the validation set of AdversarialNLI
(NLI) and DynaHate (HSD). On NLI, the opti-
mal length of training is four epochs (49088 steps)
and five epochs (61360 steps) for DeBERTaLarge
and ELECTRALarge. On HSD, the optimal length
of training is three epochs (1620 steps) for both
DeBERTaLarge and ELECTRALarge. For other
PLMs, because we only use them as reference mod-
els, we do not perform this grid search, and use
61360 steps and 1620 steps for NLI and HSD. We
perform checkpointing every 4090 steps and 180
steps on NLI and HSD, which is approximately the
length of one epoch using the 33% selected data
instances from DMs.

Software and Hardware We use Python 3.9 and
PyTorch 2.0 for all experiments. We also use Hug-
gingFace Transformers 4.32 (Wolf et al., 2020),
Accelerate 0.22, and Datasets 2.14 (Lhoest et al.,
2021). All experiments are performed on one
NVIDIA A100 GPU. Training all models (includ-
ing hyper-parameter search) takes approximately
16 GPU days.

Model Param Size Compute

DeBERTaV3Small 44.00M 14.47
DeBERTaV3Base 86.00M 28.29
DeBERTaV3Large 304.00M 100.00
ELECTRASmall 14.00M 4.61
ELECTRABase 110.00M 36.18
ELECTRALarge 335.00M 110.20
BERTLarge 345.00M 113.49
RoBERTaLarge 355.00M 116.78
TinyBERT 4.40M 1.45

Table 3: Model sizes and their estimated relative training
cost in terms of FLOPs, estimated by following Kaplan
et al. (2020).

A.2 Comparison of Training Costs
We estimate the training FLOPs by their models
sizes (i.e. the number of parameters), following Ka-
plan et al. (2020) (C ∼ 6ND, where C is the
number of FLOPs, N is the number of parame-
ters, and D is the dataset size). The results are
in Table 3. We prefer theoretical estimation over
practical measurement, because (1) the results are
less influenced by noises, (2) it considers both for-
ward and backward propagation, and (3) it has been
shown effective and widely used (Kaplan et al.,
2020; Hoffmann et al., 2022). In practice, we also
measured the actual FLOPs usage in a forward run
using Sovrasov (2018), and the results are very
close to our estimation using model sizes.

B Additional Results
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NLI: MultiNLI HSD: CAD
10% 25% 33% 50% 10% 25% 33% 50%

Model

TinyBERT 80.01% 51.27% 38.34% 19.60% 81.89% 65.48% 58.20% 41.73%
ELECTRASmall 80.10% 55.72% 47.40% 35.50% 82.97% 69.70% 61.92% 41.51%
ELECTRABase 84.57% 69.00% 62.84% 46.65% 86.10% 72.07% 63.41% 44.54%
DeBERTaV3Small 82.80% 67.54% 61.72% 46.15% 85.44% 70.82% 62.83% 46.54%
DeBERTaV3Base 85.08% 71.58% 64.06% 46.86% 85.49% 72.30% 63.64% 46.14%
BERTLarge 85.21% 70.08% 63.05% 47.21% 89.25% 72.38% 64.15% 47.07%
RoBERTaLarge 85.67% 71.43% 64.24% 47.20% 88.57% 73.21% 64.84% 47.25%

Table 4: Ratio of easy, i.e. neither ambiguous or hard-to-learn data, under different DM thresholds. Effective
reference models identify larger easy data subsets, compared with the less effective reference models TinyBERT
and ELECTRASmall This also implies that the hard-to-learn subsets and ambiguous subsets identified by effective
reference models are very close to each other.
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Figure 3: Performance when training the main model (DeBERTaV3Large) using different numbers of training steps
across different checkpoints. We experimented with different lengths of training (max training steps), and different
methods (using ERM and DM). Training with data instances selected by DMs achieves consistent higher training
speed than ERM: for datasets on which training with DM achieves either better or worse performance, models
trained with DM outperform ERM with reduced training steps (i.e. the early stage of training, the leftmost part of
the x-axis).
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