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Abstract

Session-based recommendation focuses on pre-
dicting the next item a user will interact with
based on sequences of anonymous user ses-
sions. A significant challenge in this field is
data sparsity due to the typically short-term in-
teractions. Most existing methods rely heavily
on users’ current interactions, overlooking the
wealth of auxiliary information available. To
address this, we propose a novel model, the
Multi-Graph Co-Training model (MGCOT),
which leverages not only the current session
graph but also similar session graphs and a
global item relation graph. This approach al-
lows for a more comprehensive exploration
of intrinsic relationships and better captures
user intent from multiple views, enabling ses-
sion representations to complement each other.
Additionally, MGCOT employs multi-head at-
tention mechanisms to effectively capture rele-
vant session intent and uses contrastive learn-
ing to form accurate and robust session rep-
resentations. Extensive experiments on three
datasets demonstrate that MGCOT significantly
enhances the performance of session-based rec-
ommendations, particularly on the Diginetica
dataset, achieving improvements of up to 2.
00% in P @ 20 and 10. 70% in MRR @ 20.
Resources have been made publicly available in
our GitHub repository https://github.com/
liang-tian-tian/MGCOT.

1 Introduction

Session-based recommendation aims to discover
user intent by learning from the sequence of items
in the current session, ultimately recommending
items of interest to the user. A session typically
refers to a sequence of user interactions with multi-
ple items within a period of time, such as consecu-
tively clicking on several products on a shopping
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platform. Session-based recommendation is partic-
ularly effective in attracting and retaining anony-
mous users, especially those who prioritize privacy
or are first-time users of the platform. This ap-
proach is crucial for e-commerce platforms and
streaming services, such as Amazon or YouTube.
However, the greatest challenge in session-based
recommendation is severe data sparsity, as it pri-
marily focuses on the user actions within the cur-
rent session and fails to adequately capture the in-
trinsic relationships between items and the similar
intents across different sessions.

Early session-based recommendation models
leverage the Markov chain assumption (Rendle
et al., 2010) to capture sequential patterns. With
advances in neural networks, Recurrent Neural Net-
works (RNNs) (Hidasi et al., 2015; Li et al., 2017;
Ren et al., 2019) are employed to extract item
transition relationships using recurrent units or at-
tention layers. Graph Neural Networks (GNNs)
(Wu et al., 2019) convert session sequences into
graph structures to capture higher-order item rela-
tionships. While GNNs outperform in capturing
pairwise item transitions, they may have weaker
long-term dependencies. Graph Attention Net-
works (GATs) (Wang et al., 2019, 2020) address
this issue by incorporating attention mechanisms,
but their high memory consumption limits their ap-
plication to current session data, often neglecting
global item correlations. Without attention mecha-
nisms, recommendation precision may decline.

Self-Supervised Learning (SSL) (Liu et al.,
2021; Xia et al., 2021b,a) provides effective solu-
tions for data sparsity by constructing both global
and local graphs to enhance session representa-
tions. However, these methods often fail to capture
similar intents across different sessions, leading to
incomplete information modeling.

More recently, MiasRec(Choi et al., 2024) gen-
erates multiple session representations centered
around each item and dynamically selects the most
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relevant ones to capture user intent. This approach
performs well in longer-session contexts, but its ef-
fectiveness diminishes in shorter-session scenarios.

To address these issues, we propose a multi-
graph co-training model with various attention
mechanisms that captures user intent from different
views and filters out irrelevant items. Our model
includes tree views to obtain the session represen-
tation: the current view, which reflects item tran-
sitions within the current session; the local view,
which captures relationships between similar ses-
sions; and the global view, which encompasses
item relationships across all sessions. Each view in-
cludes an encoding layer, implemented with either
Gated Recurrent Unit (GRUs) or GNNs, along with
attention mechanisms to generate session embed-
dings. Finally, contrastive learning is applied be-
tween the combination of current and local graphs
and the global graph to capture more accurate ses-
sion representations.

In summary, the main contributions of this paper
are as follows:

• We introduce the construction of a frequency-
based current item graph and employ shortest
path algorithms in the global graph to further
enhance the model’s capacity to comprehen-
sively transform session data into graph repre-
sentations.

• We introduce various attention mechanisms to
effectively capture session information. These
mechanisms allow the model to extract rele-
vant data from diverse aspects of the session
and emphasize critical information, thereby
aligning more closely with the user’s intent.

• We propose a co-training approach between
the combination of current and local graphs
and the global graph using contrastive learn-
ing, enabling a more comprehensive and com-
plementary understanding of user intent from
different views.

• We conduct extensive experiments on three
real-world datasets, demonstrating that MG-
COT outperforms SOTA models. Specifically,
MGCOT achieves a 5.02% increase in M@10
on Tmall, a 2.17% increase on RetailRocket,
and a 10.53% increase on Diginetica.

2 Related Work

In this section, we introduce the related work of
our model MGCOT, which includes GNN-based

methods and self-supervised learning.

2.1 GNN-based Methods

GNNs (Wu et al., 2020) have been widely used in
capturing complex transition relationships and have
demonstrated substantial effectiveness. Sessions
can be well represented as graphs, and various stud-
ies have explored how GNNs can enhance session
recommendation accuracy. The SR-GNN model
(Wu et al., 2019) is the first to utilize the Gated
Graph Neural Network (GGNN) for learning item
embeddings by propagating information on the ses-
sion graph. Qiu et al. (Qiu et al., 2019) propose the
FGNN model, which leverages multi-head atten-
tion to aggregate information from an item’s neigh-
borhood. GC-SAN (Xu et al., 2019) is an evolu-
tion of the SR-GNN, which applies a self-attention
mechanism to model item co-occurrences. GCE-
GNN (Wang et al., 2020) aggregates item informa-
tion from both item-level and session-level through
graph convolution and self-attention mechanism.
MGIR (Han et al., 2022) models not only sequen-
tial and global co-occurrence relations but also in-
compatible relations within a graph. KMVG(Chen
et al., 2023) utilizes multi-view graph neural net-
works and a knowledge graph to more accurately
capture user intent. MSGAT (Qiao et al., 2023)
introduces a bi-channel model with multiple sparse
graph attention networks that takes into account
the effects of session intent and noise items. In
the GNN-based session recommendation models,
multi-graph models have shown significant advan-
tages over single-graph models. This has inspired
using a multi-graph co-training model with atten-
tion mechanisms to capture session intent more
comprehensively.

2.2 Self-supervised Learning

In recent years, SSL has proven to be effective for
recommendation. S3-Rec (Zhou et al., 2020) uses
the mutual information maximization principle to
learn the underlying relationships among items,
attributes, and sequences. S2-DHCN (Xia et al.,
2021b) employs a contrastive learning mechanism
to enhance hyper-graph modelling through a dif-
ferent line of GCN models. COTREC (Xia et al.,
2021a) proposes constructing session data into two
views to capture the internal and external connec-
tivity of sessions. CGL (Pan et al., 2022) integrates
SSL with supervised learning to explore correla-
tions across different sessions, thereby improving
item representations. HGCMA(Chen et al., 2024)
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employs random masking and contrastive learning
to learn discriminative node representations in het-
erogeneous graphs. While SSL has demonstrated
great performance in capturing user intent from
various views, these methods overlook the poten-
tial benefits of combining similar session intents to
achieve a more comprehensive and accurate under-
standing.

3 Methods

The model learns session representations from
three views: current view, local view, and global
view, as illustrated in Figure 1. In the current view,
we adopt the SR-GNN approach(Wu et al., 2019),
utilizing the Gated Graph Neural Network (GGNN)
as the initial encoder. This method combines the
strengths of Graph Neural Networks (GNNs) and
Gated Recurrent Units (GRUs), enabling the model
to effectively capture item relationships within a
session and extract the session’s intent. In the local
view, the model first generates session represen-
tations for the current batch. It then refines the
session representation from the current view by in-
tegrating it with representations from the top-k sim-
ilar sessions identified within the local context. The
enhanced session representation is subsequently uti-
lized for the primary recommendation task. In the
global view, the model generates the current ses-
sion representation by extracting item information
from all sessions. We also incorporate various at-
tention mechanisms to extract crucial information
in these views.

To further improve the model’s ability to cap-
ture item relationships, a contrastive learning ap-
proach is employed. This approach compares the
enhanced session representation, which integrates
current session representation with similar session
information from the local view, with the session
representation generated from the global view. The
method of enhancing the current session represen-
tation by integrating similar session information in
the local view is inspired by (Qiao et al., 2023).

In this section, we focus on introducing our key
ideas: graph construction from different views, var-
ious attention mechanisms, and contrastive learn-
ing.

3.1 Problem Definition

We represent the set of sessions in the dataset as
S = {s1, s2, . . . , sM}, where M denotes the total
number of sessions. The set of all items is defined

as V = {v1, v2, . . . , vN}, where N is the total
number of items in the dataset. Each session st is
generated by an anonymous user interacting with
a set of items. The session at time t is denoted
as st = {v1, v2, . . . , vL}, where L is the length of
the current session. The objective of session-based
recommendation is to capture the user intent based
on the first L consecutive interactions and predict
the L+1-th potential interaction item.

3.2 Graph Construction from Different Views

To fully leverage the available information, we
explore relationships between items and sessions
from three views: the current view, global view,
and local view. These views focus on item relation-
ships within the current session, across all sessions,
and among batch sessions. To capture the intrinsic
correlations, we first convert sessions into graphs.
We propose the current frequency item graph, the
global shortest-path item graph, and introduce the
local session graph.

3.2.1 Current Frequency Item Graph
In session-based recommendation, the order in
which users click on items reflects changes
in their interests. Sequence information helps
the model better understand the current con-
text of the user, thereby improving recommen-
dation accuracy. However, in traditional di-
rected graph construction, different sessions com-
posed of the same items might generate identi-
cal graph structures. For example, session se-
quences s1 = {v2, v4, v5, v5, v4, v4} and s2 =
{v2, v4, v4, v5, v5, v4} may result in indistinguish-
able graphs. This can lead to a loss of critical
sequential information, negatively impacting rec-
ommendation results.

To preserve as much information from the orig-
inal sessions as possible, we propose a method
for constructing directed graphs based on the fre-
quency of item occurrences within the current ses-
sion. In this method, the in-degree frequency of
an item is used as the edge weight in the directed
graph structure. For instance, in the session se-
quence s3 = {v2, v4, v5, v8, v4}, the edge from v2
to v4 has a weight of 1, while the edge from v8
to v4 has a weight of 2, as shown in Figure 2. By
introducing frequency-based weights, this method
effectively reduces information loss during the ses-
sion graph construction process, ensuring that ses-
sions like s1 and s2, which differ in edge weights,
generate distinct graph structures. This approach
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Figure 1: An overview of the proposed MGCOT framework.
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Figure 3: Global Shortest-path Item Graph

better preserves and allows the model to learn the
comprehensive information within sessions.

3.2.2 Global Shortest-path Item Graph
Most existing models based on GNNs perform
poorly in capturing long-range dependencies be-
cause GNNs only aggregate information from
neighboring nodes in each layer. By stacking mul-
tiple layers of GNNs, the model can gradually ag-
gregate information from more distant neighbors,
but too many layers may lead to overfitting.

To address the issue of capturing relationships
between distant nodes, we construct the global item
graph (as shown in Figure 3a) and then use Dijk-
stra’s algorithm to compute the shortest path be-
tween pairs of nodes (as shown in Figure 3b). First,

we transform the weight of each edge to its inverse
weight by subtracting the edge weight from the
maximum weight of all edges to obtain the cor-
responding cost value cij . Then, for each node
in the global item graph, we calculate the short-
est path from that node to all other nodes based
on the minimum total cost of all edges along the
path. Finally, the calculated cost values are inverted
back into weights, allowing the global graph based
on the shortest paths to effectively capture the re-
lationships between distant nodes. In the global
graph, the minimum cost matrix Ĉ and the final
edge weight ŵij are defined as follows:

dij = min(dij , dik + ckj) (1)

wij = max(Ĉ + 1)− ĉij (2)

Here, dij represents the current shortest distance
from the start node i to node j, and dik + ckj repre-
sents the total cost of the path from the start node
i to node j via node k. The Equation 1 indicates
that if the cost of reaching node j through node
k is less than the currently known shortest path,
the shortest path value is updated accordingly. In
Equation 2, Ĉ represents the matrix of minimum
costs for all edges, and ĉij denotes the minimum
cost from node i to node j.

3.2.3 Local Session Graph
When constructing a local session graph, we fol-
low the method described in (Qiao et al., 2023).
Each session is treated as a node in the graph. The
edges between nodes are determined by calculating
the Jaccard similarity of the items shared between
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sessions. A higher Jaccard similarity indicates a
greater overlap of items between the two sessions,
resulting in a higher edge weight. This indicates
the intent of the two sessions is more similar.

3.3 Attention Mechanisms
The attention mechanism can effectively capture
important information related to the intent of the
session. In this paper, we focus on two main types
of attention mechanisms: the multi-head attention
mechanism and the target attention mechanism.
The multi-head attention mechanism is used to
comprehensively capture significant information
within the current session, while the target atten-
tion mechanism extracts information from a global
view and learns information related to the target
item by incorporating the context from the current
view. Additionally, we incorporate the cross atten-
tion mechanism as described in (Qiao et al., 2023).

3.3.1 Multi-head Attention Mechanism
The multi-head attention mechanism uses multiple
independent attention heads to compute attention
scores in different subspaces simultaneously. This
approach allows the model to focus on various as-
pects of the input sequence within the same layer.
The self-attention mechanism is inherently global,
enabling each position’s output vector to interact
with every other position in the input sequence, ef-
fectively capturing long-range dependencies. In the
current view, the multi-head self-attention mecha-
nism effectively captures relevant information in
the session.

The multi-head self-attention mechanism mainly
consists of three parts. First, a feedforward neural
network is employed to enhance the representation
of the query vector Q, making it more flexible and
general, thus distinguishing it from the key vector
K and the value vector V . Here, Ht denotes the
initial embedding of the session in the current view.

Q̂ = f(HtWQ + bQ) (3)

where WQ ∈ R2d×2d is the weight matrix, bQ ∈
R2d is the bias vector, and f(·) denotes the ReLU
activation function.

Second, a sparse transformation is applied to
generate attention weights, ensuring that the new
item embeddings are more relevant to the target
item embeddings. The attention weights are calcu-
lated as follows:

αt = σ(Wαtht + bαt) + 1 (4)

where Wαt ∈ R1×dk is the weight matrix, bαt ∈
Rdk is the bias vector, dk is the dimension for each
attention head, and σ denotes the sigmoid activa-
tion function. The vector ht is a special item index
added to the end of the input sequence to indicate
the item to be predicted. This special item embed-
ding helps the model capture the overall session
pattern rather than focusing solely on individual
item characteristics.

Finally, the score of the multi-head attention
mechanism is computed as follows:

Hk
cur = αt-entmax(

Q̂KT

√
dk

)V (5)

Hcur = Concat(H1
cur, H

2
cur, ...,H

Hn
cur) (6)

where Q̂ is the mapped representation of the current
session, K and V are the key and value representa-
tions of the current session, dk is the dimension of
each attention head, Hk

cur is the output of the k-th
attention head, and entmax is a sparse attention
mechanism. Hn represents the number of attention
heads.

Although the multi-head attention mechanism
learns new representations for all items, it is pri-
marily based on linear projections. Subsequently,
a feedforward neural network is applied to learn
more nonlinear features:

Ĥcur = Dropout(W2(f(W1Hcur + b1)) + b2) +Hcur (7)

where W1,W2 ∈ R2d×2d are weight matrices,
b1, b2 ∈ R2d are bias vectors, and f(·) repre-
sents the ReLU activation function. Ĥcur =
{h1′ , h2′ , ..., ht′} represents the output processed
by the multi-head self-attention mechanism, where
ht′ is the learned target item embedding. The
dropout layer is included to prevent overfitting,
while residual connections and layer normalization
are applied to mitigate instability during training.

3.3.2 Target Attention Mechanism
The target attention mechanism aims to learn the
representation of the entire session based on the
learned target embeddings and initial inputs. It
adjusts weights to reduce noise in the current initial
session representation Hg from the global view.
First, the target attention weights are computed as
follows:

αs = σ(Wαsht′ + bαs) + 1 (8)

where Wαs ∈ R1×2d is the weight matrix, bαs ∈
R2d is the bias vector, σ denotes the sigmoid acti-
vation function, and ht′ is the representation of the
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target item obtained through the multi-head atten-
tion mechanism in the current view. The attention
weight ws is calculated as follows:

ws = αs-entmax(W0f(W1Hg +W2ht′ + b0)) (9)

where W1,W2 ∈ R2d×2d are weight matrices,
W0 ∈ R1×2d is a weight matrix, b0 ∈ R2d is a
bias vector, f(·) is the ReLU activation function.
Finally, the final session representation Ĥg in the
global view is computed as:

Ĥg =
n∑

k=0

wsh
k
g (10)

where hkg ∈ Hg denotes the representation of each
item in initial session embeddings.

3.4 Contrastive Learning

The core idea of contrastive learning is to build
better feature representations by learning the simi-
larities between similar samples and the differences
between dissimilar samples. Specifically, for each
session, we use the session representation from the
current and local views, denoted as Ĥb

r , which in-
tegrates information from other similar sessions
within the batch. This representation is then con-
trasted with the session representation obtained
from the global view, denoted as Ĥb

g . During train-
ing, we treat the representations of the same ses-
sion from different views within the same batch
as positive samples, aiming to pull these positive
samples closer together. Conversely, we treat the
representations of other sessions within the same
batch as negative samples, aiming to push them
further away from the current session representa-
tion. The similarity scores for positive and negative
samples are calculated as follows:

Simp = Ĥb
r · Ĥb

g (11)

Simn = Ĥb
r · Ĥb

gshuffled
(12)

where Ĥb
gshuffled

represents the global view represen-
tations of other sessions in the batch, excluding
the current session and randomly shuffled. The
contrastive learning loss is computed as:

Lcontrastive = −log(σ(
Simp

τ ))− log(σ(−Simn
τ )) (13)

where τ is a temperature parameter used to scale
the similarity scores to enhance the effectiveness of

Table 1: Dataset Statistics

Dataset Train Test Items Avg.Len.
Tmall 351,268 25,898 40,728 6.69
RetailRocket 433,643 15,132 36,968 5.43
Diginetica 719,470 60,858 43,097 5.12

contrastive learning. The main recommendation en-
coder uses the cross-entropy loss function, defined
as:

Lmain = −
∑N

i=1 yilog(ŷi) + (1− yi)log(1− ŷi) (14)

where ŷi denotes the probability of item vi being
the next click in the current session, and yi is a
binary label that equals 1 if item vi is the ground
truth next click and 0 otherwise. The total loss
function is defined as:

L = Lmain + βLcontrastive (15)

where β is a hyperparameter used to control the
extent of contrastive learning.

4 Experiments

4.1 Datasets
We evaluate our model using three real-world
benchmark datasets: Tmall, RetailRocket and Digi-
netica. The details of these datasets are presented
in Table 1. The Tmall dataset contains user shop-
ping logs and is provided by the IJCAI-15 com-
petition. The RetailRocket dataset, released by
an e-commerce company on Kaggle, includes six
months of user browsing activities. The Diginetica
dataset consists of typical transaction data from the
CIKM Cup 2016.

To ensure data quality and relevance, we pre-
process the data as follows(Wu et al., 2019; Wang
et al., 2020; Xia et al., 2021a): We exclude sessions
with a length of 1 and remove items that appear
fewer than 5 times. Datasets are split with the most
recent data as the test set and the rest as the train-
ing set. We also enhance the data by segmenting
each session and generating labels, where each se-
quence is paired with the next item as the label.
This augmentation improves the model’s ability to
learn sequential patterns.

4.2 Baselines
To ensure a fair comparison, we select represen-
tative models from various categories, including
traditional methods such as FPMC (Rendle et al.,
2010), RNN-based models like GRU4Rec (Hidasi
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et al., 2015) and NARM (Li et al., 2017), GNN-
based models such as SR-GNN (Wu et al., 2019),
GCE-GNN (Wang et al., 2020), HICN(Sun et al.,
2024), Mssen(Zheng et al., 2024) and MGIR (Han
et al., 2022), attention-based models like STAMP
(Liu et al., 2018), MTAW (Ouyang et al., 2023)
and MSGAT (Qiao et al., 2023), and contrastive
learning methods such as S2-DHCN (Xia et al.,
2021b), to compare with the MGCOT model.

4.3 Experiment Setting
Following previous work (Qiao et al., 2023), we
set the batch size to 512, the embedding size to
100, and the L2 regularization to 10−5. We use
the Adam optimizer with a learning rate of 0.001,
which decays by a factor of 0.1 every three epochs.
Our model uses a single layer of GCN. The number
of similar sessions selected is 6 for Tmall, 3 for
Diginetica, and 2 for RetailRocket. The scale factor
β for the contrastive learning loss is set to 0.05 for
Tmall, and 5 for both Diginetica and RetailRocket.
The number of attention heads Hn in the multi-
head attention mechanism is set to 1 for Diginetica,
and 2 for Tmall and RetailRocket.

4.4 Experiment Results
Table 2 presents the experimental results of the MG-
COT model compared to baseline models across
three datasets. The best results are highlighted in
bold, and the second-best results are underlined.

Experimental results show that traditional ma-
chine learning methods like FPMC underperform
compared to deep learning approaches. FPMC,
which combines matrix factorization and Markov
chains, fails to capture long-term dependencies.
Among RNN-based models, NARM outperforms
GRU4Rec by using attention mechanisms to iden-
tify key relationships within sessions. STAMP re-
lies solely on self-attention focused on the last item,
replacing RNN encoders with attention layers to
better capture short-term interests. MTAW, which
models user interests dynamically with an attention
mechanism and an adaptive weight loss function,
enhances recommendation personalization. Over-
all, these models demonstrate the effectiveness of
attention mechanisms in session-based recommen-
dations.

Recently, GNN-based models have surpassed
RNNs by uncovering spatial relationships between
items. SR-GNN employs gated GNNs and a self-
attention mechanism to capture session embed-
dings, while GCE-GNN constructs global and lo-

cal graphs for cross-session learning. S2-DHCN
converts sessions into hypergraphs and line graphs
using self-supervised learning, inspiring the appli-
cation of contrastive learning in multi-graph mod-
els. MGIR improves session representations by
modeling global item relationships, including neg-
ative, co-occurrence, and sequential links. HICN
boosts performance by leveraging sequential hyper-
edges and inter-hyperedge modules. Mssen uses
multi-collaborative self-supervised learning in hy-
pergraph neural networks to capture high-order re-
lationships and address data sparsity. MSGAT, with
dual-channel GNNs and attention mechanisms, ex-
cels at modeling both intra- and inter-session infor-
mation, highlighting the advantages of GNNs with
integrated attention.

Compared to the best baseline models, our MG-
COT model shows significant performance im-
provements. By leveraging graph neural networks,
attention mechanisms, and contrastive learning,
MGCOT effectively captures latent relationships
between sessions and items from current, local, and
global views.

4.5 Ablation Experiments
To investigate the contribution of each module in
MGCOT, we conduct ablation experiments with the
following variants: (1) -NeighborSessions, where
the fusion of similar session information from the
local view is removed; (2) -MultiAttention, where
the multi-head attention mechanism on session em-
beddings from the current view is removed; and (3)
-ContrastiveLearning, where contrastive learning
between the session embedding generated from the
global view and the main session embedding fused
from the local view and current view is removed.

As shown in Table 3, removing the fusion of
similar session information led to a significant drop
in evaluation metrics, indicating that similar ses-
sions are as important as similar items in capturing
user intent. Furthermore, both the multi-head atten-
tion mechanism and contrastive learning improve
model performance, demonstrating the importance
of assigning different weights to items when captur-
ing session intent and the benefit of understanding
session intent from multiple views.

4.6 Hyperparameter Experiments
In this hyperparameter experiment, we analyze the
sensitivity of the MGCOT model to different pa-
rameter settings across datasets.

Figure 4 shows that we select 2 attention heads
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Table 2: Performances of all comparison methods on three datasets

Dataset Tmall RetailRocket Diginetica
Method P@10 M@10 P@20 M@20 P@10 M@10 P@20 M@20 P@10 M@10 P@20 M@20
FPMC(WWW’10) 13.10 7.12 16.06 7.32 25.99 13.38 32.37 13.82 15.43 6.20 26.53 6.95
GRU4Rec(ICLR’16) 9.47 5.78 10.93 5.89 38.35 23.27 44.01 23.67 17.93 7.33 29.45 8.33
NARM(CIKM’17) 19.17 10.42 23.30 10.70 42.07 24.88 50.22 24.59 35.44 15.13 49.70 16.17
STAMP(SIGKDD’18) 22.63 13.12 26.47 13.36 42.95 24.61 50.96 25.17 33.98 14.26 45.64 14.32
SR-GNN(AAAI’19) 23.41 13.45 27.57 13.72 43.21 26.07 50.32 26.57 36.86 15.52 50.73 17.59
GCE-GNN(SIGIR’20) 28.01 15.08 33.42 15.42 48.22 28.36 55.78 28.72 41.16 18.15 54.22 19.04
S2-DHCN(AAAI’21) 26.22 14.60 31.42 15.05 46.15 26.85 53.66 27.30 39.87 17.53 53.18 18.44
MGIR(SIGIR’22) 30.71 17.03 36.31 17.42 47.90 28.68 55.35 29.20 40.63 17.86 53.73 18.77
MTAW(SIGIR’23) 31.67 18.90 37.17 19.14 48.41 29.96 56.39 30.52 - - - -
MSGAT(CIKM’23) 39.21 20.92 45.43 21.35 57.00 32.73 63.68 33.21 57.09 26.30 66.97 26.91
HICN(SDM’24) 31.31 18.90 35.48 19.17 49.74 29.81 57.85 30.37 - - - -
Mssen(LREC-COLING’24) 33.53 18.98 38.51 19.60 - - - - 42.33 19.88 55.17 19.64
MGCOT 41.28 21.97 47.80 22.40 57.57 33.44 63.78 33.89 58.04 29.07 68.31 29.79
Improv.(%) 5.28 5.02 5.22 4.92 1.00 2.17 0.16 2.05 1.66 10.53 2.00 10.70

Table 3: Ablation study of components in MGCOT.

Dataset Tmall RetailRocket Diginetica
Method P@20 M@20 P@20 M@20 P@20 M@20
-NeighborSessions 28.69 14.73 54.06 29.63 52.07 18.50
-MultiAttention 46.85 21.52 62.89 33.25 67.87 29.47
-ContrastiveLearning 47.60 21.87 63.17 33.81 67.84 29.31
MGCOT 47.80 22.40 63.78 33.89 68.31 29.79
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Figure 4: The number of attention heads h

for Tmall and RetailRocket, and 1 for Diginetica.
In longer sessions, such as those in Tmall, users
may experience interest drift, with multiple prefer-
ence shifts emerging throughout the session. Multi-
ple attention heads are more effective in capturing
these varying interests. In shorter sessions, like
those in Diginetica, a single attention head is suffi-
cient to capture the main behavioral pattern.

In Figure 5, the contrastive loss weight is set to
0.05 for Tmall and 5 for RetailRocket and Digi-
netica. In the longer sessions of Tmall, users may
frequently compare or select similar items, atten-
tion mechanisms and similar session fusion more
effectively capture user intent, making a lower con-
trastive loss weight beneficial. In the shorter ses-
sions of RetailRocket and Diginetica, higher con-
trastive loss weights help generate more compre-
hensive session representations by capturing intent
from different views.
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Figure 5: The weight of contrastive loss β
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Figure 6: Multi-head attention visualization

4.7 Further Experiments

In this section, we analyze the model’s attention
distribution and results for short and long sessions.

As shown in Figure 6, the importance of items
is represented by the depth of color, with darker
colors indicating higher importance. Based solely
on the existing session sequence, it is difficult to
directly determine the relationship between session
items and the target item. However, through the vi-
sualization of the multi-head attention mechanism,
we observe that the attention weight distribution
varies across different sessions, reflecting the vary-
ing contributions of items in capturing user intent.
When the multi-head attention mechanism is re-
moved, the evaluation metrics on the RetailRocket
dataset show a significant decline, further high-
lighting the critical role of attention in capturing
user intent. Therefore, beyond emphasizing the last
item in the session, it is essential to dynamically
learn and evaluate the influence of items at different
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Figure 7: P@20 results on short and long sessions.

positions on session intent.
We divide the Tmall and RetailRocket datasets

into short and long sessions, with short sessions
having 5 or fewer items and long sessions exceed-
ing 5. We compare MGCOT with several represen-
tative baseline models, including SR-GNN, GCE-
GNN, DHCN, and MSGAT. As shown in Figure
7, MGCOT consistently outperforms these base-
lines across all session lengths, demonstrating its
effectiveness in real-world session-based recom-
mendation tasks.

5 Conclusion

This paper introduces the MGCOT model, which
builds multiple graphs to capture the session intent
from current, local, and global views. By integrat-
ing attention mechanisms, MGCOT effectively cap-
tures important information, while incorporating
contrastive learning to generate more comprehen-
sive and complementary session representations.
Extensive experiments on three datasets demon-
strate that our MGCOT model outperforms cur-
rent SOTA models, validating its effectiveness in
session-based recommendation tasks.

6 Limitation

The MGCOT model has several limitations. First,
the construction of multiple graphs increases the
storage space requirements. Second, the complex-
ity of building self-supervised contrastive learning
models leads to limited transferability and bulky
model structures.
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