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Abstract

The sense-aware contextualised word embed-
dings (SCWEs) encode semantic changes of
words within the contextualised word embed-
ding (CWE) spaces. Despite the superior per-
formance of SCWEs in contextual/temporal
semantic change detection (SCD) benchmarks,
it remains unclear as to how the meaning
changes are encoded in the embedding space.
To study this, we compare pre-trained CWEs
and their fine-tuned versions on contextual
and temporal semantic change benchmarks un-
der Principal Component Analysis (PCA) and
Independent Component Analysis (ICA) trans-
formations. Our experimental results reveal
(a) although there exist a smaller number of
axes that are specific to semantic changes of
words in the pre-trained CWE space, this infor-
mation gets distributed across all dimensions
when fine-tuned, and (b) in contrast to prior
work studying the geometry of CWEs, we find
that PCA to better represent semantic changes
than ICA within the top 10% of axes. These
findings encourage the development of more
efficient SCD methods with a small number of
SCD-aware dimensions.1

1 Introduction

Meaning of a word is a dynamic phenomenon that
is both contextual (i.e. depends on the context in
which the word is used) (Pilehvar and Camacho-
Collados, 2019) as well as temporal (i.e. the mean-
ing of a word can change over time) (Tahmasebi
et al., 2021). A large body of methods have been
proposed to represent the meaning of a word in a
given context (Devlin et al., 2019; Conneau et al.,
2020; Zhou and Bollegala, 2021; Rachinskiy and
Arefyev, 2021; Periti et al., 2024), or within a given
time period (Hamilton et al., 2016; Rosenfeld and
Erk, 2018; Aida et al., 2021; Rosin et al., 2022;

1Source code is available at https://github.com/
LivNLP/svp-dims .

Aida and Bollegala, 2023b; Tang et al., 2023; Fe-
dorova et al., 2024). In particular, SCWEs such
as XL-LEXEME (Cassotti et al., 2023) obtained
by fine-tuning masked language models (MLMs)
such as XLM-RoBERTa (Conneau et al., 2020) on
Word-in-Context (WiC) (Pilehvar and Camacho-
Collados, 2019) have reported superior perfor-
mance in SCD benchmarks (Cassotti et al., 2023;
Aida and Bollegala, 2023a; Periti and Tahmasebi,
2024; Aida and Bollegala, 2024), implying that
semantic changes can be accurately inferred from
SCWEs.

Despite the empirical success, to the best of
our knowledge, no prior work has investigated
whether there are dedicated dimensions in the
XL-LEXEME embedding space specified for the
semantic changes of the words it represents. In
this paper, we study this problem from two com-
plementary directions. First, in §3, we investigate
the embedding dimensions specific to the contex-
tual semantic changes of words using WiC bench-
marks (Pilehvar and Camacho-Collados, 2019; Ra-
ganato et al., 2020; Martelli et al., 2021; Liu et al.,
2021) as the evaluation task. Second, in §4, we in-
vestigate the embedding dimensions specific to the
temporal semantic changes of words on SemEval-
2020 Task 1 (Schlechtweg et al., 2020) bench-
mark. In each setting, we compare pre-trained
CWEs and the SCWEs obtained by fine-tuning on
WiC using PCA and ICA, which have been used in
prior work investigating dimensions in CWEs (Ya-
magiwa et al., 2023). Our investigations reveal
several interesting novel insights that will be use-
ful when developing accurate and efficient low-
dimensional SCD methods as follows.

• PCA discovers contextual/temporal semantic
change-aware axes within the top 10% of the
transformed axes better than ICA.

• In pre-trained embeddings, we identify a small
number of axes that are specified for contex-

https://github.com/LivNLP/svp-dims
https://github.com/LivNLP/svp-dims
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Type of Semantic Change Instances Label

Contextual

. . . two points on a plane lies . . . . . . the plane graph as the X-Y
. . . True (Same meanings)

He lived on a worldly plane. . . . the plane graph as the X-Y
. . . False (Different meanings)

Temporal

• . . . this is a horizontal plane,
and . . .

• . . . because it is parallel with
the ground plane . . .

• . . . this is a horizontal plane,
. . .

• . . . as the plane settled down
at . . .

• . . . 558 combat planes and
4,000 tanks.

• The President’s plane landed
at . . .

True (Semantically Changed)

Table 1: Examples of contextual/temporal semantic change tasks. In contextual semantic change tasks, models
predict the meanings of a target word (e.g. plane) in each pair of sentences in the same time period. On the other
hand, in temporal semantic change tasks, models predict the meaning of a target word (e.g. plane) from sets of
sentences across different time periods.

tual/temporal semantic changes, while such axes
are uniformly distributed in the fine-tuned em-
beddings.

• Semantic change aware dimensions report com-
parable or superior performance over using all
dimensions in SCD benchmarks.

2 Task Description

In this section, we explain the two types of seman-
tic changes of words considered in the paper: (a)
contextual semantic changes and (b) temporal se-
mantic changes.

Contextual Semantic Change Detection Task
involves predicting whether the meaning of a word
in a given pair of sentences are the same (Pilehvar
and Camacho-Collados, 2019). For example, an
ambiguous word can express different meanings in
different contexts, which is considered under con-
textual semantic changes. Models are required to
make a prediction for each pair of sentences.

Temporal Semantic Change Detection Task in-
volves predicting the meanings of a word in
given sets of sentences across different time pe-
riods (Schlechtweg et al., 2020). A word that was
used in a different meaning in the past can be asso-
ciated with novel meanings later on, which is con-
sidered as a temporal semantic change of that word.
Models predict whether the meaning of the word
has changed over time by comparing the given sets
of sentences.

Models For the Contextual Semantic Change
Detection Task, contextual word embeddings (De-
vlin et al., 2019; Conneau et al., 2020) are the
primary choice, as they effectively capture word

meanings based on sentence context. For the Tem-
poral Semantic Change Detection Task, both
static (Kim et al., 2014; Kulkarni et al., 2015;
Hamilton et al., 2016; Yao et al., 2018; Aida et al.,
2021) and contextual (Rosenfeld and Erk, 2018;
Kutuzov and Giulianelli, 2020; Laicher et al., 2021;
Aida and Bollegala, 2023b) embeddings can be ap-
plied. Notably, sense-aware contextual embeddings
trained specifically for contextual semantic change
tasks have achieved superior performance, demon-
strating their broader applicability (Cassotti et al.,
2023; Aida and Bollegala, 2024).

Both types of semantic changes are common and
even the same word can undergo both types of se-
mantic changes as shown in Table 1 for the word
plane. The contextual semantic change task re-
quires models to be sensitive to the context within
just two given sentences, whereas the temporal se-
mantic change task requires models to account for
the semantic changes of words across two different
time periods.

3 Contextual Semantic Changes

We first investigate the existence of axes specific
to contextual semantic changes. Recall that XL-
LEXEME is fine-tuned from XLM-RoBERTa on
WiC datasets. Therefore, the emergence of any
semantic change-aware axes due to fine-tuning can
be investigated using contextual semantic change
benchmarks. We use the test split of the English
WiC (Pilehvar and Camacho-Collados, 2019), XL-
WiC (Raganato et al., 2020), MCL-WiC (Martelli
et al., 2021), and AM2iCo (Liu et al., 2021) datasets
for evaluations.2 Data statistics are in Appendix A.

2Due to the page limitations, results for other datasets than
the English WiC are shown in Appendix B.
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(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 1: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-LEXEME)
for each instance in the English WiC dataset, where the difference of vectors is calculated for (a/d) Raw vectors,
(b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half uses instances for
the True/False labels. While the Raw dimensions display the information from the 0th to the 49th dimensions in the
original order, the same observations are found in all dimensions.

RQ1: When do the contextual SCD-aware axes
emerge? To investigate whether contextual se-
mantic change-aware axes were already present
in the pre-trained CWEs, or do they emerge dur-
ing the fine-tuning step, for each sentence-pair in
WiC datasets, we compute the difference between
the two target word embeddings obtained from the
pre-trained XLM-RoBERTa (CWEs) and the fine-
tuned XL-LEXEME (SCWEs). To obtain the sets
of target word embeddings, we follow Cassotti et al.
(2023) by using a Sentence-BERT (Reimers and
Gurevych, 2019) architecture. We conduct this
analysis for the non-transformed original axes (in-
dicated as Raw here onwards), as well as for the
PCA/ICA-transformed axes in order to investigate
whether such transformations can discover the axes
specified for contextual semantic changes as pro-
posed by Yamagiwa et al. (2023).3 In this paper,
PCA/ICA-transformed axes are sorted by the exper-
imental variance ratio/skewness, and this process is
consistently applied where PCA or ICA is used. If
a particular axis is sensitive to contextual semantic
changes, it will take similar values in the two target
word embeddings, thus having a near-zero value in
their subtraction.

To address RQ1, we visualised the difference
vectors for sentence pairs where the target word

3As in Yamagiwa et al. (2023), we used PCA and FastICA
provided in scikit-learn https://scikit-learn.org/ .

takes the same meaning in the two sentences (True)
vs. different meanings (False). This visualisation
was performed by following steps: (a) we prepared
Raw or PCA/ICA-transformed axes; (b) for each
WiC instance, which contains two sentences and a
label, we calculated the difference between pair of
sentences; (c) we normalised each axis (min=0 and
max=1) for visualisation purposes.

As shown in Figure 1, we see that the axes en-
coding contextual semantic changes are not obvi-
ous in the original CWEs after pre-training (Fig-
ure 1a), but materialise during the fine-tuning
process (Figure 1d). Similar trends are observed
with PCA-transformations (Figures 1e and 1b),
whereas ICA shows contrasting results (Figures 1f
and 1c). In contrast to prior recommendations for
using ICA for analysing CWE spaces (Yamagiwa
et al., 2023), we find ICA to be less sensitive to
contextual semantic changes of words. Interest-
ingly, similar results have been shown in other lan-
guages/datasets(Appendix B). 4

4Our findings do not aim to claim the superiority of PCA
over ICA but to explore the existence of task-specific axes.
Experimental results show that for semantic change tasks,
PCA provides more task-related axes because (a) PCA orders
axes by importance (eigenvalue), making task-related axes
more accessible, and (b) ICA-transformed axes require exter-
nal sorting method based on skewness rather than importance.
Prior research indicates that ICA can capture topic-related
axes (Yamagiwa et al., 2023), suggesting that ICA may still
hold potential for obtaining task-related axes. Further refine-
ment of the approach remains as future research.

https://scikit-learn.org/
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(a) Pre-trained CWE (XLM-RoBERTa)

(b) Fine-tuned SCWE (XL-LEXEME)

Figure 2: The ROC curve on contextual semantic change
task, the English WiC dataset. Raw indicates the per-
formance of using full dimensions. PCA/ICA uses top-
5/10/20/50/100% of axes.

RQ2: Can top-k PCA/ICA-transformed axes
capture contextual semantic changes? Ya-
magiwa et al. (2023) discovered that ICA-
transformed axes represent specific concepts and
their linear combinations could represent more
complex concepts (e.g. cars + italian = ferrari).
Based on this finding, we investigate whether a
combination of top-k axes can collectively repre-
sent contextual semantic changes of words. Specif-
ically, we select the top-k% of the axes to repre-
sent a target word embedding. We then compute
the Euclidean distance between CWEs of the tar-
get word in each sentence for every test sentence-
pair in the WiC datasets. We predict the target
word to have the same meaning in the two sen-
tences, if the Euclidean distance is below a thresh-
old value. We vary this threshold and report Area
Under the Curve (AUC) of Receiver Operating
Characteristic (ROC) curves, where higher AUC
values are desirable. In Figure 2, we show results
for top k ∈ {5, 10, 20, 50, 100} of the PCA/ICA-
transformed axes and compare against the baseline
that uses all of the Raw dimensions.

For the pre-trained CWEs (Figure 2a), we see
that Raw reports slightly better AUC than PCA,
but when fine-tuned (Figure 2b) PCA matches Raw
even by using less than 10% of the axes. On the
other hand, ICA reports lower AUC values than
both Raw and PCA in both models. These re-
sults indicate that PCA is better suited for dis-
covering axes specified for contextual semantic
changes than ICA. We suspect that although ICA
is able to retrieve concepts such as topics (Yam-
agiwa et al., 2023), it is less fluent when discover-
ing task-specific axes that require the consideration
of different types of information. In conclusion,
(1) contextual semantic change-aware axes emerge
during fine-tuning, and (2) they are discovered
by PCA even within 10% of the principal compo-
nents. Notably, in other languages/datasets, similar
trends have been observed (Appendix B). These
results suggest that contextual semantic change-
aware dimensions can be observed within 10%
of the PCA-transformed axes across different lan-
guages.

4 Temporal Semantic Changes

In contrast to contextual SCD, temporal SCD con-
siders the problem of predicting whether a target
word w represents different meanings in two text
corpora C1 and C2, sampled at different points in
time. For evaluations, we use the SemEval-2020
Task 1 dataset5 (Schlechtweg et al., 2020), which
contains a manually rated set of target words for
their temporal semantic changes in English, Ger-
man, Swedish, and Latin.6

RQ3: Can top-k PCA/ICA-transformed axes
capture temporal semantic changes? Similar
to Figure 2, we investigate whether PCA/ICA
can discover axes specified for temporal seman-
tic changes by considering the top-k% of axes for
k ∈ {5, 10, 20, 50, 100}. We calculate the seman-
tic change score of w as the average pairwise Eu-
clidean distance over the two sets of sentences con-
taining the target word w in C1 and C2 as con-
ducted in previous work (Kutuzov and Giulianelli,
2020; Laicher et al., 2021; Cassotti et al., 2023).
Finally, w is predicted to have its meaning changed
between C1 and C2, if its semantic change score ex-
ceeds a pre-defined threshold. We vary this thresh-
old and plot ROC in Figure 3.

5Data statistics are in Appendix A.
6Due space limitations, results for languages other than

English are shown in Appendix B.
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(a) Pre-trained CWE (XLM-RoBERTa)

(b) Fine-tuned SCWE (XL-LEXEME)

Figure 3: The ROC curve on temporal semantic change
task, SemEval-2020 Task 1 (English). Raw indicates
the performance of using full dimensions. PCA/ICA
uses top-5/10/20/50/100% of axes.

In pre-trained CWEs, we can see that the use
of the top 5% to 20% axes transformed by PCA
is more effective in temporal semantic change de-
tection than when all of the Raw dimensions are
used (Figure 3a). On the other hand, in fine-tuned
SCWEs, Figure 3b indicates that PCA-transformed
axes achieve the same AUC scores as Raw, simi-
lar to the contextual semantic change (Figure 2b).
Similar to the observation in contextual semantic
change, ICA returns the lowest performance.

To further investigate whether the top PCA/ICA
axes can explain the degree of temporal seman-
tic change, we measure the Spearman correlation
between the semantic change scores and human
ratings available in the SemEval-2020 Task 1 fol-
lowing the standard evaluation protocol for this
task (Rosin et al., 2022; Rosin and Radinsky, 2022;
Aida and Bollegala, 2023b; Cassotti et al., 2023;
Periti and Tahmasebi, 2024; Aida and Bollegala,
2024). As shown in Figure 4 for the pre-trained
CWEs (Figure 4a), using only 10% of the axes,
PCA outperforms Raw that uses all axes. More-
over, for the fine-tuned SCWEs (Figure 4b), us-

(a) Pre-trained CWE (XLM-RoBERTa)

(b) Fine-tuned SCWE (XL-LEXEME)

Figure 4: Spearman’s rank correlation on temporal se-
mantic change task, SemEval-2020 Task 1 (English).
Raw indicates the performance of using full dimen-
sions. PCA/ICA cumulatively uses sorted axes.

ing only 10% of the axes PCA achieves the same
performance as Raw. However, ICA consistently
underperforms in both pre-trained and fine-tuned
settings. Importantly, we see similar trends in other
languages (Appendix B). These results suggest
that temporal semantic change-aware dimen-
sions can also be observed within 10% of PCA-
transformed axes across different languages.

5 Conclusion

We found that there exists a smaller number of
axes that encode contextual and temporal semantic
changes of words in MLMs, which are accurately
discovered by PCA. These findings have several
important practical implications. First, it shows
that MLMs can be compressed into efficient and
accurate lower-dimensional embeddings when used
for SCD tasks. Second, it suggests the possibility
of efficiently updating a pre-trained MLM to cap-
ture novel semantic associations of words since the
MLM was first trained, by updating only a smaller
number of dimensions.
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Limitations

In this paper, we limited experiments to XLM-
RoBERTa based MLM models. These models are
all fine-tuned on WiC datasets and have reported
state-of-the-art (SoTA) performance in SCD bench-
marks. We consider it would be important to further
validate the findings reported in this paper using
other embedding models and across multiple down-
stream applications.

Ethical Considerations

In this paper, we focus on investigating the exis-
tence of dedicated dimensions capturing contex-
tual/temporal semantic changes of words. For the
best of our knowledge, no ethical issues have been
reported for the WiC and SCD datasets we used in
our experiments. On the other hand, we also used
publicly available pre-trained/fine-tuned MLMs,
some of which are known to encode and potentially
amplify unfair social biases (Basta et al., 2019).
Whether such social biases are influenced by the
dimension selection methods we consider in the
paper must be carefully evaluated before deploying
any MLMs in downstream applications.
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Dataset Language #Train #Dev #Test

Monolingual

WiC English 5.4k 6.4k 1.4k

XL-WiC
German 48k 8.9k 1.1k
French 39k 8.6k 22k
Italian 1.1k 0.2k 0.6k

MCL-WiC

Arabic - 0.5k 0.5k
English 4.0k 0.5k 0.5k
French - 0.5k 0.5k
Russian - 0.5k 0.5k
Chinese - 0.5k 0.5k

Cross-lingual

AM2iCo

German 50k 0.5k 1.0k
Russian 28k 0.5k 1.0k
Japanese 16k 0.5k 1.0k
Chinese 13k 0.5k 1.0k
Arabic 9.6k 0.5k 1.0k
Korean 7.0k 0.5k 1.0k
Finnish 6.3k 0.5k 1.0k
Turkish 3.9k 0.5k 1.0k
Indonesian 1.6k 0.5k 1.0k
Basque 1.0k 0.5k 1.0k

Table 2: Statistics of the contextual SCD benchmarks
used in the fine-tuning for XL-LEXEME. #Train, #Dev,
and #Test show the number of instances. AM2iCo is
a cross-lingual contextual SCD benchmark, where the
second language in each pair is English.

Hiroaki Yamagiwa, Momose Oyama, and Hidetoshi
Shimodaira. 2023. Discovering universal geome-
try in embeddings with ICA. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 4647–4675, Singapore.
Association for Computational Linguistics.

Zijun Yao, Yifan Sun, Weicong Ding, Nikhil Rao, and
Hui Xiong. 2018. Dynamic word embeddings for
evolving semantic discovery. In WSDM 2018, page
673–681.

Yi Zhou and Danushka Bollegala. 2021. Learning sense-
specific static embeddings using contextualised word
embeddings as a proxy. In Proceedings of the 35th
Pacific Asia Conference on Language, Information
and Computation, pages 493–502, Shanghai, China.
Association for Computational Lingustics.

A Data Statistics

Full statistics of contextual and temporal SCD
benchmarks are shown in Table 2 and Table 3.7

B Full Results

In this section, we present the full results of con-
textual and temporal SCD tasks. For the contextual

7WiC, XL-WiC, and MCL-WiC are licensed under the
Creative Commons Attribution-NonCommercial 4.0 License,
while AM2iCo and SemEval-2020 Task 1 are licensed under
the Creative Commons Attribution 4.0 International License.

Language Time Period #Targets #Tokens

English 1810–1860 37 6.5M
1960–2010 6.7M

German 1800–1899 48 70.2M
1946–1990 72.3M

Swedish 1790–1830 31 71.0M
1895–1903 110.0M

Latin B.C. 200–0 40 1.7M
0–2000 9.4M

Table 3: Statistics of the temporal SCD benchmark,
SemEval-2020 Task 1. #Targets and #Tokens show the
number of target words and tokens, respectively.

SCD, visualisations of instances in all datasets are
as follows: XLWiC (Figure 5, Figure 6, and Fig-
ure 7), MCLWiC (Figures 8, 9, 10, 11, and 12),
and AM2iCo (Figures 13, 14, 15, 16, 17, 18, 19,
20, 21, and 22). Similar to § 3, the contextual
semantic change-aware axes emerged after the fine-
tuning process. Moreover, full results related to the
prediction task are as follows: XLWiC (Figure 23),
MCLWiC (Figure 24 and Figure 25), AM2iCo (Fig-
ure 26, Figure 27, and Figure 28). As shown in §3,
10% PCA-transformed axes are able to obtain con-
textual semantic change-aware dimensions.

On the other hand, for the temporal SCD, results
for other languages (German, Swedish, and Latin)
are shown in Figure 29 and Figure 30. Similar to
§4, temporal semantic change-aware dimensions
are observed within 10% PCA-transformed axes.
However, there are some difficulties in obtaining
these dimensions by PCA-transformed axes with
insufficient pretraining data (Swedish) (Conneau
et al., 2020) or lack of supervision for fine-tuning
(Latin) shown in Table 2. In those cases, the use
of ICA-transformed axes proved to be effective.
More detailed analysis and understanding of those
axes for interpretability will be addressed in future
work.
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(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 5: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-LEXEME)
for each instance in XLWiC (German) dataset, where the difference of vectors is calculated for (a/d) Raw vectors,
(b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half uses instances for
the True/False labels.

(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 6: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-LEXEME)
for each instance in XLWiC (French) dataset, where the difference of vectors is calculated for (a/d) Raw vectors,
(b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half uses instances for
the True/False labels.
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(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 7: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-LEXEME)
for each instance in XLWiC (Italian) dataset, where the difference of vectors is calculated for (a/d) Raw vectors,
(b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half uses instances for
the True/False labels.

(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 8: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-LEXEME)
for each instance in MCLWiC (Arabic) dataset, where the difference of vectors is calculated for (a/d) Raw vectors,
(b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half uses instances for
the True/False labels.
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(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 9: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-LEXEME)
for each instance in MCLWiC (English) dataset, where the difference of vectors is calculated for (a/d) Raw vectors,
(b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half uses instances for
the True/False labels.

(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 10: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-
LEXEME) for each instance in MCLWiC (French) dataset, where the difference of vectors is calculated for (a/d)
Raw vectors, (b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half
uses instances for the True/False labels.
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(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 11: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-
LEXEME) for each instance in MCLWiC (Russian) dataset, where the difference of vectors is calculated for (a/d)
Raw vectors, (b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half
uses instances for the True/False labels.

(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 12: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-
LEXEME) for each instance in MCLWiC (Chinese) dataset, where the difference of vectors is calculated for (a/d)
Raw vectors, (b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half
uses instances for the True/False labels.
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(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 13: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-
LEXEME) for each instance in AM2iCo (German) dataset, where the difference of vectors is calculated for (a/d)
Raw vectors, (b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half
uses instances for the True/False labels.

(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 14: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-
LEXEME) for each instance in AM2iCo (Russian) dataset, where the difference of vectors is calculated for (a/d)
Raw vectors, (b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half
uses instances for the True/False labels.
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(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 15: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-
LEXEME) for each instance in AM2iCo (Japanese) dataset, where the difference of vectors is calculated for (a/d)
Raw vectors, (b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half
uses instances for the True/False labels.

(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 16: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-
LEXEME) for each instance in AM2iCo (Chinese) dataset, where the difference of vectors is calculated for (a/d)
Raw vectors, (b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half
uses instances for the True/False labels.
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(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 17: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-
LEXEME) for each instance in AM2iCo (Arabic) dataset, where the difference of vectors is calculated for (a/d)
Raw vectors, (b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half
uses instances for the True/False labels.

(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 18: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-
LEXEME) for each instance in AM2iCo (Korean) dataset, where the difference of vectors is calculated for (a/d)
Raw vectors, (b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half
uses instances for the True/False labels.
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(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 19: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-
LEXEME) for each instance in AM2iCo (Finnish) dataset, where the difference of vectors is calculated for (a/d)
Raw vectors, (b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half
uses instances for the True/False labels.

(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 20: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-
LEXEME) for each instance in AM2iCo (Turkish) dataset, where the difference of vectors is calculated for (a/d)
Raw vectors, (b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half
uses instances for the True/False labels.
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(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 21: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-
LEXEME) for each instance in AM2iCo (Indonesian) dataset, where the difference of vectors is calculated for (a/d)
Raw vectors, (b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half
uses instances for the True/False labels.

(a) Pre-trained CWE, Raw (b) Pre-trained CWE, PCA (c) Pre-trained CWE, ICA

(d) Fine-tuned SCWE, Raw (e) Fine-tuned SCWE, PCA (f) Fine-tuned SCWE, ICA

Figure 22: Visualisation of the top-50 dimensions of pre-trained CWEs (XLM-RoBERTa) and SCWEs (XL-
LEXEME) for each instance in AM2iCo (Basque) dataset, where the difference of vectors is calculated for (a/d)
Raw vectors, (b/e) PCA-transformed axes, and (c/f) ICA-transformed axes. In each figure, the upper/lower half
uses instances for the True/False labels.



1430

(a) Pre-trained CWE, De (b) Fine-tuned SCWE, De

(c) Pre-trained CWE, Fr (d) Fine-tuned SCWE, Fr

(e) Pre-trained CWE, It (f) Fine-tuned SCWE, It

Figure 23: The ROC curve on the contextual SCD benchmark, XLWiC dataset (De: German, Fr: French, It: Italian).
Raw indicates the performance of using full dimensions. PCA/ICA uses top-5/10/20/50/100% of axes.
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(a) Pre-trained CWE, Ar (b) Fine-tuned SCWE, Ar

(c) Pre-trained CWE, En (d) Fine-tuned SCWE, En

(e) Pre-trained CWE, Fr (f) Fine-tuned SCWE, Fr

Figure 24: The ROC curve on the contextual SCD benchmark, MCLWiC dataset (Ar: Arabic, En: English, Fr:
French). Raw indicates the performance of using full dimensions. PCA/ICA uses top-5/10/20/50/100% of axes.
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(a) Pre-trained CWE, Ru (b) Fine-tuned SCWE, Ru

(c) Pre-trained CWE, Zh (d) Fine-tuned SCWE, Zh

Figure 25: The ROC curve on the contextual SCD benchmark, MCLWiC dataset (Ru: Russian, Zh: Chinese). Raw
indicates the performance of using full dimensions. PCA/ICA uses top-5/10/20/50/100% of axes.
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(a) Pre-trained CWE, De (b) Fine-tuned SCWE, De

(c) Pre-trained CWE, Ru (d) Fine-tuned SCWE, Ru

(e) Pre-trained CWE, Ja (f) Fine-tuned SCWE, Ja

(g) Pre-trained CWE, Zh (h) Fine-tuned SCWE, Zh

Figure 26: The ROC curve on the contextual SCD benchmark, AM2iCo dataset (De: German, Ru: Russian,
Ja: Japanese, Zh: Chinese). Raw indicates the performance of using full dimensions. PCA/ICA uses top-
5/10/20/50/100% of axes.
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(a) Pre-trained CWE, Ar (b) Fine-tuned SCWE, Ar

(c) Pre-trained CWE, Ko (d) Fine-tuned SCWE, Ko

(e) Pre-trained CWE, Fi (f) Fine-tuned SCWE, Fi

Figure 27: The ROC curve on the contextual SCD benchmark, AM2iCo dataset (Ar: Arabic, Ko: Korean, Fi:
Finnish). Raw indicates the performance of using full dimensions. PCA/ICA uses top-5/10/20/50/100% of axes.
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(a) Pre-trained CWE, Tr (b) Fine-tuned SCWE, Tr

(c) Pre-trained CWE, Id (d) Fine-tuned SCWE, Id

(e) Pre-trained CWE, Eu (f) Fine-tuned SCWE, Eu

Figure 28: The ROC curve on the contextual SCD benchmark, AM2iCo dataset (Tr: Turkish, Id: Indonesian, Eu:
Basque). Raw indicates the performance of using full dimensions. PCA/ICA uses top-5/10/20/50/100% of axes.
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(a) Pre-trained CWE, De (b) Fine-tuned SCWE, De

(c) Pre-trained CWE, Sv (d) Fine-tuned SCWE, Sv

(e) Pre-trained CWE, La (f) Fine-tuned SCWE, La

Figure 29: The ROC curve on the temporal SCD benchmark, SemEval-2020 Task 1 (De: German, Sv: Swedish, La:
Latin). Raw indicates the performance of using full dimensions. PCA/ICA uses top-5/10/20/50/100% of axes.
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(a) Pre-trained CWE, De (b) Fine-tuned SCWE, De

(c) Pre-trained CWE, Sv (d) Fine-tuned SCWE, Sv

(e) Pre-trained CWE, La (f) Fine-tuned SCWE, La

Figure 30: Spearman’s rank correlation on the temporal SCD benchmark, SemEval-2020 Task 1 (De: German, Sv:
Swedish, La: Latin). Raw indicates the performance of using full dimensions. PCA/ICA cumulatively uses sorted
axes.


	Introduction
	Task Description
	Contextual Semantic Changes
	Temporal Semantic Changes
	Conclusion
	Data Statistics
	Full Results

