
Proceedings of the 31st International Conference on Computational Linguistics, pages 1323–1332
January 19–24, 2025. ©2025 Association for Computational Linguistics

1323

Relation Logical Reasoning and Relation-aware Entity Encoding for
Temporal Knowledge Graph Reasoning

Longzhou Liu1, Chenglong Xiao1, Shanshan Wang 1* , Tingwen Liu2*

1Department of Computer Science, Shantou University, Shantou, China
2Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

{22lzliu, chlxiao, sswang}@stu.edu.cn
liutingwen@iie.ac.cn

Abstract

Temporal Knowledge Graph Reasoning
(TKGR) aims to predict future facts based on
historical data. Current mainstream models
primarily use embedding techniques, which
predict missing facts by representing entities
and relations as low-dimensional vectors.
However, these models often consider only the
structural information of individual entities and
relations, overlooking the broader structure of
the entire TKG. To address these limitations,
we propose a novel model called Relation
Logical Reasoning and Relation-aware Entity
Encoding (RLEE), drawing inspiration from
attention mechanisms and logical rule-based
techniques. RLEE introduces a two-layer
representation of the TKG: an entity layer
and a relation layer. At the relation layer,
we extract relation paths to mine potential
logical correlations between different relations,
learning relation embeddings through a process
of relation logical reasoning. At the entity
layer, we use the relation-aware attention
mechanism to learn the entity embeddings
specific to the predicted query relations. These
learned relation and entity embeddings are
then used to predict facts at future timestamps.
When evaluated on five commonly used public
datasets, RLEE consistently outperforms
state-of-the-art baselines.

1 Introduction

Temporal Knowledge Graphs (TKGs) integrate
temporal information into traditional knowledge
graphs, representing real-world facts (events) as
quadruples (subject, relation, object, timestamp).
TKGs consist of static subgraphs divided by the
temporal dimension, with each subgraph contain-
ing all the facts that occurred at a specific corre-
sponding timestamp. TKGR under the extrapola-
tion setting focuses on inferring unfinished events

*Corresponding authors.

engage in
negotiate

make a visit

sign
agreement

communicate

diplomatic
cooperate ？

�1 �2 �3

(engage in negotiate, �1)
extract relation inference paths

(diplomatic cooperate, �3)
(sign agreement, �2) (diplomatic cooperate, �3)

(make a visit, �1)
(communicate, �2)

(diplomatic cooperate, �3)
(diplomatic cooperate, �3)

confidence assess
0.68
0.73

0.42
0.51

1.41

0.93

Figure 1: An example of reasoning using relational logic
correlation between pairs of entities.

in future subgraphs based on the information con-
tained in historical subgraphs. Given its practical
significance, TKGR under extrapolation settings
has been widely used in areas such as financial
early warning and behavioral prediction. To pre-
dict future events more accurately, more and more
researchers are focusing on mining information
from historical subgraphs in TKG to learn em-
bedding representations of relations and entities.
This is a representation learning problem in a low-
dimensional space, aiming at efficient encoding of
temporal information in the knowledge graph by
capturing the dynamics of entity-to-entity connec-
tions. However, there are still two challenges that
need to be addressed.

Neglecting the logical correlation of relations
at the temporal level. Some graph-structure-
based TKGR methods CyGNet (Zhu et al. (2021)),
CENET (Xu et al. (2023)), HGLS (Zhang et al.
(2023)), EvoExplore (Zhang et al. (2022)) do not
focus on the changes of relations of the same entity
pairs at different timestamps, ignoring the logical
correlations that are implied between these rela-
tions. The predicted query (USA, diplomatic co-
operate, ?, t3) in Figure 1 is an example from the
ICEWS dataset, and we choose Britain and South
Korea as candidates. First, we extract the relation
inference paths between the two entity pairs (USA,
Britain) and (USA, South Korea). We then eval-

1324

uate the confidence that a relation inference path
holds by mining the logical correlations between
historical and query relations. Finally, we summa-
rize the confidence scores of the relation inference
paths and use the highest-scoring candidate entity,
Britain, as the inference result.

Neglecting the dependence of entities on re-
lations. Existing methods aggregate subgraphs
of entities to obtain a common entity representa-
tion, which remains unchanged when predicting
different future events. However, an entity plays
different roles under different relations, and its
specific entity representation should vary with the
relations. For example, when answering queries
(Obama, criticize, ?) and (Obama, endorse,?), the
entity "Obama" should learn two embeddings with
different semantic information, focusing on infor-
mation related to the relation "criticize" and the
relation "endorse", respectively. When learning
entity embeddings, we should pay attention to the
association between entities and relations and learn
entity embeddings specific to the current query re-
lation when facing different queries.

To address the aforementioned challenges, we
propose a model called RLEE, which has two main
modules that model relation information and en-
tity information. To address Challenge 1, we in-
troduce the Relation Logical Reasoning module,
which mines the potential logical correlations be-
tween different relations by extracting the relation
inference paths between pairs of entities and in this
way learns the relation embeddings, enabling dif-
ferent relations to determine the degree of logical
correlations between the relations by their distance
in the embedding space. To address Challenge 2,
we introduce the Relation-aware Entity Encoding
module, which aims to learn the encoding of enti-
ties located under different relations. Specifically,
we use a relation-aware attention mechanism to
assign different weights to the subgraph neighbors
of an entity, and finally aggregate the subgraphs
based on the weights to obtain the embedding of
an entity that is specific to a particular relation.

In summary, the contribution of our work is as
follows:

1) We mine the underlying logical correlations
between relations by exploring the relation
inference paths between pairs of entities.

2) We learn relation-specific entity embeddings,
which can effectively avoid the interference

of irrelevant information in subgraphs when
reasoning about predictions.

3) Extensive experiments indicate that our model
substantially outperforms existing methods.

2 Related Work

Depending on the type of historical information a
model focuses on, existing models can be divided
into two categories: models based on historical
entity information and models based on historical
relation information.

Models based on historical entity information
focus on modeling information about the entity.
For instance, CyGNet (Zhu et al. (2021)) counts
the frequency of entities occurring repeatedly in
history and uses a copy mechanism to select predic-
tion results from the entities that appear frequently.
CENET (Xu et al. (2023)) adopts a comparative
learning approach to capture the dependency of
queries on both historical and non-historical enti-
ties. EvoExplore (Zhang et al. (2022)) implements
a hierarchical attention mechanism to model the
intricate local and global structures of entities.

Models based on historical relation informa-
tion are completely independent of entities and
focus on modeling the temporal path of relations.
For instance, CluSTeR (Li et al. (2021a)) utilizes
reinforcement learning to develop cluster search
strategies that identify explicit and reliable relation
clues for predicting future facts. DaeMon (Dong
et al. (2023)) introduces a novel architecture that
leverages timeline relations to adaptively capture
temporal path information between query topics
and candidate objects. ALRE-IR (Mei et al. (2022))
extracts relation paths from historical subgraphs,
aligns these paths with current events to formulate
rules, and then uses these rules to predict missing
entities.

3 Method

3.1 Preliminaries

Let ε ,R,T denote the finite set of entities, rela-
tions, and timestamps, respectively. In the tem-
poral knowledge graph, each fact is represented by
a quaternion (s,r,o, t), where s ∈ ε is the subject
entity, o ∈ ε is the object entity, and r ∈ R is the
relation between s and o that occurs at timestamp
t ∈ T . Specifically, given a query q = (s,rq,?, tq) ,
we take the candidate object oi ∈ εc as an example,
where the subscript c of εc is the initial letter of the

1325

푠푐표푟푒��

������

Relation-aware Entity Encoding

s
s

푟�

푟�

표�

표�

푡�����

...
푡�

s
s

푟�

푟�

표�

표�

s 푟� 표�

Relation Inference Path
Relation Logical Reasoning

Query
푟� ?s
푡�

Time Decay
Coefficient

×

+...++...+ 푠푐표푟푒��

���� score

......
 표� 표� 표|��|

predict

?

s
s

푟�

푟�

표�

표�

푡���

...

퐺������ ...퐺��
퐺����...

Entity Structure

... ...표�

푡�����

표�

푡�

표�

푡���

푠푐표푟푒�
������ 푠푐표푟푒�

����... ...푠푐표푟푒�
��

푠푐표푟푒��
��

Time Decay
Coefficient

×
Time Decay
Coefficient

×

푠푐표푟푒�
������ 푠푐표푟푒�

����... ...푠푐표푟푒�
��

Figure 2: The overall architecture of RLEE. The orange
portion is to get the relation level contribution score and
the green portion is to get the entity level contribution
score.

candidate, and εc is denoted as the set of all enti-
ties connected in the history of the query subject
s,which we take as the set of candidate entities.

3.2 Model Overview

For prediction queries, we perform a two-step pro-
cess. First, from a relational perspective: The sub-
ject s and the candidate object oi have relations
r1 and r2 under timestamps t and t +△t, which
form an inference path pa

(
rt

1,r
t+△t
2

)
= (r1, t)→

(r2, t +△t) suggesting that any pair of entities that
have a relation r1 under timestamp t, that pair will
have relation r2 after the time interval △t. We use
the training data to obtain confidence that differ-
ent relation inference paths hold, and the relation
embeddings learned in this way effectively capture
logical correlations with other relations. In pre-
dicting query q = (s,rq,oi, tq), we aggregate the
confidence scores of all relation inference paths
between subject s and candidate oi at historical
timestamp tτ and use this score as the contribution
score of the historical subgraph at timestamp tτ to
support the construction of query q = (s,rq,oi, tq)
at the relational level.

Next, from the perspective of entities: Based
on the learned relation embeddings, we use the
relation-aware attention mechanism to obtain a rep-
resentation of entity embeddings specific to the
query relation. We then use the DistMult func-
tion to capture semantic associations between en-
tities and relations. This approach can obtain a
score for the contribution of the history subgraph of
the timestamp tτ to the establishment of the query
q = (s,rq,oi, tq) at the level of the entity structure.

We integrate the contribution scores from both

푠푐표푟푒�
��

푟�,��푟�,��푟�,��

time encode

푟�,�� 푐표푛(푝푎(푟�
�� , 푟�

��))

푐표푛(푝푎(푟�
�� , 푟�

��))

푐표푛(푝푎(푟�
�� , 푟�

��))
푡� − 푡�

+

+
푟�,��푟�,��푟�,��

Figure 3: A framework for relation logic reasoning that
obtains contribution scores at the relational level under
timestamp tτ .

the relational level and the entity structural level
using the product method to determine the sub-
graph contribution score for a specific timestamp.
Subsequently, we calculate the probability score
that query q = (s,rq,oi, tq) holds, by performing a
weighted aggregation of the subgraph contribution
scores throughout the historical time frame from
tq−len to tq−1 using a time decay function. The over-
all methodology of our proposed model is shown
in Figure 2.

3.3 Relation Logical Reasoning
The workflow of this module is shown in Figure 3.
To discern the logical correlations across time be-
tween the query subject s and the candidate object
oi entity pairs, we begin by encoding the temporal
information. Temporal information captures both
the periodic and non-periodic nature of event occur-
rences—for instance, presidential elections occur
periodically. In contrast, the lifespan of an individ-
ual, from birth to death, occurs non-periodically.
Recognizing the significance of these temporal pat-
terns, we specifically design separate vectors to
represent periodic and non-periodic time character-
istics:

vp
△t = cos(βt △ t +φc) (1)

vnp
△t = tanh(γt △ t +φt) (2)

T△t = vp
△t +vnp

△t (3)

vp
t and vnp

t are d-dimensional periodic and non-
periodic vectors, respectively. βt , γt , φc and φt are
learnable parameters, △t = tq − tτ . After encod-
ing the temporal information, we add the temporal
encoding to the relational encoding r j,tτ :

r j,tq = r j,tτ +T∆t (4)

Next, we obtain the relation inference path
pa

(
rtτ

j ,r
tq
q

)
= (r j, tτ) → (rq, tq) from the relation

r j between the entity pairs s and oi to the relation

1326

풓�,��풓�,��

relation-aware
attention

푎푡푡��,��
��

×

(
풉�,��,��

+
풓�,��

)
풉��,��,��

푡� − 푡�

 temporal encoding

풆��,��
��

... ...표�

푡�����

표�

푡�

표�

푡���

풓�,��

풆�,��
��

DistMult

푠푐표푟푒�
��

Figure 4: A framework for relation-aware entity encod-
ing, which obtains contribution scores at the entity level
under timestamp tτ .

rq. We consider r j as the cause and rq as the effect.
Finally, we assess the confidence that the relation
inference path pa(rtτ

j ,r
tq
q) holds by capturing the

logical correlation between r j and rq. To compute
this, we directly use the dot product method:

con(pa(rtτ
j ,r

tq
q)) = r j,tq ∗ rq,tq (5)

We aggregate the confidence scores of all relation
inference paths for subject s and candidate oi at
timestamp tτ to obtain the contribution score of the
history subgraph at timestamp tτ to get the contri-
bution scores at the relational level.

socretτ
r =

|Rtτ
s→oi |

∑
j=1

con(pa(rtτ
j ,r

tq
q)) (6)

Where rtτ
j ∈ Rtτ

s→oi
, Rtτ

s→oi
denote the set of all rela-

tions connected by s and oi at timestamp tτ .

3.4 Relation-aware Entity Encoding

The workflow of this module is shown in Figure 4.
Current methodologies often overlook the impact
of relations on entities whose attributes should not
be static but vary according to the relation. After
learning the relation embeddings, we delve deeper
into learning entity embeddings tailored to spe-
cific query relations. Initially, we assign varying
weights to the neighbors of the subgraphs, based
on the degree of logical correlations between the
relation rq and the adjacency r j of the entity oi

at timestamp tτ . Subsequently, we aggregate the
subgraphs, using the weighted neighbors to derive
the entity embeddings. This embedding framework

is inspired by RGCN, and we employ a ω-layer
RGCN for encoding, which is defined as follows:

hl
oi,rq,tτ = f

(1
|Noi,t |

∑
(r j,o)∈Noi ,tτ

atttτ
rq,r j

W l
1(h

l
o,r j,tτ + r j,tτ)

+W l
2hl−1

oi,rq,tτ

)
(7)

Where f (·) is the RReLU activation function,
Noi,t is the set of neighbors of entity oi in the static
subgraph that is at timestamp t, attt

r,ri
is the relation-

aware attentional weight, W l
1 ∈ Rd×d and W l

2 ∈
Rd×d are the weight parameters.

In Equation 7 we use the normalized attention
mechanism attt

r,r j
to assign the attentional weights,

attt
r,r j

is computed as follows:

atttτ
rq,r j

=
exp(cos(r j,tτ ,rq,tτ))

∑rk∈Roi ,tτ
exp(cos(rk,tτ ,rq,tτ))

(8)

Where Roi,tτ is the set of all relations to which entity
oi is connected.

Similarly, we add time coding to the entity em-
bedding to obtain dynamic entity coding:

etτ
oi,rq

= hω
oi,rq,tτ +T△t (9)

Since the DistMult function uses simple mathe-
matical operations to represent the semantic asso-
ciations between entities and relations with high
computational efficiency and good interpretability,
here we use this function as the scoring function
for the entity structure part as follows:

socretτ
e = σ(< etτ

s,rq
,rq,tτ ,e

tτ
oi,rq

>) (10)

Where σ(·) is a sigmoid function and < ·> denotes
the trilinear dot product. Eventually we obtain the
score of the contribution of the history subgraph
of the timestamp tτ to the establishment of query
q = (s,rq,oi, tq) at the level of entity structure.

3.5 Result Prediction
In the ablation experiments in Section 4.3 below,
we found a strong dependence between the relation
inference path scores and the entity structure scores.
Here, we use multiplication to combine relation and
entity-level scores to obtain the predicted score at
time tτ .

scoretτ
oi
= socretτ

r · socretτ
e (11)

After obtaining the candidate entity oi scores at
each timestamp in the time range of [tq−len, tq−1]

1327

through Equation 11, we aggregate these scores.
Considering that the impact of historical events
varies with the proximity of their occurrence, we
design a power function based time decay coeffi-
cient:

Wd(tq, tτ) = (tq − tτ)−γ (12)

The larger the value of γ in the above equation,
the faster the rate at which Wd decays over time.
The time decay coefficient Wd ensures that relation
inference paths closer in time to the query time tq
are assigned higher weights. We then weighted the
predicted scores at each timestamp together to get
the final score:

score(oi|s,rq, tq) =
q−1

∑
τ=q−len

Wd(tq, tτ)scoretτ
oi

(13)

Finally, we take the candidate entity with the high-
est score as the final prediction:

ô = argmaxo∈εcscore(o|s,rq, tq) (14)

Where score(o|s,rq, tq) denotes the predicted
probability of all candidate object entities o ∈ ε .

3.6 Train

We use positive and negative sample comparison
learning for training. First, we negatively sam-
ple and generate the error quaternion. Specifi-
cally, given a correct quaternion pos = (s,r,o, t),
we randomly sample an object entity from histor-
ical events and disrupt the quaternion to generate
an incorrect quaternion neg that satisfies the condi-
tion neg = {(s,r,o′, t)|o′ ∈ ε −o}. We ensure that
the correct quaternions (positive samples) receive
higher scores and the incorrect quaternions (neg-
ative samples) receive lower scores by using the
So f tMarginLoss function, expressed as follows:

L = ∑
(s,r,o,t)∈P

⋃
N

log(1+ exp(−y · score(s,r,o, t)))

(15)

y =
{

1, (s,r,o, t) ∈ P
−1, (s,r,o, t) ∈ N

(16)

where P is the set of correct quaternions and N is
the set of error quaternions.

From the level of the embedding space of rela-
tions, the loss function’s task is to bring the histor-
ical relation embedding of the relation inference
path in the positive examples close to the query
relation embedding, and at the same time to move
the historical relation embedding of the relational

inference path in the negative examples away from
the query relation embedding. The learned relation
embeddings by this method can reflect the logical
correlations between relations at the level of the
embedding space. From the entity structure level,
the task of the loss function is to learn an entity
embedding specific to the query relation that can
focus more on features related to the query relation
to answer a specific query more efficiently, avoid-
ing the interference of irrelevant information in the
subgraphs in predicting the query.

4 Experiment

4.1 Experimental Setup

4.1.1 Datasets
We use five benchmark datasets (ICEWS14 (Li
et al. (2022b)), ICEWS0515 (Ren et al. (2023)),
ICEWS18 (Boschee et al. (2015)), WIKI (Vran-
dečić and Krötzsch (2014)), and YAGO (Suchanek
et al. (2007))) to evaluate the performance of the
model on the link prediction task. Table 1 below
provides statistics for these datasets. All datasets
are categorized chronologically into training, vali-
dation, and test sets.

4.1.2 Baselines
Our RLEE model is compared with TKGC models
under the extrapolation setting. We chose DistMult
(Yang et al. (2014)), ComplEX (Trouillon et al.
(2016)) and R-GCN (Schlichtkrull et al. (2018))
as static models for comparison. TTransE (Leblay
and Chekol (2018)), HyTE (Dasgupta et al. (2018))
and TA-DistMult (García-Durán et al. (2018)) as in-
terpolated TKGR models for comparison. CyGNet
(Zhu et al. (2021)), xERTE (Han et al. (2020)),
TiTer (Sun et al. (2021)), RE-GCN (Li et al.
(2021b)), CluSTeR (Li et al. (2021a)), HiSMatch
(Li et al. (2022b)), CEN (Li et al. (2022a)), Evo-
Explore (Zhang et al. (2022)), TECHS (Lin et al.
(2023)), DaeMon (Dong et al. (2023)), CENET (Xu
et al. (2023)), RPC (Liang et al. (2023)), TiPNN
(Dong et al. (2024)), and DLGR (Xiao et al. (2024))
as extrapolated TKGR models for comparison.

4.1.3 Evaluation Metrics
We employ widely used evaluation metrics, namely
mean reversed rank (MRR), hits@1, hits@3, and
hits@10. For a fair comparison, we perform time-
aware filtering where all correct entities at the query
timestamp except for the true query object are fil-
tered out from the answers. In comparison to the

1328

Datasets Entities Relations Training Validation Test Time Granules
ICEWS14 6869 230 74845 8514 7371 365
ICEWS0515 10488 251 368868 46302 46159 4017
ICEWS18 23033 256 373018 45995 49545 304
WIKI 12554 24 539286 67538 63110 232
YAGO 10623 10 161540 19523 20026 189

Table 1: Statistical data for the datasets.

Model ICEWS14 ICEWS18 ICEWS0515

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
DistMult(2015) 20.32 6.13 27.59 46.61 13.86 5.61 15.22 31.26 19.91 5.63 27.22 47.33
ComplEX(2016) 22.61 9.88 28.93 47.57 15.45 8.04 17.19 30.73 20.26 6.66 26.43 47.31
R-GCN(2018) 28.03 19.42 31.95 44.83 15.05 8.13 16.49 29.00 27.13 18.83 30.41 43.16
TTransE(2016) 12.86 3.14 15.72 33.65 8.44 1.85 8.95 22.38 16.53 5.51 20.77 39.26
HyTE(2018) 16.78 2.13 24.84 43.94 7.41 3.10 7.33 16.01 16.05 6.53 20.20 34.72
TA-DistMult(2018) 26.22 16.83 29.72 45.23 16.42 8.60 18.13 32.51 27.51 17.57 31.46 47.32
CyGNet(2021) 32.73 23.69 36.31 50.67 24.93 15.90 28.28 42.61 34.97 25.67 39.09 52.94
xERTE(2021) 40.79 32.70 45.67 57.30 29.31 21.03 33.51 46.48 46.62 37.84 52.31 63.92
TiTer(2021) 41.23 32.54 46.10 58.44 29.98 22.05 33.46 44.83 46.35 37.06 52.42 66.13
RE-GCN∗(2021) 41.99 32.93 46.60 62.47 30.55 20.00 34.73 51.46 46.41 37.17 52.76 67.64
CluSTeR(2021) 46.00 33.80 - 71.20 32.30 20.60 - 55.90 44.60 34.90 - 63.00
HiSMatch(2022) 46.42 35.91 51.63 66.84 33.99 23.91 37.90 53.94 52.85 42.01 59.05 73.28
CEN∗(2022) 41.52 31.38 46.02 61.36 30.85 20.53 34.28 49.86 49.21 37.52 56.74 71.68
EvoExplore(2022) 43.60 32.10 50.60 64.70 31.50 21.70 35.90 51.00 50.00 39.40 56.10 69.60
TECHS(2023) 43.88 34.59 49.36 61.95 30.85 21.81 35.39 49.82 48.38 38.34 54.69 68.92
DaeMon(2023) 45.32 34.96 50.07 63.72 31.23 22.51 35.65 48.76 47.85 37.90 52.61 68.57
CENET(2023) 41.30 32.58 - 58.22 29.65 19.98 - 48.23 47.13 37.25 - 67.61
RPC(2023) 44.55 34.87 49.80 65.08 34.91 24.34 38.74 55.89 51.14 39.47 57.11 71.75
TiPNN(2024) - - - - 32.17 22.74 36.24 50.72 - - - -
DLGR(2024) 46.72 36.67 51.61 - 35.48 25.11 40.03 - - - - -
RLEE 52.63 39.53 58.70 78.35 36.71 25.73 41.35 58.42 56.84 44.37 63.08 80.23
Absolute Boost 5.91 2.86 7.07 7.15 1.23 0.62 1.32 2.52 3.99 2.36 4.03 6.95
Relative Boost 12.65 7.80 13.69 10.04 3.46 2.47 3.30 4.51 7.55 5.62 6.82 9.48

Table 2: Performance (in percentage) on ICEWS14, ICEWS18, ICEWS0515. The best performance is highlighted
in boldface, and the second-best is underlined. ∗ indicates that we remove the static information from the model to
ensure the fairness of comparisons between all baselines.

alternative setting that filters out all other objects
that appear together with the query subject and re-
lation at any timestamp, time-aware filtering yields
a more realistic performance estimate. Our experi-
ments report average results over four runs.

4.1.4 Implementation Details
Referring to previous research, we use random ini-
tialization to generate entity and relation embed-
dings of dimension 200. To optimize all model
parameters, we used the Adam optimizer and set
the initialized learning rate to 0.001. The number
of layers w of the RGCN is set to 2; for each layer
of the RGCN, the dropout rate is set to 0.2 and the
history length parameter len is set to 10. The value
of the parameter γ of the time decay coefficient
is set to 0.8. Specifically, we train the model for
100 epochs, and stop the training if the verification
loss does not decrease for 10 consecutive epochs.
All experiments were conducted on a single Tesla
T4 GPU with 16GB of memory. For the static rea-
soning methods, the time dimension is removed
from all the TKG datasets. Some of the baseline re-
sults are adopted from RE-GCN. For the important
CENET, DaeMon, EvoExplore, HiSMatch, RE-
GCN, TiTer, xERTE, and CyGNet baseline works,

we use their default parameters and replicate the
results obtained under the original setup using their
open codes. For CEN, we report the results ob-
tained in the online setting. For DLGR, TiPNN,
RPC, TECHS, and CluSTeR baseline works, we
report the results presented in their papers since the
model is not open source.

4.2 Experimental Result

Table 2 and Table 3 presents the performance com-
parison of all baseline models. On the ICEWS14,
ICEWS18, and ICEWS0515 datasets, our proposed
RLEE model outperforms other baselines on all as-
sessment metrics, which validates the effectiveness
of our model. Specifically, RLEE significantly out-
performs static models, which demonstrates the
importance of modeling temporal information in
TKGR. However, some dynamic approaches, such
as TransE and HyTE, perform even worse than
static approaches because adding temporal repre-
sentation to the scoring function destroys the trans-
formation between entities. This illustrates the
importance of modeling temporal information in
a sensible way. RLEE still performs higher com-
pared to the embedded models of CyGNet, xERTE,

1329

Model WIKI YAGO

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
DistMult(2015) 27.96 - 32.45 39.51 44.05 - 49.70 59.94
ComplEX(2016) 27.69 - 31.99 38.61 44.09 - 49.57 59.64
R-GCN(2018) 13.96 - 15.75 22.05 20.25 - 24.01 37.30
TTransE(2016) 20.66 - 23.88 33.04 26.10 - 36.28 47.73
HyTE(2018) 25.40 - 29.16 37.54 14.42 - 39.73 46.98
TA-DistMult(2018) 26.44 - 31.36 38.51 44.98 - 50.64 61.11
CyGNet(2021) 58.78 47.89 66.44 78.70 68.98 58.97 76.80 86.98
xERTE(2021) 73.60 69.05 78.03 79.73 84.19 80.09 88.02 89.78
TiTer(2021) 73.91 71.70 75.41 76.96 87.47 80.09 89.96 90.27
RE-GCN∗(2021) 51.53 - 58.29 69.53 63.07 - 71.17 82.07
HiSMatch(2022) 78.07 73.89 81.32 84.65 87.21 84.10 90.64 91.83
CEN∗(2022) 78.93 75.05 81.90 84.90 82.37 79.52 85.93 88.64
TECHS(2023) 75.98 - - 82.39 89.24 - - 92.39
DaeMon(2023) 82.38 78.26 86.03 88.01 91.59 90.03 93.00 93.34
RPC(2023) 81.18 76.28 85.43 88.71 88.87 85.10 92.57 94.04
TiPNN(2024) 83.04 79.04 86.45 88.54 92.06 90.79 93.15 93.58
DLGR(2024) 82.14 80.14 84.04 - 88.87 84.60 92.35 -
RLEE 85.53 81.65 88.22 89.95 92.43 91.02 94.17 95.21
Absolute Boost 2.49 1.51 1.77 1.24 0.37 0.23 1.02 1.17

Table 3: Performance (in percentage) on WIKI, YAGO. The best performance is highlighted in boldface, and the
second-best is underlined. ∗ indicates that we remove the static information from the model to ensure the fairness of
comparisons between all baselines.

RE-GCN, HiSMatch, CEN, EvoExplore, RPC, and
DLGR, because these methods ignore the associ-
ation between entities and relations. TiTer, CluS-
TeR, TECHS, Daemon, and TiPNN are logic rule-
based models that extract potential logic rules from
graphs by path searching. However, these methods
are constrained by existing paths, limiting the scope
of their searches and impairing their performance.

Further, we find that most models achieve good
predictions on the ICEWS0515 and ICEWS14
datasets, but perform much worse on the ICEWS18
dataset. Upon observing Table 1, we note that the
ICEWS18 dataset contains a large number of en-
tities that introduce many relation inference paths
with low confidence, making it difficult to learn
valid relational logical associations.

On the WIKI and YAGO datasets, most of
the models achieve high prediction performance,
mainly because these two datasets contain a small
number of relations, and the structure of the knowl-
edge graphs they constitute is simple and easy to an-
alyze. In particular, the YAGO dataset has only 10
relations, and we found through careful data anal-
ysis that the relations “isMarriedTo”, “owns” and
“isAffiliatedTo” in the YAGO dataset occur more
than 80% of the time. This results in a very sim-
ple knowledge graph constructed from the YAGO
dataset, which does not need to take into account
the complex connections between entities in the
reasoning process.

4.3 Ablation Study

To further analyze the contribution that each part
of the model makes to the final prediction results,

ICEWS14 ICEWS18 YAGO
RLEE 52.63 36.71 92.43
RLEE w/o R 49.16 33.26 87.32
RLEE w/o E 50.81 34.05 85.65
RLEE-Add 48.81 33.17 86.02
RLEE w/o relation-attention 50.13 34.95 83.72
RLEE w/o (temporal encoding) 47.22 34.16 82.37

Table 4: Results (in percentage) by different variants of
our model on three datasets.

we report in Table 4 above the results of the MRR
metrics for the six sub-models on the test sets of
the three datasets.

The several sub-models in the table are:1. RLEE,
the complete model. 2. RLEE w/o R represents
the model that does not use the Relational Logic
Reasoning module. 3. RLEE w/o E represents the
model that does not use the Relation-aware Entity
Encoding module. 4. RLEE-Add represents the use
of addition to combine the relation inference path
scores and the entity structure scores. 5. RLEE
w/o relation-attention represents models that do
not use the Relation-aware Attention mechanism
during entity embedding learning. 6. RLEE w/o
(temporal encoding) represents models that do not
use temporal encoding in the model.

From the experimental data presented in the ta-
ble above, it is clear that both the Relation Logical
Reasoning module and the Relation-aware Entity
Encoding module are critical. Further to explore
the extent to which the relation inference path score
and entity structure score contribute to the final pre-
diction results, we combine the scores at both the
relation and entity levels by addition to obtain the
RLEE-Add model. Compared to the RLEE model,
which integrates scores through multiplication, the

1330

Datasets |ε| |R| Training Validation Test
YAGO 10623 10 161540 19523 20026
YAGOs 10038 10 51205 10973 10973

Table 5: Statistical data for YAGO and YAGOs.

MRR H@1 H@3 H@10
YAGOs 51.71 46.93 57.02 59.36
YAGO→YAGOs 49.35 44.02 53.26 56.94
LIMP 95.44 93.80 93.41 95.92
YAGO 92.43 91.02 94.17 95.21
YAGOs→YAGO 88.03 85.78 90.23 92.42
LIMP 95.25 94.24 95.82 97.07

Table 6: Logical Inference migration Performance(→
denotes the cross-dataset inference result).

RLEE-Add model’s performance is substantially
lower. This significant disparity suggests a strong
interdependence between the relational inference
path score and the entity structure score, indicating
that high scores in both categories are imperative
for achieving accurate inference outcomes.

The performance of RLEE w/o relation-attention
drops significantly compared to RLEE, suggesting
that learning relation-specific entity embeddings
can be more beneficial in answering the query at
hand. RLEE w/o temporal encoding also does not
perform as well as RLEE, demonstrating that tem-
poral numerical information is essential in learning
embedded representations of entities and relations.

4.4 Validation of the Effectiveness of the
Relation Logical Reasoning

The relation logical reasoning module learns the
temporal logical correlations of relations that exist
only between relations and are entity-independent,
which means that the logical correlations can be
migrated to other datasets with the same set of re-
lations. In other words, the RLEE model is trained
on one dataset to learn the logical correlations be-
tween relations, which can then be applied to dif-
ferent datasets with the same set of relations for
inference. To demonstrate the effectiveness of the
relation logical reasoning module, we conducted
an experimental analysis.

We first select a target dataset “A” and another
homologous dataset “B”, which means that “A” and
“B” have the same set of relation types. Secondly,
we train the relation logical reasoning module using
the training data of “A” and test the performance
with the testing data of “A”, and we can obtain
the direct result of the relation logical reasoning
module on the target dataset “A”. Then, we use
the training data of “B” to train the relation logi-
cal reasoning module and use the testing data of

“A” to test the performance, and we can get the
cross-dataset inference result of the relation log-
ical reasoning module on the target dataset “A”
using the logical correlations learned from dataset
“B”. Finally, we evaluate the ability of the rela-
tion logical reasoning module to capture logical
correlations between relations by looking at the
logical inference migration performance(LIMP),
which is calculated by the percentage ratio of the
cross-dataset inference result divided by the direct
result.

More specifically, YAGO and YAGOs are homol-
ogous datasets (compared as shown in Table 5), and
there is no intersection between their entity iden-
tifiers. Therefore, we use YAGO and YAGOs as
target datasets in turn. Table 6 shows the results of
the logical inference migration performance eval-
uation of the relation logical reasoning module on
YAGO and YAGOs datasets. We can observe that
all the logical inference migration performance of
the relation logical reasoning module is above 90%.
Even when learning relation logical correlations
from the smaller dataset YAGOs and testing on the
larger dataset YAGO, the relation logical reason-
ing module achieves effective performance on each
of the TKG reasoning evaluation metrics. Thus,
the experiments demonstrate that the relation log-
ical reasoning module can effectively capture the
logical correlations of different relations at the tem-
poral level and that the learned logical correlations
can be effectively applied to different datasets.

5 Conclusion

How to learn effective relation embeddings and en-
tity embeddings is a problem that current models
have been studying. In terms of relational embed-
ding learning, this paper extracts relation inference
paths between entity pairs and learns relational em-
beddings by evaluating whether these relation infer-
ence paths hold in the reasoning process so that the
learned relation embeddings can reflect the logical
correlations of different relations on the temporal
level in the embedding space. In terms of entity
embedding learning, we use the relation-aware at-
tention mechanism to learn relation-specific entity
embeddings, which enables the learned entity em-
beddings to pay more attention to the structural
information related to the query relation and avoids
the interference of irrelevant information. Experi-
ments on five benchmark datasets demonstrate the
effectiveness of our model in temporal knowledge

1331

graph extrapolation tasks.

Acknowledgements

This work was supported by the National Key
Research and Development Program of China
(Grant No.2021YFB3100600), Scientific Research
Project of Colleges and Universities in Guang-
dong Province (2021ZDZX1027), Guangdong
Basic and Applied Basic Research Foundation
(2022A1515110712 and 2023A1515010077), and
STU Scientific Research Foundation for Talents
(NTF20016 and NTF20017).

References
Elizabeth Boschee, Jennifer Lautenschlager, Sean

O’Brien, Steve Shellman, James Starz, and Michael
Ward. 2015. Icews coded event data. Harvard Data-
verse, 12:2. Doi:10.7910/DVN/28075.

Shib Sankar Dasgupta, Swayambhu Nath Ray, and
Partha Talukdar. 2018. Hyte: Hyperplane-based
temporally aware knowledge graph embedding. In
Proceedings of the 2018 conference on empirical
methods in natural language processing, pages 2001–
2011.

Hao Dong, Zhiyuan Ning, Pengyang Wang, Ziyue Qiao,
Pengfei Wang, Yuanchun Zhou, and Yanjie Fu. 2023.
Adaptive path-memory network for temporal knowl-
edge graph reasoning. In Proceedings of the Thirty-
Second International Joint Conference on Artificial
Intelligence, pages 2086–2094.

Hao Dong, Pengyang Wang, Meng Xiao, Zhiyuan Ning,
Pengfei Wang, and Yuanchun Zhou. 2024. Tem-
poral inductive path neural network for temporal
knowledge graph reasoning. Artificial Intelligence,
329:104085.

Alberto García-Durán, Sebastijan Dumančić, and Math-
ias Niepert. 2018. Learning sequence encoders
for temporal knowledge graph completion. arXiv
preprint arXiv:1809.03202.

Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp.
2020. Explainable subgraph reasoning for forecast-
ing on temporal knowledge graphs. In International
Conference on Learning Representations.

Julien Leblay and Melisachew Wudage Chekol. 2018.
Deriving validity time in knowledge graph. In Com-
panion proceedings of the the web conference 2018,
pages 1771–1776.

Zixuan Li, Saiping Guan, Xiaolong Jin, Weihua Peng,
Yajuan Lyu, Yong Zhu, Long Bai, Wei Li, Jiafeng
Guo, and Xueqi Cheng. 2022a. Complex evolutional
pattern learning for temporal knowledge graph rea-
soning. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 290–296.

Zixuan Li, Zhongni Hou, Saiping Guan, Xiaolong Jin,
Weihua Peng, Long Bai, Yajuan Lyu, Wei Li, Jiafeng
Guo, and Xueqi Cheng. 2022b. Hismatch: Historical
structure matching based temporal knowledge graph
reasoning. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 7328–
7338. Doi:10.48550/arXiv.2210.09708.

Zixuan Li, Xiaolong Jin, Saiping Guan, Wei Li, Jiafeng
Guo, Yuanzhuo Wang, and Xueqi Cheng. 2021a.
Search from history and reason for future: Two-stage
reasoning on temporal knowledge graphs. arXiv
preprint arXiv:2106.00327.

Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng
Guo, Huawei Shen, Yuanzhuo Wang, and Xueqi
Cheng. 2021b. Temporal knowledge graph reason-
ing based on evolutional representation learning. In
Proceedings of the 44th international ACM SIGIR
conference on research and development in informa-
tion retrieval, pages 408–417.

Ke Liang, Lingyuan Meng, Meng Liu, Yue Liu, Wenx-
uan Tu, Siwei Wang, Sihang Zhou, and Xinwang Liu.
2023. Learn from relational correlations and periodic
events for temporal knowledge graph reasoning. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 1559–1568.

Qika Lin, Jun Liu, Rui Mao, Fangzhi Xu, and Erik Cam-
bria. 2023. Techs: Temporal logical graph networks
for explainable extrapolation reasoning. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1281–1293.

Xin Mei, Libin Yang, Xiaoyan Cai, and Zuowei Jiang.
2022. An adaptive logical rule embedding model for
inductive reasoning over temporal knowledge graphs.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7304–7316.

Xin Ren, Luyi Bai, Qianwen Xiao, and Xiangxi Meng.
2023. Hierarchical self-attention embedding for tem-
poral knowledge graph completion. In Proceedings
of the ACM Web Conference 2023, pages 2539–2547.
Doi:10.1145/3543507.358339.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In The semantic web: 15th inter-
national conference, ESWC 2018, Heraklion, Crete,
Greece, June 3–7, 2018, proceedings 15, pages 593–
607. Springer.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference
on World Wide Web, pages 697–706.

Haohai Sun, Jialun Zhong, Yunpu Ma, Zhen Han, and
Kun He. 2021. Timetraveler: Reinforcement learning

 https://doi.org/10.7910/DVN/28075
 https://doi.org/10.48550/arXiv.2210.09708
 https://doi.org/10.1145/3543507.358339

1332

for temporal knowledge graph forecasting. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 8306–
8319.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Interna-
tional conference on machine learning, pages 2071–
2080. PMLR.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85.

Yao Xiao, Guangyou Zhou, Zhiwen Xie, Jin Liu, and
Jimmy Xiangji Huang. 2024. Learning dual disen-
tangled representation with self-supervision for tem-
poral knowledge graph reasoning. Information Pro-
cessing & Management, 61(3):103618.

Yi Xu, Junjie Ou, Hui Xu, and Luoyi Fu. 2023. Tem-
poral knowledge graph reasoning with historical con-
trastive learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pages
4765–4773. Doi:10.1609/aaai.v37i4.25601.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2014. Embedding entities and relations
for learning and inference in knowledge bases. arXiv
preprint arXiv:1412.6575.

Jiasheng Zhang, Shuang Liang, Yongpan Sheng, and
Jie Shao. 2022. Temporal knowledge graph rep-
resentation learning with local and global evolu-
tions. Knowledge-Based Systems, 251:109234.
Doi:10.1016/j.knosys.2022.109234.

Mengqi Zhang, Yuwei Xia, Qiang Liu, Shu Wu,
and Liang Wang. 2023. Learning long-and
short-term representations for temporal knowl-
edge graph reasoning. In Proceedings of the
ACM Web Conference 2023, pages 2412–2422.
Doi:10.1145/3543507.3583242.

Cunchao Zhu, Muhao Chen, Changjun Fan, Guangquan
Cheng, and Yan Zhang. 2021. Learning from history:
Modeling temporal knowledge graphs with sequen-
tial copy-generation networks. In Proceedings of the
AAAI conference on artificial intelligence, volume 35,
pages 4732–4740. Doi:10.1609/aaai.v35i5.16604.

https://doi.org/10.1609/aaai.v37i4.25601
https://doi.org/10.1016/j.knosys.2022.109234
https://doi.org/10.1145/3543507.3583242
https://doi.org/10.1609/aaai.v35i5.16604

	Introduction
	Related Work
	Method
	Preliminaries
	Model Overview
	Relation Logical Reasoning
	Relation-aware Entity Encoding
	Result Prediction
	Train

	Experiment
	Experimental Setup
	Datasets
	Baselines
	Evaluation Metrics
	Implementation Details

	Experimental Result
	Ablation Study
	Validation of the Effectiveness of the Relation Logical Reasoning

	Conclusion

