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Abstract

Recent works have proposed methods of gen-
erating synthetic data automatically for unsu-
pervised Grammatical Error Correction (GEC).
Although a large amount of synthetic data is
generated at a low cost, it is unrealistic and of
poor quality. The copying phenomenon of syn-
thetic data prevents GEC models from learning
the semantic knowledge of contextual language.
In this paper, we design an instruction format
and consistently use the masking strategy in
both an erroneous sentence and the correspond-
ing instruction to alleviate the impact of the
copy phenomenon. We also propose a novel
approach, InstructGEC, which integrates the
knowledge of grammatical detection into GEC
models with instruction tuning to address the
low-quality issue. Experiments are conducted
on English and Chinese GEC datasets and re-
sults demonstrate that our method outperforms
state-of-the-art unsupervised GEC methods.

1 Introduction

Grammatical Error Correction (GEC) aims to de-
tect and correct grammatical errors in an erroneous
sentence and output a correct sentence. It has at-
tracted a lot of attention due to its broad applica-
tions. There has been a large amount of research
on GEC (Bryant et al., 2019; Rothe et al., 2021;
Zhang et al., 2022; Zhao et al., 2018). However,
a common drawback of these approaches is their
dependence on a large amount of manually labeled
data, which is time-consuming and expensive to
construct.

To address this limitation, synthetic data genera-
tion for GEC is proposed to provide training data.
Synthetic data can be generated in a supervised
or unsupervised way. Supervised methods of syn-
thetic data generation (Awasthi et al., 2019; Kiy-
ono et al., 2019; Lichtarge et al., 2019; Stahlberg
and Kumar, 2021) require manually labeled GEC
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data while unsupervised methods (Sun et al., 2022;
Yasunaga et al., 2021; Zhao et al., 2019) do not
need it. Because there is no manually labeled data
for unsupervised GEC, many works focus on un-
supervised synthetic data generation. Zhao et al.
(2019) presented a random noising method to cor-
rupt sentences to generate synthetic data. Ya-
sunaga et al. (2021) proposed the Break-It-Fix-It
(BIFI) framework to extract parallel data from un-
labeled data. Sun et al. (2022) adopted machine
translation pairs and pre-trained language models
for erroneous sentence generation.

These unsupervised generation methods usually
corrupt normal sentences to construct erroneous
sentences automatically by heuristic rules. Then,
unsupervised GEC models are trained on such syn-
thetic data. Although a large amount of synthetic
data is generated at a low cost, it is unrealistic and
of poor quality. In addition, an erroneous sentence
is similar to the corresponding correct one in syn-
thetic data because grammatical errors are gener-
ally sparse. In this paper, it is named copying phe-
nomenon. In this case, GEC models usually copy
correct tokens directly from an erroneous sentence
to the correct one and are prevented from learning
the semantic knowledge of the contextual language.
The performance of unsupervised GEC methods is
much lower than supervised methods (Alikaniotis
and Raheja, 2019; Yasunaga et al., 2021). Thus,
the copying phenomenon and low-quality are chal-
lenges for unsupervised GEC.

To address these challenges, we propose a novel
approach, InstructGEC, which is based on instruc-
tion tuning. Previous studies (Chen et al., 2020; Li
et al., 2023) have explored dividing GEC into two
stages: Grammatical Error Detection (GED) and
Grammatical Error Correction (GEC). Grammat-
ical errors are identified in the GED stage while
errors are corrected in the GEC stage. InstructGEC
attempts to enhance unsupervised GEC models by
integrating GED knowledge into the GEC models
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with instruction tuning.
Specifically, instructions, that can identify posi-

tions and edit operations of errors, are designed to
include GED knowledge. Then instruction tuning
is used to train GEC models, and the GEC model is
guided by instructions to output correct sentences.
The low-quality synthetic data often gives rise to
inaccurate instructions, and our proposed Instruct-
GEC is enabled to bridge the gap between an inac-
curate instruction and the corresponding accurate
one. InstructGEC outputs correct sentences and
improves the generalization ability of GEC mod-
els even though inaccurate instructions are input.
Therefore, our method can alleviate the low-quality
issue. Due to the copying phenomenon in syn-
thetic data, GEC models can not learn rich seman-
tic knowledge from such large-scale synthetic data.
So we use the masking strategy in both an erro-
neous sentence and the corresponding instruction
consistently to mitigate the harmful impact of the
copying phenomenon.

We conduct experiments to validate the effective-
ness of InstructGEC for the unsupervised GEC on
both English and Chinese GEC datasets. The Ex-
perimental results demonstrate that our approach
outperforms state-of-the-art baselines and effec-
tively mitigates the impact of the low quality and
copy phenomenon.

The contributions of our paper are as follows:

1. We design an instruction format and use the
masking strategy in both an erroneous sen-
tence and the corresponding instruction con-
sistently to form a prompt. The prompt en-
ables GEC models to learn correction pat-
terns and alleviate the impact of the copy phe-
nomenon simultaneously.

2. We propose a novel approach, InstructGEC,
which can integrate GED knowledge into
GEC models with instruction tuning for un-
supervised GEC. To improve the generaliza-
tion ability of the GEC model, our proposed
approach addresses the low-quality issue by
bridging the gap between an inaccurate in-
struction and the corresponding accurate one.

3. We conduct experiments on English and Chi-
nese GEC datasets. Experimental results
demonstrate that our method outperforms the
state-of-the-art GEC methods.

2 Related Work

Grammatical Error Correction (GEC) There are
two main lines of research in GEC: (i) Sequence-
to-Edit (Seq2Edit) models, and (ii) Sequence-to-
Sequence (Seq2Seq) models, typically based on
Transformer (Vaswani, 2017) model. Seq2Edit ap-
proaches (Awasthi et al., 2019; Malmi et al., 2019;
Omelianchuk et al., 2020) treat GEC as a sequence
labeling task, while the Seq2Seq (Kaneko et al.,
2020; Yang et al., 2023; Zhao et al., 2019) con-
sider GEC as a monolingual translation task. Some
Seq2Seq GEC methods have achieved impressive
effectiveness. Zhao et al. (2019) proposed a copy-
augmented architecture and incorporated multi-task
learning into the GEC task. Kaneko et al. (2020)
incorporated a pre-trained masked language model
into GEC. Yang et al. (2023) leveraged the error
type information in the generation process. These
works require manually annotated data. However,
few studies attempt to explore unsupervised GEC
methods that do not rely on manually labeled data.
Alikaniotis and Raheja (2019) provided grammat-
ical corrections based on confusion sets and vali-
dated these corrections by language models. Ya-
sunaga et al. (2021) proposed an unsupervised syn-
thetic data generation method. Chen et al. (2023)
explored the constituent syntax of synthetic data
to improve the performance of the GEC model in
an unsupervised setting. Coyne et al. (2023) con-
ducted the GEC task on ChatGPT using a zero-shot
or few-shot approach. In contrast to these works,
our method focuses on alleviating issues caused
by the low-quality and copying phenomenon of
synthetic data for unsupervised GEC.

Previous studies have tried to incorporate de-
tection knowledge into GEC models. Chen et al.
(2020) identified erroneous text spans in the GED
stage and only output the corrected text for these
spans in the GEC stage. Yuan et al. (2021) adopted
GED knowledge as an auxiliary input to fine-tune
a GEC model and re-rank the GEC output. Li
et al. (2023) proposed a detection template to intro-
duce GED knowledge that allows the GEC model
to make accurate predictions. Different from the
above studies, our method integrates detection
knowledge into GEC models with instruction tun-
ing.

Due to the low error rate of erroneous sentences,
the copy phenomenon is a common issue for GEC
synthetic data. Wu et al. (2022); Zhao et al. (2019)
incorporated the copying mechanism in their mod-
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els to directly replicate words from the source sen-
tence to the target. Shen et al. (2022) found that the
copy phenomenon can harm the effective training
of GEC models and proposed a masking strategy to
facilitate effective training. Compared with these
works, our method designs an instruction format
and uses the masking strategy in both instructions
and erroneous sentences to alleviate the impact of
the copy phenomenon.
Instruction Tuning (IT) IT has proven to be an
efficient method for improving the ability of gener-
alization by learning from a collection of tasks (Wei
et al.). Some studies attempted to convert the su-
pervised data into the format of instructions to fine-
tune LLMs. Zhang et al. (2023) transformed the
supervised financial sentiment analysis data into in-
struction data by randomly selecting an instruction
from ten instructions and fine-tuned LLMs. Wang
et al. (2023) proposed InstructUIE, which is a uni-
fied information extraction framework based on
IT to model different information extraction tasks.
Our method differs from these works in that an
instruction generated in the GED stage depends
on the inputted erroneous sentence and we fine-
tune GEC models on instruction-tuning data for
unsupervised GEC task.

3 InstructGEC

The architecture of InstructGEC is shown in Fig-
ure 1. We describe the detection and correction
stage of InstructGEC in Section 3.1 and 3.2 respec-
tively, and introduce the training and inference in
Appendix A.3.

3.1 Instruction Generation in Detection Stage
We regard Grammar Error Detection (GED) as a
token classification task and design an instruction
format that includes five sub-instructions. These
sub-instructions at the token level are associated
with edit operations on erroneous sentences. In
Table 1, we define a sub-instruction set S which
consists of five sub-instructions. The instruction I
for a sentence X = X1, X2, ..., Xn is a sequence
of sub-instructions, which can be formulated as:

I = I1, I2, ..., In (1)

where Ii ∈ S denotes a sub-instruction, n is the
number of tokens in the sentence X .

As shown in the upper half of Figure 1, an erro-
neous sentence is converted into two instructions
It and Ip by a sequence matcher and a sequence

Sub-Instruction Description

<k> Keep unchanged token
<r> Replace token
<a> Add token
<d> Delete token
<m> Mask token

Table 1: Sub-Instruction Set

tagging model respectively. Sequence matcher uses
the Levenshtein distance algorithm (Levenshtein,
1966) to match differences between an erroneous
sentence and the corresponding correct sentence
at the token level. Sequence matcher can provide
the instruction It, that is called gold instruction
afterwards. We consider sub-instructions as the
labels of tokens and use the training dataset to train
a BERT (Kenton and Toutanova, 2019) model as
the sequence tagging model. The tagging model
can provide the instruction Ip, which is named pre-
dicted instruction. Then, the instruction It and
Ip are fed into the prompt maker. The sequence
matcher and the sequence tagging model are de-
signed to reduce the burden of Seq2Seq GEC Mod-
els because they are capable of integrating positions
and editing operations of errors into an instruction.

3.2 Instruction Tuning in Correction Stage
Mask Strategy When an erroneous sentence is
given, sub-instructions are provided based on the
tokens of this erroneous sentence by sequence tag-
ging model or sequence matcher. Then, sequence
mask marker randomly masks a proportion of to-
kens whose sub-instructions are <k> with a mask
token [MASK] in an erroneous sentence, and puts
the mask sub-instruction <m> in the corresponding
position of the instruction. Note that the masking
strategy is only used for unchanged tokens whose
sub-instructions are <k> in an erroneous sentence.

Specifically, 80% of masked tokens in an er-
roneous sentence are replaced with the [MASK]
token, and the corresponding sub-instructions in
the instruction are with <m>. 10% of the tokens
are replaced with random tokens from the vocabu-
lary, and the corresponding sub-instructions in the
instruction are with <r>. There are three advan-
tages of the proposed masking strategy. First, when
GEC models are trained by erroneous sentences
with masked tokens, they can learn the language se-
mantic knowledge rather than direct copying. Sec-
ond, when the masking strategy is only used for
unchanged tokens, GEC models are not impeded
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<k> <k> <k> <d> <k> <k> <k> <k> <k> <a><k> <k> <k> <d> <k> <k> <a> <d> <k> <r>

I am good too at working in a team.
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tI
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Stage1:  Instruction Generation in Detection 

Stage2: Instruction Tuning in Correction 

<k> <m> <k> <d> <k> <m> <k> <m> <k> <a>  [SEP]  I [MASK] good too at [MASK] in [MASK] team .

I am good at working in a team too.

Figure 1: The architecture of InstructGEC, the detection stage in the upper half and the correction stage in the
lower half. The red part of the instructions represents the sentence errors, the purple part represents tokens wrongly
classified by the sequence labeling model, and the blue part denotes the masked segment.

from learning the correction from an erroneous
sentence to a correct one. Third, the instructions
provide the correction patterns and the masking
strategy enables GEC models to alleviate the im-
pact of copy phenomenon and improve the ability
of pattern recognition.
Prompt Construction Prompt maker is responsi-
ble for generating the prompt. It constructs (X

′
p, I

′
p)

and (X
′
t , I

′
t) by applying the masking strategy to

(X, It) and (X, Ip) with the specified mask proba-
bility respectively. The prompt P

′
t is the concate-

nation of I
′
t and X

′
t with a specialized token [SEP]

as a delimiter while the prompt P
′
p is of I

′
p and X

′
p,

which can be formulated as:

P
′
t = I

′
t [SEP ]X

′
t (2)

P
′
p = I

′
p[SEP ]X

′
p (3)

P ′
t is constructed using I

′
t , and we refer to it as

the gold prompt. P ′
p is constructed using I

′
p, and

we refer to it as the predicted prompt.
Loss Function As shown in the lower half of
Figure 1, the prompt P ′

p and P ′
t are fed into a

Transformer-based Seq2Seq model in the correc-
tion stage. This model outputs the prediction of P ′

p

and P ′
t respectively. The loss Ls is defined as:

Ls = −
1

2
[logP (Y |P ′

p; θ) + logP (Y |P ′
t ; θ)] (4)

where θ is the parameters of Transformer-based
Seq2Seq model, Y is the correct sentences.

The prompt P ′
p includes the instruction I ′p that

is integrated with GED knowledge for correcting
errors in an erroneous sentence exactly. Because
the synthetic data is of low quality, the sequence
tagging model might make mistakes in predicting
the instruction I ′p. When the instruction I ′p is in-
correct, GEC models probably make the wrong
correction to the erroneous sentence. To address
this problem, we propose to use consistency train-
ing that can bridge the gap between the predicted
instruction and the gold instruction. In detail, we
take into account the consistency loss that penal-
izes the dissimilarity between the distribution of
prediction for P ′

t and P ′
p. The Jensen–Shannon

(JS) divergence is a symmetrical metric used to
measure the dissimilarity between two probability
distributions in statistics. We use JS divergence as
the consistency loss to alleviate the impact of the
low-quality synthetic data. The consistency loss is
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formulated as:

Avg =
1

2
[P (Y |P ′

p; θ) + P (Y |P ′
t ; θ)] (5)

Lc =
1

2
[KL(P (Y |P ′

p; θ)||Avg)

+KL(P (Y |P ′
t ; θ)||Avg)]

(6)

where Lc is the consistency loss, KL is the Kull-
back–Leibler divergence.

The final loss function is defined as:

L = Ls + λLc (7)

where λ is the hyper-parameter that controls the
weight of Lc.

For the inference, given a new erroneous sen-
tence x, the sequence tagging model is used to get
just the predicted instruction of x. The prompt is
constructed by concatenating the predicted instruc-
tion and x with a token [SEP] as a delimiter, and
is fed into the Transformer-based Seq2Seq model
which outputs the correct sentence of x. Note that
the prompt is not masked in the inference stage.

4 Experiments

We introduce the datasets, evaluation metrics, and
baselines in Sections 4.1, 4.2, and 4.3. The results
analysis is described in Section 4.4. Implemen-
tation details are provided in Appendix A.1 and
baseline settings are provided in Appendix A.2.

4.1 Datasets
Both Chinese and English GEC synthetic datasets
generated in an unsupervised way are required in
our experiments. For the Chinese dataset, we adopt
a methodology that is similar to Tang et al. (2023).
We treat the sentences as correct sentences and
corrupt these sentences to construct erroneous sen-
tences by adding, deleting, replacing, and swapping
words or characters on different levels in transla-
tion29zh corpus1. As to the English dataset, we
follow Awasthi et al. (2019). They perform heuris-
tic algorithms on the sentences in the One-billion-
word corpus (Chelba et al., 2013) by adding, delet-
ing, and replacing to construct erroneous sentences.
The size of Chinese and English synthetic data is
3.4M and 9M pairs respectively. The statistics of
datasets are shown in Table 2.

We train the proposed InstructGEC model on the
synthetic dataset. If the MuCGEC dev set is used

1https://github.com/brightmart/nlp_chinese_
corpus

Language Corpus Split Pair

Chinese ZH Synthetic data train 3.40M
English EN Synthetic data train 9M

Chinese MuCGEC test test 5.93K
Chinese NLPCC2018 test test 2.00K
English BEA-2019 test test 4.48K
English CoNLL-2014 test test 1.31K

Chinese MuCGEC dev valid 1.12K
English BEA-2019 dev valid 4.38K

Table 2: Statistics of datasets used in experiments

as the validation data, experiments are conducted
on the NLPCC2018 test and the MuCGEC test set.
When the BEA-2019 test and the CoNLL-2014 test
set are adopted for evaluation, we use the BEA-
2019 dev set as the validation data.

4.2 Evaluation Metrics
In the detection stage, instruction generation is con-
sidered as a token classification task, and the qual-
ity of predicted instruction by the sequence tagging
model is evaluated with the metrics (Nakayama,
2018) named F1 in Table 6.

In the correction stage, the Transformer-based
Seq2Seq model is evaluated with the official M2

score metrics (Dahlmeier and Ng, 2012) on the
NLPCC2018 test and the CoNLL-2014 test set.
For the Chinese dataset, pkunlp (Draplater, 2018)
is used for Chinese word segmentation. The ChER-
RANT (Zhang et al., 2022) metrics tool is used on
the MuCGEC test set while the ERRANT (Bryant
et al., 2017) is on the BEA-2019 dev/test set. Be-
cause the MuCGEC test and the BEA-2019 test set
are not publicly available, we submit the results of
MuCGEC test set on TianChi competition website2

and the results of BEA-2019 test set on CodaLab
Competition website3.

4.3 Compared Methods
We compare InstructGEC with the following base-
lines.
Transformer (Vaswani, 2017) is a Transformer-
based encoder-decoder Seq2Seq model trained on
synthetic data.
GECToR (Omelianchuk et al., 2020) is a Seq2Edit
model using a Transformer encoder and designs
custom token-level transformations to map input
tokens to target corrections.

2https://tianchi.aliyun.com/dataset/131328
3https://codalab.lisn.upsaclay.fr/

competitions/4057

https://github.com/brightmart/nlp_chinese_corpus
https://github.com/brightmart/nlp_chinese_corpus
https://tianchi.aliyun.com/dataset/131328
https://codalab.lisn.upsaclay.fr/competitions/4057
https://codalab.lisn.upsaclay.fr/competitions/4057
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Methods Mask
Instruction Type NLPCC2018 test MuCGEC test

Train Test P R F0.5 P R F0.5

Transformer × - - 18.84 9.63 15.82 18.63 8.11 14.79

GECToR × - - 34.45 22.35 31.08 35.81 19.98 30.91

BART × - - 33.30 20.50 29.61 38.06 18.89 31.64

Ours
× Gold+Pred Pred 38.56 18.20 31.51 43.53 16.17 32.52

✓ Gold+Pred Pred 39.92 20.05 33.31 43.41 17.16 33.24

Table 3: Results on Chinese NLPCC18-test and MuCGEC-test set. Precision (P), Recall (R), F0.5 (F0.5) are reported
(%). In the “Mask" column, the symbol “×" signifies the absence of the masking strategy while the symbol “✓"
indicates using the masking strategy. In the “Instruction Type” column,“Gold" and “Pred" refer to the gold and
predicted instruction respectively.

Methods Mask
Instruction Type CoNLL-2014 test BEA-2019 test BEA-2019 dev

Train Test P R F0.5 P R F0.5 P R F0.5

Transformer × - - 49.90 23.22 40.58 43.51 29.94 39.90 32.95 13.4 25.51

GPT-2 (Alikaniotis and Raheja, 2019) × - - 58.5 24.9 46.1 - - - - - -

BART-base × - - 61.33 28.23 49.68 53.68 35.59 48.73 41.07 15.88 31.18

BART-base (Grundkiewicz et al., 2019) × - - 59.7 18.5 41.3 62.4 25.4 48.8 - - -

ChatGPT with prompting (Coyne et al., 2023) × - - 50.3 59.7 51.9 42.6 69.3 46.1 - - -

BART+BIFI (Yasunaga et al., 2021) × - - 64.4 35.6 55.5 - - - 51.6 24.7 42.4

Ours+BIFI ✓ Gold+Pred Pred 68.61 34.25 57.14 - - - 54.44 23.54 43.12

Ours
× Gold+Pred Pred 63.18 30.34 51.94 56.17 38.02 51.27 43.44 17.42 33.45

✓ Gold+Pred Pred 64.36 31.24 53.10 57.42 38.48 52.27 44.04 17.61 33.87

Table 4: Results on the English CoNLL-2014 test, BEA-2019 test, and BEA-2019 dev set. Scores that are higher
than competitive baselines are highlighted in bold.

BART is to initialize the model with the BART and
train the model on synthetic data as Awasthi et al.
(2019).
BART+BIFI (Yasunaga et al., 2021) is an unsu-
pervised synthetic data generation method using
Break-It-Fix-It(BIFI) framework. It adopts a pre-
trained language model to generate high-quality
synthetic data which is used for training a BART
model. It utilizes external data which is referred
to as “BIFI” in Table 4. It is the state-of-the-art
unsupervised English GEC model.
GPT-2 Alikaniotis and Raheja (2019) substituted
the n-gram model with GPT-2 (Radford et al., 2019)
and assessed its performance on GEC without any
supervised training.
ChatGPT is powerful and achieves high perfor-
mance across various Natural Language Process-
ing tasks. Coyne et al. (2023) provide a zero-shot
prompt for the GEC task on GPT-3.5.

4.4 Results Analysis

The results on the Chinese datasets are listed in
Table 3. Our InstructGEC outperforms GECToR

with a significant improvement of 2.23 F0.5 on the
NLPCC2018 test and 2.33 F0.5 on the MuCGEC
test. Additionally, Compared with BART, Instruct-
GEC raises the F0.5 by 3.7 on the NLPCC2018 test
and by 1.6 on the MuCGEC test. “Transformer”
gets the lowest F0.5, and the possible reason is that
it is not initialized by parameters of the pre-trained
language model. Our method with the proposed
masking strategy is better than that without it, and
the masking strategy can significantly increase F0.5

by 1.8 on the NLPCC2018 test and by 0.72 on the
MuCGEC test.

Table 4 shows the experimental results on the
English datasets. In contrast to “Transformer” and
“BART”, InstructGEC achieves the best perfor-
mance. Specifically, InstructGEC with the masking
strategy is better than “BART” with the improve-
ment of the F0.5 by 3.42, 3.54, and 2.69 on the
CoNLL-2014 test, BEA-2019 test, and BEA-2019
dev set respectively. For a fair comparison, when
our method with BIFI (i.e., Ours+BIFI) is trained
on the same data as “BART+BIFI”, our method
outperforms “BART+BIFI” with +1.64, +0.72 F0.5
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Methods Mask
Instruction Type CoNLL-2014 test BEA-2019 dev BEA-2019 test

Train Test P R F0.5 P R F0.5 P R F0.5

Instruction effect

BART
× - - 61.33 28.23 49.68 41.07 15.88 31.18 53.68 35.59 48.73
× Pred Pred 62.57 29.09 50.86 43.28 16.62 32.77 55.75 37.13 50.67
× Gold Gold 66.01 60.11 64.74 57.62 52.0 56.4 - - -

JS divergence effect
BART × Gold ∪ Pred Pred 59.94 30.61 50.30 43.36 17.1 33.17 55.37 38.53 50.92
Ours with KL × Gold+Pred Pred 64.03 28.55 51.28 44.69 16.18 33.04 56.51 35.95 50.71
Ours with KL ✓ Gold+Pred Pred 64.25 29.89 52.24 43.62 17.0 33.22 56.28 36.87 50.92
Ours with JS × Gold+Pred Pred 63.18 30.34 51.94 43.44 17.42 33.45 56.17 38.02 51.27
Ours with JS ✓ Gold+Pred Pred 64.02 31.69 53.18 43.59 17.72 33.74 56.51 38.89 51.81

Mask Instruction effect

Ours
× Gold+Pred Pred 63.18 30.34 51.94 43.44 17.42 33.45 56.17 38.02 51.27
✓ Gold+Pred Pred 64.36 31.24 53.10 44.04 17.61 33.87 57.42 38.48 52.27

Table 5: Ablation study with different setups. The mask ratio is 0.15 for the mask probability setting.

Language Dataset F1

Chinese
NLPCC2018 test 28.43

MuCGEC dev 20.04

English
CoNLL-2014 test 18.78

BEA-2019 dev 28.95

Table 6: Results of instruction quality

improvement on CoNLL-2014 test and BEA-2019
dev set. The results demonstrate that InstructGEC
can achieve better effectiveness than state-of-the-
art baselines. The masking strategy has a consistent
effect on English datasets.

For further analysis, we conduct experiments
on Chinese and English test sets to investigate
the quality of instructions generated by the se-
quence tagging model. The experimental results
are shown in Table 6. On Chinese datasets, we
achieve F1 = 28.43 on the NLPCC2018 test set
and F1 = 20.04 on the MuCGEC dev set. On
English datasets, we obtain F1 = 18.78 on the
CoNLL-2014 test set and F1 = 28.95 on the BEA-
2019 dev set. A lower F1 score indicates poorer in-
struction quality. We can observe that the sequence
tagging model trained on the unsupervised syn-
thetic GEC data provides poor instructions. Thus,
consistency loss is necessary to mitigate the effect
of poor instructions. Additional error type analysis
and comparison results for generated examples are
provided in Appendix B.

5 Ablation Study

We perform ablation studies to explore the impact
of various factors, including the instruction, JS di-
vergence, masking strategy, and mask ratio, on the

performance of models tested on the CoNLL-2014
test, the BEA-2019 dev, and the BEA-2019 test.
Effect of Instruction As shown in Table 5, BART
is trained on the synthetic data without instruction
tuning, and with the predicted and gold instructions
respectively. Results with predicted instructions
are slightly better than those without instruction
tuning. It reveals that the predicted instructions
are of poor quality and do not effectively enhance
the performance of GEC models. This outcome
is consistent with the results in Table 6. Results
with gold instructions demonstrate the performance
upper bound of instruction tuning. Specifically, if
the gold instructions on the test set are given, we
achieve 64.74 F0.5 score on the CoNLL-2014 test
set and 56.4 F0.5 score on the BEA-2019 dev set,
which are competitive with the results of supervised
GEC methods.
Effect of JS divergence Because the low-quality
synthetic data results in poor instructions, con-
sistency loss is proposed to alleviate this issue.
Jensen–Shannon (JS) and Kullback–Leibler (KL)
divergence can be used to measure the dissimilarity
between two probability distributions in statistics.
The consistency loss based on KL divergence is
defined as:

L′c =
1

2
[KL(P (Y |P ′

p; θ)||P (Y |P ′
t ; θ))

+KL(P (Y |P ′
t ; θ)||P (Y |P ′

p; θ))]
(8)

As shown in Table 5, when the JS divergence is
changed to KL divergence and the masking strategy
is not used, F0.5 drops by 0.66 on CoNLL-2014 test
set, by 0.41 on BEA-2019 dev set, and by 0.56 on
on BEA-2019 test set. When JS is changed to KL
and the masking strategy is used, F0.5 decreases
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Mask Ratio m%
CoNLL-2014 test BEA-2019 dev BEA-2019 test

P R F0.5 P R F0.5 P R F0.5

0% 63.18 30.34 51.94 43.44 17.42 33.45 56.17 38.02 51.27
15% 64.02 31.69 53.18 43.59 17.72 33.74 56.51 38.89 51.81
20% 64.36 31.24 53.10 44.04 17.61 33.87 57.42 38.48 52.27
25% 64.42 31.65 53.37 43.48 17.91 33.82 56.50 38.59 51.70
30% 62.92 30.55 51.92 43.83 17.93 34.00 56.91 38.77 52.04
40% 63.11 31.87 52.77 43.19 18.36 33.99 55.74 39.35 51.45
50% 63.03 31.32 52.42 42.79 18.22 33.7 55.39 38.88 51.06

Table 7: The results of different mask ratios m%.

by 0.94 on CoNLL-2014 test set, by 0.52 on BEA-
2019 dev set, and by 0.89 on BEA-2019 test set.

It is unfair to compare our proposed InstructGEC
with BART since BART does not use instructions
and the consistency loss. We combine (P

′
p, Y ) and

(P
′
t , Y ) to build a larger training data (i.e., Gold
∪ Pred) which is used for training a BART model
with instruction tuning. If the masking strategy
is not used, both “Ours with JS” and “Ours with
KL” outperform BART trained on Gold ∪ Pred.
Therefore, JS divergence is better for enhancing
the unsupervised GEC models.

Effect of Masking Strategy We conduct exper-
iments with and without the masked prompt to
validate the effectiveness of the mask strategy. As
shown in Table 5, the performance of InstructGEC
without the masked prompt declines by 1.16 F0.5

on CoNLL-2014 test set, 0.45 F0.5 on BEA-2019
dev set, and 1.0 F0.5 on BEA-2019 test set. The
mask strategy is able to alleviate the impact of
the copying phenomenon in the task of unsuper-
vised GEC. Our method learns not only to cor-
rect the grammatical errors but also to predict the
masked tokens based on contextual language using
the masking strategy. This allows our model to en-
hance the ability of semantic understanding based
on the context and to correct grammatical errors
accurately.

Effect of Mask Ratio We test different values of
mask ratio m% for InstructGEC. After the gold and
predicted instructions are masked with a specified
mask ratio, they are used to construct prompts for
training InstructGEC. Predicted instructions are not
masked in the inference stage.

The experimental results are shown in the Ta-
ble 7. We observe that our method is robust and
insensitive to the mask ratio m%. The possible
reason is that a large amount of synthetic data al-
leviates the impact of the mask ratio. The superior
performance is achieved when the m% is between

15% and 25%. If the m% is more than 25% or
less than 15%, the performance drops. The lower
value of m% reduces the number of masked tokens,
which is harmful to GEC models for learning the
semantic knowledge of contextual language. The
higher value might make the masked sentence lack
semantic coherence and hinder effective training.

6 Conclusion

In this paper, we design an instruction format and
use the masking strategy in both an erroneous sen-
tence and the corresponding instructions, enabling
our method to alleviate the impact of the copying
phenomenon and learn rich semantic knowledge
on large-scale synthetic data. We propose a novel
approach, InstructGEC, which incorporates GED
knowledge into GEC models with instruction tun-
ing for unsupervised GEC. InstructGEC can miti-
gate the low-quality issue to improve the generaliza-
tion ability of GEC models. Experiments are con-
ducted to validate our proposed method on English
and Chinese GEC datasets. Experimental results
demonstrate that InstructGEC can achieve state-
of-the-art performance. In addition, the results of
ablation studies show that the masking strategy and
the consistency loss based on JS divergence are
effective in achieving superior performance. Our
method is not sensitive to the mask ratio.

In the future, because the generation of high-
quality instructions in the GED stage is challeng-
ing, we will explore more effective methods for
generating high-quality instructions or use multi-
task learning to enhance GEC models’ capability.

7 Limitations

Our model exhibits a limitation during the instruc-
tion generation phase, leading to suboptimal in-
struction quality. To address the discrepancy be-
tween actual and predicted instructions, we use a
Jensen–Shannon divergence in the loss function.
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Accurate token classification remains a challenge
task. Additionally, while the masking strategy
effectively reduces duplication and enhances se-
mantic understanding for grammar correction, our
model still lacks interpretability.

8 Ethical Statements

In this paper, we introduce InstructGEC which com-
bines GED knowledge with instructions and uses a
masked strategy in GEC. All data are from publicly
available sources, with no sensitive information in-
volved. GEC is widely studied and applied, but
unsupervised GEC has been underexplored. Our
work aims to advance unsupervised GEC methods
and broaden their potential applications.
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A Additional details of InstructGEC

In this section, we discuss the details of training
and inference for InstructGEC.

A.1 InstructGEC Implementation Details

In the detection stage, the sequence tagging model
is implemented with the BERT model base ver-
sion on HuggingFace. We use the dropout strat-
egy on all encoders with a probability of 0.1, and
the AdamW (Loshchilov and Hutter, 2018) opti-
mizer with a learning rate of 2e-5, a beta value of
(0.9,0.998), and a weight decay value of 0.01. The
linear learning rate schedule is adopted with 2000-
step warmup steps. We use a cross-entropy loss
function and an early-stop technique to select the
best model on the validation set for the sequence
tagging model.

In the correction stage, the Transformer-based
Seq2Seq model is based on the encoder-decoder
architecture. Chinese BART-large4 and Bart-base5

are used to initialize parameters of Chinese and
English Seq2Seq model respectively. The hyper-
parameter λ is set to 1 while the learning rate is
to 3e-5. It is not fair to compare our InstructGEC
with “BART+BIFI” since “BART+BIFI” uses more
synthetic data than InstructGEC. We also build
a model (i.e., “Ours+BIFI”) that uses the same
amount of synthetic data as “BART+BIFI”. Note
that “Ours+BIFI” adopts the masking strategy and
“BART+BIFI” does not. Our experiments were
trained and evaluated on a single 24GB Nvidia
RTX 3090 GPU.

A.2 Baseline Settings

For the Chinese baseline model, we follow the
setup of Zhang et al. (2022) for the GECToR and
BART model. We used the original Transformer
architecture as the baseline, which includes 6 en-
coders and 6 decoders. The specific settings are
shown in the Table 8.

For the English baseline model, we follow the
work of Yasunaga et al. (2021), using bart-base as
the baseline under the unsupervised setting. The
Transformer baseline consists of 6 encoders and 6
decoders. The specific settings are shown in the
Table 9.

4https://huggingface.co/fnlp/
bart-large-chinese/tree/v1.0

5https://huggingface.co/facebook/bart-base

Algorithm 1 Training Procedure of InstructGEC
Input: The synthetic dataset SD = (X,Y ), the
mask probability m%, the number of epochs
epoch
Output: The sequence tagging model, the
Transformer-based Seq2Seq model

1: Generate the gold instruction It for X using
the sequence matcher

2: Initialize Sequence Tagging Model (STM)
with BERT Base and train STM on (X, It)

3: Predict the instruction Ip for X by STM
4: Initialize the Transformer-based Seq2Seq

model with BART Model
5: for i = 1 to epoch do
6: X ′ ← ∅, I ′p ← ∅, I ′t ← ∅, P ′

p ← ∅,
P ′
t ← ∅

7: Convert (X, Ip) and (X, It) into (X ′
p, I

′
p)

and (X ′
t, , I

′
t) using the proposed masking

strategy respectively with the mask proba-
bility m%

8: Construct the prompt P ′
t and P ′

p respectively
by Equation 2 and 3

9: Train the Seq2Seq model on (P ′
p, P

′
t , Y ).

10: end for

A.3 Training and Inference

Although our method is associated with two stages
(i.e., GED and GEC), we can train our proposed
InstructGEC model by optimizing Equation 7. The
overview of the training procedure is summarized
in Algorithm 1. The GED stage is described in
lines 1 to 3. The gold instruction It for erroneous
sentences X is generated by the sequence matcher.
The parameters of the Sequence Tagging Model
(STM) are initialized by the BERT-based (Ken-
ton and Toutanova, 2019) model and trained on
(X, It). STM is used to output the predicted in-
struction Ip for X . The GEC stage is introduced in
the line 4 to 9. The parameters of the Transformer-
based Seq2Seq model are initialized with the BART
model. Specifically, the Transformer-based Chi-
nese Seq2Seq model is initialized with the Chi-
nese BART large version (Shao et al., 2021), while
the English Seq2Seq model is initialized with the
BART Base version (Lewis, 2019). Finally, the se-
quence tagging model and the Transformer-based
Seq2Seq model are returned after the training pro-
cedure.

https://huggingface.co/fnlp/bart-large-chinese/tree/v1.0
https://huggingface.co/fnlp/bart-large-chinese/tree/v1.0
https://huggingface.co/facebook/bart-base
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Settings Transformer Bart Gector

Pretrained model - Chinese-BART-Large Chinese-Struct-Bert-Large
Number of max epochs 30 10 10
Device 1 Nvidia RTX 3090 GPU

Optimizer
Adam (Kingma and Ba, 2014)

(β1 = 0.9, β2 = 0.98, ϵ = 1× 10−6)
Cold learning rate - - 1× 10−3

Learning rate 5× 10−4 1× 10−5 1× 10−5

Max Tokens 4096 2048 -
Warmup 2000 2000 -
Loss Function label smoothed cross entropy cross entropy
Dropout 0.1 0.1 -
Stopping criteria Label prediction accuracy on the dev set
Patience 3 3 3

Table 8: Chinese Baseline Settings.

Settings Transformer Bart

Pretrained model - BART-base
Number of max epochs 30 5
Device 1 Nvidia RTX 3090 GPU

Optimizer
Adam (Kingma and Ba, 2014)

(β1 = 0.9, β2 = 0.98, ϵ = 1× 10−6)
Learning rate 5× 10−4 5× 10−5

Max Tokens 8192 8192
Warmup 4000 4000
Loss Function label smoothed cross entropy (label − smoothing = 0.1)
Dropout 0.1 0.1
Stopping criteria Label prediction accuracy on the dev set
Patience 3 3

Table 9: English Baseline Settings.

B Case Study

B.1 Error type analysis

To demonstrate that our model has a better un-
derstanding of sentence context and semantics for
grammatical error correction, we compare the per-
formance of our model with baseline models across
different error types. The error type analysis is
conducted using the Errant6 tool for English and
the ChErrant (Zhang et al., 2022) tool for Chinese.
ChErrant and Errant can automatically assign er-
ror types based on source erroneous sentences and
target corrected sentences. The error type analysis
for English is shown in Table 12, and the error type
analysis for Chinese is listed in Table 11. F0.5 is
used as the evaluation metric for each error type.

B.2 Generation Comparison

Some examples are listed in Table 10. Our model
can generate the correct target sentence, whereas
the baseline Bart model cannot. In the first example,
even though the predicted instruction type is incor-
rect, the grammatical error correction model can

6https://github.com/chrisjbryant/errant

still correct the mistake based on the hint provided.
The possible reason is that the dynamic masking
strategy can enhance the model’s semantic under-
standing. As a result, "secret" is correctly modified
to "secrets," whereas the Bart baseline model fails
to make this correction. In the second example,
although the predicted instruction does not iden-
tify all the grammatical errors in the sentence, it
correctly indicates that "vertically" is needed to be
replaced with "immediately." In the third example,
despite the error in the instruction, the model still
correctly modify the sentence by changing "said"
to "say" and does not change other tokens. This
is due to the introduction of the dynamic mask-
ing strategy, which enhanced the model’s semantic
understanding.

https://github.com/chrisjbryant/errant
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Type Examples

Source Above all, life is more important than secret.

InstructGEC Correction Stage Input
<k> <k> <k> <k> <k> <k> <k> <k> <a> <k> [SEP]
ĠAbove Ġall , Ġlife Ġis Ġmore Ġimportant Ġthan Ġsecret Ġ.

InstructGEC Output Above all, life is more important than secrets.

Baseline Output Above all, life is more important than secret.

Source The notion of authority also extended ’vertically’ .

InstructGEC Correction Stage Input
<k> <k> <k> <k> <k> <k> <k> <k> <r> <r> <k> [SEP]
ĠThe Ġnotion Ġof Ġauthority Ġalso Ġextended ’ve rt ically ’ Ġ.

InstructGEC Output The notion of authority also extended immediately.

Baseline Output The notion of authority also extends vertically.

Source
Some said that the genetic risk that is found
in a person should be kept secret because it is considered as a
personal information which should be kept confidential .

InstructGEC Correction Stage Input

<k> <r> <k> <k> <k> <k> <k> <k> <k> <k> <k>
<k> <k> <k> <k> <k> <k> <k> <k> <k> <k> <d> <k>
<k> <k> <k> <k> <k> <r> <d>
[SEP] ĠSome Ġsaid Ġthat Ġthe Ġgenetic Ġrisk Ġthat Ġis
Ġfound Ġin Ġa Ġperson Ġshould Ġbe Ġkept Ġsecret Ġbecause
Ġit Ġis Ġconsidered Ġas Ġa Ġpersonal Ġinformation Ġwhich
Ġshould Ġbe Ġkept Ġconfidential Ġ.

InstructGEC Output
Some say that the genetic risk that is found in a
person should be kept secret because it is considered as a personal
information which should be kept confidential.

Baseline Output
Some said that the genetic risk that
is found in a person should be kept secret because it is considered as
a personal information which should be kept confidential.

Table 10: Examples Comparison. "Baseline" refers to the Bart model.

Error Type InstructGEC Bart

M 31.14 24.92
R 24.32 20.63
S 27.44 25.71
W 34.63 32.93

ADJ 27.19 16.9
ADV 21.95 17.01
AUX 37.07 37.01
CONJ 27.21 18.42
NOUN 24.05 15.76
NUM 31.58 25.18

OTHER 9.23 8.33
PREP 35.65 30.76
PRON 19.46 11.8

PUNCT 11.48 14.15
QUAN 13.89 6.94
SPELL 70.62 69.02
VERB 28.28 24.38

Table 11: The performance of our model and the base-
line for specific error types in Chinese.

Error Type InstructGEC Bart

M 49.32 46.86
R 54.30 51.58
U 49.70 41.68

ADJ 30.53 23.81
ADJ:FORM 62.50 75.00

ADV 35.03 32.70
CONJ 28.07 31.03

CONTR 45.45 62.50
DET 65.32 59.92

MORPH 60.44 56.72
NOUN 28.30 28.35

NOUN:INFL 63.83 63.83
NOUN:NUM 72.60 68.24
NOUN:POSS 59.26 59.44

ORTH 49.41 53.48
OTHER 25.26 24.86
PART 63.49 70.65
PREP 66.22 61.63
PRON 64.97 62.83

PUNCT 32.55 30.91
SPELL 59.09 51.84
VERB 33.52 31.47

VERB:FORM 73.81 73.11
VERB:INFL 97.22 86.21
VERB:SVA 85.85 86.26

VERB:TENSE 58.23 48.66
WO 18.35 20.62

Table 12: The performance of our model and the base-
line for specific error types in English.
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