@inproceedings{yang-liang-2025-multi,
title = "Multi-Graph Co-Training for Capturing User Intent in Session-based Recommendation",
author = "Yang, Zhe and
Liang, Tiantian",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.92/",
pages = "1377--1386",
abstract = "Session-based recommendation focuses on predicting the next item a user will interact with based on sequences of anonymous user sessions. A significant challenge in this field is data sparsity due to the typically short-term interactions. Most existing methods rely heavily on users' current interactions, overlooking the wealth of auxiliary information available. To address this, we propose a novel model, the Multi-Graph Co-Training model (MGCOT), which leverages not only the current session graph but also similar session graphs and a global item relation graph. This approach allows for a more comprehensive exploration of intrinsic relationships and better captures user intent from multiple views, enabling session representations to complement each other. Additionally, MGCOT employs multi-head attention mechanisms to effectively capture relevant session intent and uses contrastive learning to form accurate and robust session representations. Extensive experiments on three datasets demonstrate that MGCOT significantly enhances the performance of session-based recommendations, particularly on the Diginetica dataset, achieving improvements up to 2.00{\%} in P@20 and 10.70{\%} in MRR@20. Resources have been made publicly available in our GitHub repository https://github.com/liang-tian-tian/MGCOT."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-liang-2025-multi">
<titleInfo>
<title>Multi-Graph Co-Training for Capturing User Intent in Session-based Recommendation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhe</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tiantian</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Session-based recommendation focuses on predicting the next item a user will interact with based on sequences of anonymous user sessions. A significant challenge in this field is data sparsity due to the typically short-term interactions. Most existing methods rely heavily on users’ current interactions, overlooking the wealth of auxiliary information available. To address this, we propose a novel model, the Multi-Graph Co-Training model (MGCOT), which leverages not only the current session graph but also similar session graphs and a global item relation graph. This approach allows for a more comprehensive exploration of intrinsic relationships and better captures user intent from multiple views, enabling session representations to complement each other. Additionally, MGCOT employs multi-head attention mechanisms to effectively capture relevant session intent and uses contrastive learning to form accurate and robust session representations. Extensive experiments on three datasets demonstrate that MGCOT significantly enhances the performance of session-based recommendations, particularly on the Diginetica dataset, achieving improvements up to 2.00% in P@20 and 10.70% in MRR@20. Resources have been made publicly available in our GitHub repository https://github.com/liang-tian-tian/MGCOT.</abstract>
<identifier type="citekey">yang-liang-2025-multi</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.92/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>1377</start>
<end>1386</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Graph Co-Training for Capturing User Intent in Session-based Recommendation
%A Yang, Zhe
%A Liang, Tiantian
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F yang-liang-2025-multi
%X Session-based recommendation focuses on predicting the next item a user will interact with based on sequences of anonymous user sessions. A significant challenge in this field is data sparsity due to the typically short-term interactions. Most existing methods rely heavily on users’ current interactions, overlooking the wealth of auxiliary information available. To address this, we propose a novel model, the Multi-Graph Co-Training model (MGCOT), which leverages not only the current session graph but also similar session graphs and a global item relation graph. This approach allows for a more comprehensive exploration of intrinsic relationships and better captures user intent from multiple views, enabling session representations to complement each other. Additionally, MGCOT employs multi-head attention mechanisms to effectively capture relevant session intent and uses contrastive learning to form accurate and robust session representations. Extensive experiments on three datasets demonstrate that MGCOT significantly enhances the performance of session-based recommendations, particularly on the Diginetica dataset, achieving improvements up to 2.00% in P@20 and 10.70% in MRR@20. Resources have been made publicly available in our GitHub repository https://github.com/liang-tian-tian/MGCOT.
%U https://aclanthology.org/2025.coling-main.92/
%P 1377-1386
Markdown (Informal)
[Multi-Graph Co-Training for Capturing User Intent in Session-based Recommendation](https://aclanthology.org/2025.coling-main.92/) (Yang & Liang, COLING 2025)
ACL