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Abstract

NLP models often face challenges with under-
represented languages due to a lack of suf-
ficient training data and language complexi-
ties. This can result in inaccurate predictions
and a failure to capture the inherent uncertain-
ties within these languages. This paper intro-
duces a new method for modelling uncertainty
in under-represented languages by employing
deep Bayesian Gaussian Processes. We develop
a novel framework that integrates prior knowl-
edge and leverages kernel functions. This helps
enable the quantification of uncertainty in pre-
dictions to overcome the data limitations in
under-represented languages. The efficacy of
our approach is validated through various exper-
iments, and the results are benchmarked against
existing methods to highlight the enhancements
in prediction accuracy and measurement of un-
certainty.

1 Introduction

Under-represented languages (Midrigan-Ciochina
et al., 2020), spoken by geographically marginal-
ized communities facing significant environmental
or social challenges, present a unique opportunity
for NLP (Ignat et al., 2024). By analyzing local
news and social media data in these languages,
NLP models can aid in disaster response, resource
management, and public health initiatives (Lank-
ford et al., 2023). Besides, NLP models can em-
power these communities by facilitating commu-
nication (Rodríguez et al., 2024), education, and
economic opportunities in the digital age (Cissé
and Sadat, 2024).

NLP has the potential to revolutionize commu-
nication and information access for everyone. The
development of pre-trained large language mod-
els (Wang et al., 2022; Chang et al., 2024) has
further amplified this potential. Including under-
represented languages in NLP research allows us to
explore the broader spectrum of human language

and communication, enriching our understanding
of language itself. However, this promise has not
been fully realized (Holgado and Vergez-Couret,
2024). A significant digital divide exists (Carthell,
2024), as many NLP models struggle in under-
represented languages (e.g., Urdu and Pashto (Ali
et al., 2024)) due to limited training data. This data
scarcity hinders the models’ ability to capture the
nuances and complexities of these languages (Qin
et al., 2024).

The limited data available for under-represented
languages poses a two-fold challenge for NLP mod-
els. First, it hinders their ability to learn accu-
rate language representations, leading to frequent
prediction errors (Rambachan, 2024). Second, it
makes it difficult to quantify the inherent uncer-
tainty associated with these predictions (Kim et al.,
2024). Uncertainty quantification (Combs et al.,
2024), however, is crucial for understanding the
reliability of model outputs and identifying areas
where the model is less confident. For instance,
consider addressing cybercrimes in Pakistan, where
Urdu is the dominant language. With millions of so-
cial media users, manual monitoring is not feasible.
Therefore, reliable automated methods are essen-
tial. Table 1 showcases example predictions from
our model. We observe that the model’s predicted
probabilities tend to be high when it is confident
in its classification. This suggests a strong cor-
relation between confidence and high probability
values. However, the key challenge arises when
the model exhibits lower confidence (as reflected
by lower predicted probabilities). By capturing
this inherent uncertainty, we can identify areas for
improvement and develop remedial measures to
enhance the model’s overall reliability.

Languages such as Urdu exhibit rich morphol-
ogy, meaning words can have complex structures
formed by adding prefixes and suffixes (Maaz et al.,
2024). Traditional deep learning architectures
might struggle to capture these intricate morpho-
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Text [Translation] GL PL PP RP
Multi-class

Meri shadi ho rai hai [I am getting married] happy happy 0.961 0.037
MQM K Rukn e Assambly Landhi Mn Awami Ahtijaj Mn Shamil 2 Maah Se Pani Nahi Dia Ja Raha Ahtijaj Na Krian Tu Kia Krian
[MQM Member of the local assembly, have joined the public protest in Landhi, water has not been given for 2 months, if not protest
then what else they can do]

sad angry 0.402 0.348

Kyun ke wo acting ke sath fun e raqs mein bhi apna jawab nahi rakhti [Because along with acting, she has no match in dancing ] happy neutral 0.525 0.454
Binary-class
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ں [It is better for you to do the same fu**ing thing as before, you are good in
commentary, not in acting]

offensive neutral 0.515 0.485

Binary-class

اد ثیبخ هب مه رادرم یش د باجنپ لزور یوش یپس وا ایب یدد یناوز یزخ ګنوم هت یتاپ یش ، کرو This]هش bad guy will also die, the trained dog
of Punjab, and then his youth will be left as a peanut, disappear]

offensive offensive 0.906 0.094

امز یودد هن طایتحا لوک یم تخس یوروځ [It hurts me to be careful of them] neutral offensive 0.511 0.489

Table 1: Sample texts of the datasets with their ground-truth labels (GL), predicted labels (PL), predicted probabilities
(PP), and runner-up probabilities (RP) by the BERT-multilingual model.

logical relationships (Anam et al., 2024). They
also use complex writing systems with a character-
based script (Aars et al., 2024). One obvious ap-
proach is to use transfer learning (Muraoka et al.,
2023) using language models. The issue is that lan-
guage models might encode biases present (Fang
et al., 2024) in the dominant language data they
were trained on. These biases can be transferred to
the under-represented language model, leading to
unfair or inaccurate results (Schwöbel et al., 2023).

Fine-tuning a language model for an under-
represented language requires a careful selection
of layers and hyperparameters to avoid overfit-
ting (Dhananjaya et al., 2024) to the limited train-
ing data (Hangya et al., 2022). In this situation,
Bayesian approaches such as Gaussian Processes
(Marrel and Iooss, 2024) offer a promising ap-
proach to address some of the challenges associated
with modelling under-represented languages such
as Urdu and Pashto. Bayesian models can learn
effectively from limited data (Xu et al., 2024) com-
pared to deep learning models. This is because
they focus on the relationships between data points
rather than requiring a massive dataset to learn
complex feature representations. These models al-
low us to incorporate prior linguistic knowledge
about the target language as a prior distribution.
This knowledge can be in the form of grammatical
rules, word embeddings from other languages, or
existing dictionaries. They offer a more flexible
framework compared to traditional deep learning
models. The choice of the kernel function (Buch,
2011) allows for customization to model different
types of relationships between data points in the
under-represented language. These models can be
more interpretable than deep learning models.

Estimating uncertainty is vital for understand-
ing and gauging the reliability of machine learning
models. Typically, these models provide a single

prediction or point estimate (Gal and Ghahramani,
2016) without indicating confidence level. Uncer-
tainty estimation offers a method to quantify such
confidence. A high uncertainty value from a model
suggests that its prediction may be less reliable.
This is particularly important in scenarios where in-
correct decisions could have serious repercussions.
Moreover, uncertainty estimation helps evaluate
model performance in various situations, such as
when dealing with new or slightly varied data.

The contributions of the paper are: 1) We in-
troduce a novel model that extends deep Gaussian
Processes by incorporating prior knowledge into
a standard GP framework, enabling the model to
capture complex relationships in under-represented
languages and quantify uncertainty in predictions.
2) A kernel function is employed to better capture
and model intricate linguistic patterns and correla-
tions, enhancing both the performance and confi-
dence of predictions on complex datasets. 3) The
study also evaluates the effectiveness of various
multilingual language models, specifically focus-
ing on their performance with lesser-studied lan-
guages such as Urdu and Pashto, providing valu-
able insights for low-resource language processing.
To the best of our knowledge, limited research has
been done in modelling uncertainty in Urdu and
Pashto.

2 Literature Review

Under-Represented Languages: Natural lan-
guage processing has been transformed with the
advent of pre-trained language models (Wang et al.,
2022). Yet, a significant disparity persists between
well-resourced and under-represented languages
(Majewska et al., 2022). Under-represented lan-
guages are those with limited resources for devel-
oping digital language tools. They typically have
fewer publicly available datasets and are underrep-
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resented in pre-trained models, making it challeng-
ing to apply advanced NLP techniques compared
to more widely studied languages. Efforts are un-
derway to bridge this gap, Lankford et al. (2023)
has adapted multilingual language models for low-
resource languages. Similarly, various other ap-
proaches have been explored. For instance, Winata
et al. (2022) used few-shot learning to perform
sentiment analysis on 12 languages, including 8
languages not previously studied, to evaluate the ef-
fectiveness of various few-shot learning techniques.
To enhance the performance of large language mod-
els for under-represented languages, Ullah et al.
(2023) explored prompt engineering. Their find-
ings show a significant improvement, with prompt-
based fine-tuning leading to a 13% increase in accu-
racy over traditional fine-tuning methods. Address-
ing the issue of scarce data in under-represented
languages, researchers have examined various data
augmentation techniques. Azam et al. (2022) fo-
cused on strategies for Urdu, and Khalid et al.
(2023) investigated these for the Punjabi language.
While these methods are beneficial, the uncertainty
in their outcomes remains a concern, particularly
for complex languages such as Urdu and Pashto.
Deep Gaussian Processes: Deep learning and
deep Gaussian Processes (dGPs) (Williams and
Rasmussen, 2006; Griffiths et al., 2024; de Souza
et al., 2024) are both influential machine learn-
ing techniques (Lee et al., 2017; Damianou and
Lawrence, 2013), sharing some similarities yet also
having notable differences. Both methods use a lay-
ered architecture to extract increasingly complex
features, enabling them to effectively handle intri-
cate relationships and patterns. Both approaches
can capture non-linear relationships between in-
puts and outputs, crucial for tackling complex real-
world problems. Finally, both methods learn from
data by adjusting internal parameters, allowing
them to adapt to various tasks and datasets. How-
ever, for interpretability and uncertainty quantifi-
cation, dGPs are often the preferred choice. The
authors in Dimitrakopoulos et al. (2023) propose
a technique using implicit neural representations
for efficient Bayesian inference in low-dimensional
problems. These methods are powerful tools for
representing complex functions by learning to map
input data into a high-dimensional latent space.
Uncertainty Modelling: The study by Gal and
Ghahramani (2016) addressed uncertainty mod-
elling by using dropout as a Bayesian approxima-
tion to represent uncertainty in deep learning mod-

els (Yao et al., 2024). This technique utilizes the
randomness of dropout during training to gauge the
range of possible predictions, thereby providing
an uncertainty estimate for each output. Tanneru
et al. (2023) proposed two innovative metrics, Ver-
balized Uncertainty and Probing Uncertainty, to
gauge the uncertainty of explanations generated
by large language models. In (Xiao et al., 2022),
the authors provide guidelines for developing a
prediction pipeline based on pre-trained language
models (PLMs) aimed at reducing calibration er-
ror. These recommendations are grounded in their
empirical analysis of uncertainty quantification in
PLMs. In (Nehme et al., 2024), the authors explore
uncertainty quantification using neural posterior
principal components.

Watson et al. (2024) contend that deep learning
models typically achieve high predictive accuracy
but lack transparency in their results. The opaque
nature of deep learning models creates challenges
in trusting and deploying them, especially in criti-
cal real-world applications such as detecting cyber-
crimes (Ullah et al., 2024). These black box mod-
els lack a way to quantify their output confidence.
To address this, researchers have proposed various
extensions and improvements building on Gal’s
pioneering Monte Carlo dropout (Gal and Ghahra-
mani, 2016). Nevertheless, a thorough literature
review highlights ongoing gaps that our research
seeks to fill. In this paper, we address these gaps
by using priors alongside kernel functions in the
deep Gaussian Processes model. Current Bayesian
Monte Carlo methods frequently struggle to utilize
prior information regarding the model’s parame-
ters. Our model fills this void by introducing a
systematic framework for integrating informative
priors, resulting in more resilient and dependable
uncertainty assessment.

3 Model Description

We outline the technical specifics of the deep
Gaussian Process (dGP) (Damianou and Lawrence,
2013) model and then discuss the specifics of plac-
ing priors on its hyperparameters. Introducing pri-
ors to the dGP model’s hyperparameters enhances
performance and interpretability. Key benefits in-
clude regularization, which penalizes significant de-
viations from the prior distribution. Without priors,
hyperparameters begin at arbitrary values, often
resulting in slower training and less optimal out-
comes. Additionally, well-chosen priors improve
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uncertainty estimates by reflecting our understand-
ing or hypotheses about data variability, thus aid-
ing in more accurate confidence calibration and
dependable uncertainty quantification.

3.1 Deep Gaussian Processes Model

A dGP is an extension of a standard Gaussian Pro-
cess (GP). It consists of multiple GP layers stacked
together, each possibly employing a distinct kernel
function, to model intricate data relationships. A
dGP with L layers is represented as fL(x), where
x signifies the input data and L indicates the layer
index. Each layer applies a transformation to the
output from the preceding layer or the input data in
the case of the first layer utilizing its specific kernel
function and corresponding hyperparameters.

The kernel function, represented as kl(x, x′), is
pivotal in each DGP layer l. It establishes the co-
variance between the outputs at two distinct input
points, x and x′. Typical choices for kernel func-
tions are RBF (Radial Basis Function) kernels or
spectral mixture kernels. Each kernel function pos-
sesses a unique set of hyperparameters, symbolized
as l, which govern its characteristics. For example,
an RBF kernel may include a lengthscale hyper-
parameter that dictates the rate at which the co-
variance diminishes as the distance between input
points increases.

The output of a dGP layer l, fl(x), can be ex-
pressed recursively as:

fl(x) = µl(x)+Kl(x,X)[f(l−1)(X)−µ(l−1)(X)]+ εl(x)
(1)

where, µl(x) denotes the mean function of layer
l (commonly set to zero for simplicity), Kl(x,X)
represents the kernel matrix for layer l, with ele-
ments kl(x, xi) corresponding to all training data
points X = {x1, · · · , xN}, f(l−1)(X) is the vector
of outputs from the preceding layer (or the input
data for l = 1), µ(l−1)(X) is the vector of mean
function values from the preceding layer (often
zero), and εl(x) is a white noise term that signifies
noise in layer l.

3.2 Our Fully Bayesian dGP Model

A dGP is a probabilistic machine learning model
that enhances the functionality of standard GP by
incorporating multiple GP layers. Standard GPs of-
ten face challenges with high-dimensional data or
complex feature interactions, such as those found
in under-represented languages. dGPs overcome

Input: L as the number of dGP layers,
K = {k1, k2, ..., kL} a list of kernel functions for
each layer, Θ = {θ1, θ2, ..., θL} the sets of
hyperparameters for each kernel,
P = {p(θ1), p(θ2), ..., p(θL)} the prior
distributions for hyperparameters, X the training
data, y the training labels (for classification tasks).

Output: A trained dGP model
1. Define dGP Model:
- Initialize an empty dGP model.
for l = 1 to L do

- Insert layer l into the model with kernel
function kl.

end
2. Hyperparameters and Hyper Priors:
for l = 1 to L do

- Determine hyperparameters θl for kernel kl.
- Associate each θl in the model with its

corresponding prior p(θl) from P . If we place
the Normal Inverse Gamma prior,
fNIG(θl|α, β, µ, δ) =
αδ exp(δ

√
α2−β2−β(θl−µ))

π
√

θlK1

(
α
√

δ2+(θl−µ)2

δ

√
α2−β2

) , where θl is the

hyperparameter value, α, β, µ, and δ are the
NIG distribution parameters, K1 is the
modified Bessel function of the third kind and
order 1. While the NIG density function
provides the probability density for a single
value θl, the prior itself represents the entire
distribution of possible hyperparameter values.
This distribution is obtained by integrating the
NIG density function over the entire valid range
of the hyperparameter (often positive values for
variance or scale):
p(θl) =

∫
fNIG(θl|α, β, µ, δ)dθl

end
3. Training:
- Employ the Stochastic Variational Inference model

(Stephan et al., 2017).
- Approximate the model on data X and labels y

(where applicable, e.g., classification).
- The inference model adjusts model parameters and

hyperparameters θl in light of the priors p(θl).

Algorithm 1: Fully Bayesian dGP

these challenges by adopting a deep learning strat-
egy: they stack multiple GP layers. Each layer in
a dGP functions similarly to a hidden layer in a
neural network, transforming the output from the
preceding layer–or the input data for the first layer–
using its kernel function and hyperparameters. The
kernel function kl at each layer l determines the
similarity of outputs for different inputs. Hyperpa-
rameters θl dictate the kernel’s behaviour, influenc-
ing aspects like the characteristic length scale and
the function’s overall scale. The output fl(x) of
layer l is calculated using the transformed output
f(l−1)(x) from previous layer, the kernel function
kl, and the hyperparameters θl specific to that layer.

We introduce an algorithm (see algorithm 1), for
a fully Bayesian dGP model, with priors assigned
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to its hyperparameters. The algorithm 1 begins by
setting the number of layers L in the dGP structure.
For each layer l, ranging from 1 to L, we select
a distinct kernel function kl. This kernel function
determines the similarity of the layer’s outputs for
various input points. Each kernel function comes
with a set of hyperparameters, θl, which dictate
the kernel’s behaviour, influencing aspects like the
smoothness of the function learned or the character-
istic length scale of the data. The hyperparameters
θl are then linked to their respective prior distribu-
tions p(θl). We use stochastic variational inference
(Hoffman et al., 2013) for parameter estimation.
Training involves iteratively adjusting the model
parameters and hyperparameters, using the training
data X and labels y (when relevant). Through-
out this process, the inference engine takes into
account the defined priors p(θl) for the hyperpa-
rameters, ensuring solutions align with the more
probable values according to the priors, thereby
regularizing the model and mitigating overfitting.

4 Experiments and Results

The experiments aim to: (1) model the uncer-
tainty inherent in the proposed approach for under-
represented languages, (2) evaluate the perfor-
mance of various multilingual models, and (3) as-
sess the effectiveness of the proposed approach in
standard text mining tasks, such as text classifica-
tion, to show that it can surpass the performance of
the nearest benchmark model in this domain.

4.1 Experimental Setup

Datasets: We employed two languages known for
their intricate structures: Urdu and Pashto. For
Urdu, we used two prominent datasets: the Roman
Urdu Emotion Detection Dataset (RUED) (Arshad
et al., 2019) and the Urdu Offensive Dataset (UOD)
(Akhter et al., 2020). The RUED dataset includes
3075 publicly available instances for emotion de-
tection, labelled as Anger, Sad, Happy, and Neutral.
Conversely, the UOD dataset is designed for binary
classification of offensive language, with 2170 pub-
licly available instances. For Pashto, we utilized
the Pashto Offensive Language Dataset (POLD)
(Haq et al., 2023), which contains 34400 tweets
classified as offensive or non-offensive.
Evaluation Metrics: To evaluate uncertainty, we
use Root Mean Square Error (RMSE) and Brier
Score metrics (Brier, 1950), commonly adopted in
the literature. RMSE helps understand the spread

of errors, providing insight into model uncertainty.
The Brier Score calculates the mean squared dif-
ference between predicted probabilities (the likeli-
hood of an event) and actual outcomes (whether the
event occurred). It penalizes models for prediction
errors and overconfidence in wrong predictions. A
low Brier Score indicates high accuracy and cal-
ibration in predictions, while a high Brier Score
suggests lower accuracy or calibration, implying
inaccurate predictions or overconfidence, reflecting
a lack of understanding of uncertainty. The Brier
Score ranges from 0 to 1, with 0 denoting a perfect
prediction. For our experiments with binary and
multi-class labels, we present the Brier Score (BS)
as follows:

BS =
1

D

D∑
i=1

(Pi −Oi)
2

︸ ︷︷ ︸
Binary

& 1

D

D∑
i=1

M∑
j=1

(fij − oij)
2

︸ ︷︷ ︸
Multi

(2)
where D represents the overall number of instances,
Pi denotes the predicted probability of the positive
class for the ith instance, and Oi signifies the actual
outcome (either 0 or 1) for the ith instance, M is
the number of classes, fij represents the forecast
probability assigned to class j for instance i. It is
the model’s predicted probability that instance i
belongs to class j and oij is the indicator variable
for whether class j is the true outcome for instance
i. It equals 1 if class j is the true outcome for
instance i, and 0 otherwise.

Notice that our methodology is not only adept
at uncertainty modelling but can also be used in
text classification. We assessed the models’ perfor-
mance in a few-shot setting (experiments spanned
zero-shot, five-shot, fifteen-shot scenarios, and
an 80-20 data split). We utilized a 5-fold cross-
validation approach and reported the mean values
in our results. The main evaluation metric we used
is the F1 score.
Language Models: The study employed four mul-
tilingual pre-trained transformer models: BERT-
base-Multilingual-uncased (Devlin et al., 2018),
DistilBERT-base-Multilingual-cased (Sanh et al.,
2019), XLM-RoBERTa-base (Conneau et al.,
2019), and Multilingual-MiniLM (Wang et al.,
2020). These models were selected for their pop-
ularity, broad availability, and compatibility with
our computational resources. They were fine-tuned
over 100 epochs using the Adam optimizer, with
an epsilon value of 1e-8 and a learning rate of 2e-5,
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incorporating early stopping based on validation
loss. The main goals of using these pre-trained
models were to create feature vectors and find the
best model for the selected languages.
Comparative Model: The study most similar to
our model is outlined in the research by (Miok
et al., 2022). The authors utilized the Monte Carlo
method without priors or kernel functions for un-
certainty quantification, closely aligning with the
theoretical framework of the deep Gaussian Pro-
cess model. The primary distinction, however, lies
in the fact that their approach does not utilize priors
for the model hyperparameters.
Kernel Functions and Hyper-Hyperparameters:
The squared kernel, which is a polynomial ker-
nel with an exponent of 2, proved to be the most
effective. Despite testing Gaussian, linear, Lapla-
cian, and sigmoid kernels, none outperformed the
squared kernel. The performance of all other ker-
nels was approximately 5% lower. The squared
kernel’s advantage may be due to its simpler struc-
ture and the ease of differentiation, especially when
compared to the linear kernel. It also showed
greater computational efficiency than more intri-
cate kernels such as the Gaussian and Laplacian.

We utilized conjugate priors (Blei et al., 2003)
for mathematical simplicity. Ideally, automating
the inference of hyper-hyperparameter values by
setting priors, achieved through posterior inference
on the hyper-hyperparameters, would be preferred.
However, this method incurs a significant compu-
tational cost. Research in Bayesian methods such
as topic models indicates that setting fixed hyper-
hyperparameter values can yield results similar to
those from posterior inference on the priors (Blei
et al., 2003; Griffiths et al., 2003; Jameel, 2014).
In our model, we experimented with two differ-
ent conjugate priors: the Normal-Inverse-Gamma
(NIG) and Student-t distributions. The NIG hyper-
prior consistently delivered reliable outcomes, in
line with previous research (Jameel et al., 2019).
NIG priors are well-regarded for providing an op-
timal balance of flexibility and constraint for hy-
perparameters, particularly when handling positive
hyperparameters and integrating prior knowledge.

4.2 Experimental Results
Uncertainty Modelling: The uncertainty estima-
tion of models prediction on classification tasks
is illustrated in Table 2. The primary columns,
marked by grey shading, show the results for
RMSE and Brier scores. While traditional large

language models are unable to compute Brier and
RMSE scores, our proposed method makes this
possible. Furthermore, we have benchmarked our
method against the baseline model introduced by
(Miok et al., 2022) that produced the best results
on the BERT-M model. Table 2 presents the perfor-
mance of leading models across various datasets
and test scenarios, including zero-shot, five-shot,
fifteen-shot, and full-data. We have showcased the
superior quantitative outcomes of the comparative
model in our table.

Relative to the baseline model, our method ex-
cels in uncertainty modelling, showing superior
results in both RMSE and Brier scores. Our model
surpasses others for several reasons: it incorporates
kernel modelling, which allows it to understand
complex relationships within feature vectors, lead-
ing to a more precise data representation. This
enhances the model’s ability to discern underlying
patterns, yielding more accurate predictions and un-
certainty assessments. Additionally, our approach
includes carefully selected hyper-hyperpriors that
steer the learning process by affecting the model’s
evaluation of evidence. By strategically choosing
them, we ensure the model focuses on the most
relevant information, providing reliable and robust
uncertainty quantification.

Furthermore, our methodology enabled us to
conduct thorough error analysis and pinpoint in-
stances where the model shows confusion and un-
certainty in its decision-making. This analysis as-
sists in prioritizing which predictions to scrutinize
more closely. Figure 1 illustrates the probability
distribution for correct and incorrect predictions by
the BERT-Multilingual model in a binary classifi-
cation task. The distribution is divided into four
segments. Predictions nearing 1 signify strong con-
fidence, whereas those approaching 0.5 indicate
uncertainty. For a finer view, we also present the
0.6–0.8 range. The graph reveals that predictions
made with high confidence (0.8–1.0) tend to be cor-
rect, while those made with uncertainty (0.5–0.7)
are prone to errors. This highlights our model’s
capacity to recognize when it is unsure, allowing
us to concentrate on the predictions that require
more detailed analysis. Furthermore, our research
provides valuable insights that improve uncertainty
modelling, especially in multi-class scenarios, en-
abling the identification of underperforming classes
As illustrated in Figure 2, the Brier score draws at-
tention to the classes that lag in different training
setups.
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Figure 1: Probability distribution and prediction results
for BERT-M for 5 Shot UOD Dataset.
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Figure 2: Brier score for each class under different
training scenarios for BERT-M in the RUED dataset.

Downstream Application: In addition to uncer-
tainty modeling, our approach is also well-suited
for traditional text mining tasks. To demonstrate
our model’s superiority over its competitors, we
conducted experiments on a downstream applica-
tion. This study focuses on classification experi-
ments, which aim to sort data points into predefined
categories. We evaluated our model using the F1
score metric, as illustrated in Table 2. We tested var-
ious multilingual models, addressing both binary
and multi-class labels. The table showcases our
method’s efficacy in different data availability sce-
narios: zero-shot, five-shot, fifteen-shot, and full-
data. The goal of these experiments was to evalu-
ate the models’ performance on smaller datasets,
given the limited public data available for under-
represented languages (Khattak et al., 2021).

Deep learning models, such as deep learning-
based text classifiers (Minaee et al., 2021), tend
to struggle with our datasets due to the underrep-
resentation of data points that embody complex
or subtle variations within a class. These models,
lacking sufficient examples to grasp these nuances,
may misclassify them or default to the dominant
class. Similarly, traditional classifiers like SVMs
(Patle and Chouhan, 2013) also face challenges, re-
sulting in a less robust decision boundary that can
render the model overly sensitive to certain data
points and susceptible to overfitting. Our experi-

Models UOD (80/20 split) RUED (80/20 split) POLD (80/20 split)

F1 Brier RMSE F1 Brier RMSE F1 Brier RMSE

BERT-M (BL) 0.968 0.029 0.163 0.476 0.189 0.426 0.900 0.079 0.282
BERT-M 0.970 0.025 0.160 0.491 0.185 0.421 0.901 0.078 0.280
XLM-R 0.960 0.038 0.195 0.489 0.189 0.430 0.940 0.073 0.271
DistilBERT 0.947 0.046 0.215 0.467 0.191 0.433 0.861 0.112 0.335
Mini-LM 0.976 0.022 0.148 0.479 0.188 0.424 0.932 0.053 0.230

UOD (15 Shot) RUED (15 Shot) POLD (15 Shot)

BERT-M (BL) 0.683 0.220 0.451 0.252 0.211 0.448 0.582 0.248 0.497
BERT-M 0.707 0.216 0.449 0.277 0.202 0.443 0.604 0.244 0.494
XLM-R 0.695 0.219 0.452 0.226 0.221 0.461 0.569 0.249 0.498
DistilBERT 0.681 0.239 0.487 0.254 0.201 0.442 0.518 0.260 0.510
Mini-LM 0.671 0.241 0.491 0.221 0.230 0.479 0.539 0.257 0.507

UOD (5 Shot) RUED (5 Shot) POLD (5 Shot)

BERT-M (BL) 0.611 0.257 0.506 0.247 0.257 0.505 0.375 0.260 0.509
BERT-M 0.620 0.251 0.501 0.251 0.255 0.505 0.397 0.253 0.503
XLM-R 0.524 0.253 0.503 0.188 0.259 0.511 0.360 0.256 0.509
DistilBERT 0.570 0.286 0.547 0.225 0.258 0.509 0.369 0.255 0.507
Mini-LM 0.512 0.291 0.552 0.168 0.267 0.528 0.336 0.261 0.515

UOD (0 Shot) RUED (0 Shot) POLD (0 Shot)

BERT-M (BL) 0.401 0.262 0.511 0.150 0.265 0.515 0.338 0.269 0.520
BERT-M 0.400 0.258 0.505 0.150 0.263 0.514 0.338 0.267 0.518
XLM-R 0.341 0.261 0.510 0.110 0.268 0.523 0.321 0.272 0.524
DistilBERT 0.353 0.265 0.517 0.137 0.266 0.519 0.333 0.269 0.524
Mini-LM 0.335 0.273 0.569 0.103 0.274 0.533 0.312 0.275 0.531

Table 2: Quantitative Results. BL refers to the results
of the closest baseline developed in (Miok et al., 2022).

ments have consistently shown underperformance
by these models, which is why they are not in-
cluded in our experimental results.

Table 2 shows the performance of various mul-
tilingual language models on Urdu and Pashto
datasets across different scenarios (zero-shot, five-
shot, fifteen-shot, and full-data). Across all
datasets, our proposed approach performed as well
as or better than the baseline model in terms of
Accuracy and F1 score. For the UOD dataset, Mini-
LM performed best in the full-data scenario, closely
followed by BERT-Multilingual, which excelled in
the few-shot scenarios compared to other models.
Similar trends are observed in the RUED dataset,
where BERT-Multilingual performed the best in
both full-data and few-shot settings, such as 5-shot
and zero-shot. In the POLD dataset, XLM-Roberta
demonstrates superior performance in the full-data
scenario, closely trailed by Mini-LM. In few-shot
scenarios, akin to UOD and RUED datasets, BERT-
Multilingual excels in the POLD dataset as well,
underscoring its effectiveness.
Comparison with Conventional models: Table
3 provides a detailed comparison of the results
between our proposed approach and conventional
models. Our model shows comparable or improved
performance in terms of F1-score and Accuracy
metrics. Notably, unlike conventional models, our
model can also compute Brier and RMSE scores,
highlighting its additional capabilities in prediction
evaluation.
Qualitative Analysis: Based on the experimental
evaluation, we have the following key observations.

Our model can effectively identify the instances
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Models UOD (80/20 split) RUED (80/20 split) POLD (80/20 split)

F1 Acc Brier RMSE F1 Acc Brier RMSE F1 Acc Brier RMSE

Conventional Models
BERT-M 0.958 0.959 - - 0.510 0.554 - - 0.901 0.911 - -
XLM-R 0.960 0.960 - - 0.473 0.511 - - 0.940 0.944 - -
DistilBERT 0.931 0.931 - - 0.468 0.510 - - 0.859 0.868 - -
Mini-LM 0.962 0.964 - - 0.475 0.530 - - 0.928 0.941 - -

Proposed Approach
BERT-M 0.970 0.970 0.025 0.160 0.491 0.573 0.185 0.421 0.901 0.910 0.078 0.280
XLM-R 0.960 0.959 0.038 0.195 0.489 0.538 0.189 0.430 0.940 0.943 0.073 0.271
DistilBERT 0.947 0.947 0.046 0.215 0.467 0.511 0.191 0.433 0.861 0.870 0.112 0.335
Mini-LM 0.976 0.977 0.022 0.148 0.479 0.530 0.188 0.424 0.932 0.942 0.053 0.230

UOD (15 Shot) RUED (15 Shot) POLD (15 Shot)

Conventional Models
BERT-M 0.691 0.698 - - 0.277 0.286 - - 0.606 0.634 - -
XLM-R 0.732 0.733 - - 0.224 0.254 - - 0.564 0.631 - -
DistilBERT 0.673 0.676 - - 0.235 0.325 - - 0.523 0.630 - -
Mini-LM 0.665 0.668 - - 0.201 0.213 - - 0.536 0.619 - -

Proposed Approach
BERT-M 0.707 0.704 0.216 0.449 0.277 0.285 0.202 0.443 0.604 0.650 0.244 0.494
XLM-R 0.695 0.712 0.219 0.452 0.226 0.256 0.221 0.461 0.569 0.630 0.249 0.498
DistilBERT 0.681 0.680 0.239 0.487 0.254 0.331 0.201 0.442 0.518 0.626 0.260 0.510
Mini-LM 0.671 0.670 0.241 0.491 0.221 0.235 0.230 0.479 0.539 0.621 0.257 0.507

UOD (5 Shot) RUED (5 Shot) POLD (5 Shot)

Conventional Models
BERT-M 0.580 0.583 - - 0.253 0.261 - - 0.396 0.433 - -
XLM-R 0.520 0.527 - - 0.180 0.254 - - 0.358 0.410 - -
DistilBERT 0.573 0.586 - - 0.211 0.232 - - 0.370 0.431 - -
Mini-LM 0.510 0.511 - - 0.161 0.199 - - 0.334 0.398 - -

Proposed Approach
BERT-M 0.620 0.620 0.251 0.501 0.251 0.273 0.255 0.505 0.397 0.436 0.253 0.503
XLM-R 0.524 0.547 0.253 0.503 0.188 0.258 0.259 0.511 0.360 0.411 0.256 0.509
DistilBERT 0.570 0.589 0.286 0.547 0.225 0.261 0.258 0.509 0.369 0.430 0.255 0.507
Mini-LM 0.512 0.523 0.291 0.552 0.168 0.215 0.267 0.528 0.336 0.399 0.261 0.515

UOD (0 Shot) RUED (0 Shot) POLD (0 Shot)

Conventional Models
BERT-M 0.340 0.494 - - 0.150 0.209 - - 0.335 0.395 - -
XLM-R 0.328 0.490 - - 0.111 0.182 - - 0.323 0.374 - -
DistilBERT 0.330 0.489 - - 0.135 0.195 - - 0.331 0.392 - -
Mini-LM 0.331 0.486 - - 0.103 0.164 - - 0.312 0.360 - -

Proposed Approach
BERT-M 0.400 0.517 0.258 0.505 0.150 0.210 0.263 0.514 0.338 0.397 0.267 0.518
XLM-R 0.341 0.502 0.261 0.510 0.110 0.181 0.268 0.523 0.321 0.373 0.272 0.524
DistilBERT 0.353 0.510 0.265 0.517 0.137 0.196 0.266 0.519 0.333 0.394 0.269 0.524
Mini-LM 0.335 0.498 0.273 0.569 0.103 0.165 0.274 0.533 0.312 0.359 0.275 0.531

Table 3: Comparative Results of Proposed Approach with Conventional Models

where it is uncertain, a capability not present in tra-
ditional multilingual models. Our method of incor-
porating priors and kernels increases the model’s
confidence in borderline cases, outperforming base-
line models. For instance, in predicting the senti-
ment of the RUED dataset text “Lyari Singoline Me
Firing Se 1 Zakhmi [1 injured in firing in Lyari San-
golne]”, the baseline model correctly labelled it as
“sad” with ∆ is 0.054 (∆ = PP −RP ; where PP
is the predicted probability and RP is the runner-
up probability), which indicates the confusion be-
tween the top two probabilities. In contrast, our
model not only correctly labelled the text but also

resulted in a higher ∆ score of 0.321, demonstrat-
ing greater confidence in its prediction.

Since the proposed approach allows us to ac-
curately identify instances of uncertainty, we con-
ducted an additional set of experiments as a case
study to strengthen the model’s confidence in ar-
eas where uncertainty was detected. We used text
from the RUED dataset and leveraged ChatGPT
to rephrase ambiguous instances. Our goal was to
enhance the sentiment of the text while maintaining
its original meaning. The resulting text, referred to
as “Advanced Emotion Text”, contains additional
emotionally charged words generated by prompt-
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Text Type Passage [Translation] GL PL PP RP ∆

Orignal khawateen par hone wala tashdud khawateen ki taraqi mein rukawat ka bais banta hai
[violence against women is hindrance to women’s development]

Sad Neutral 0.502 0.491 0.011

Advanced
Emotion

khawateen par hone wala tashaddud or ziaditi unki taraqqi or khushali mein rukawat ka
sabab or waja banti hai [violence and abuse on women is the cause of hindrance in their
development and happiness]

Sad Sad 0.622 0.365 0.257

Extended
Emotion

khawateen par hone wala tashaddud na sirf unki taraqqi or khushali mein rukawat ka
sabab banta hai, balkih unki honsle ko bhi shikast deta hai, jo samajh ki behteri ke liye
bohot zaroori hai [violence against women not only hinders their morals or happiness,
but also defeats their courage, which is very necessary for the improvement of society]

Sad Sad 0.703 0.284 0.419

Table 4: ChatGPT application on a RUED passage with its ground-truth label (GL), predicted labels (PL), predicted
probabilities (PP), runner-up probabilities (RP) and ∆ (PP-RP) by the BERT-multilingual model.
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Figure 3: Accuracy, F1, Brier score and RMSE for
techniques on less certain predictions.

ing ChatGPT with: “Enhance the lexicon to elevate
the emotional tone of the passages.” We conducted
another experiment where we instructed ChatGPT
to rephrase emotive text and lengthen the passages.
This resulted in what we call “Extended Emotion
Text”. The prompt used for this was: “Fully enrich
the lexicon to intensify the emotional essence of the
text and lengthen the sentences.”

Table 4 shows an example that demonstrates the
effectiveness. Initially, the model assigned a low
confidence score (small δ value) to an ambiguous
passage. However, by applying our proposed tech-
niques, the text was enriched with emotive terms.
This allowed the model to accurately predict the
category and significantly increase its confidence
score (δ value). The key to our approach lies in
adding supplementary emotional vocabulary. This
leverages the pre-training of our models on emo-
tion datasets, ultimately boosting their confidence
and improving their predictive accuracy.

Figure 3 visually illustrates the accuracy, F1
score, RMSE, and Brier score of the mentioned
methods when applied to uncertain predictions.
The experiments were carried out utilizing the
BERT-multilingual model. Significantly, our sug-

gested optimal solution led to a 7% rise in accuracy
when employing advanced emotion text and a 13%
enhancement with the extended emotion text ap-
proach. Moreover, the reduction in Brier score and
RMSE indicates improved prediction confidence
of the model compared to its previous performance.
The effectiveness of this approach lies in its ability
to incorporate additional emotional terms, coupled
with the pre-training of our models on emotional
datasets, which enhances confidence and predic-
tion accuracy. One aspect to bear in mind during
experiments is ChatGPT’s inclination to generate
hallucinations (Siontis et al., 2024).

5 Conclusions

We have developed a Bayesian dGP model. Our
model exerts control over its behaviour including
incorporating the kernel functions. The hyper-
hyperparameters serve as a meta-level control,
shaping the distribution of the standard priors on
the hyperparameters. Languages that are less
commonly represented possess distinct features
or dialectical variations. By employing hyper-
hyperparameters, we can steer the model towards
learning priors that better suit unseen data, thereby
improving its performance on novel language vari-
ations. Our experimental results indicate that our
model outperforms others in a quantitative compar-
ison.

6 Limitations

The primary challenge for NLP concerning under-
represented languages is the lack of data. NLP
models require large text datasets for training, but
languages with smaller speaker populations often
do not have ample written material, online con-
tent, or digital resources available. This shortage
of data impedes the creation of robust NLP models
for these languages. Additionally, these languages
often have distinctive linguistic characteristics that
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present difficulties for current NLP models. These
include intricate morphology, unconventional writ-
ing systems, and dialectal differences. Neverthe-
less, it is vital to develop specialized techniques for
these languages.

Our current model achieves satisfactory perfor-
mance metrics, but we are aware of its limitations
and are actively working to improve them. The the-
oretical advantages of incorporating asymmetric
priors are compelling. While these priors could im-
prove model outputs, they also introduce significant
computational complexity. However, this complex-
ity can be mitigated by employing techniques such
as variational inference, which simplifies the com-
plex posterior distribution into a more tractable
form. Methods like the Laplace approximation
(Bergamin et al., 2024) or Stochastic Variational In-
ference (Xuan et al., 2024) can substantially reduce
computational costs while maintaining reasonable
accuracy. Additionally, we might reduce the kernel
size, for instance, by using sparse deep Gaussian
processes (Ding et al., 2024) that leverage the nat-
ural sparsity of certain kernels, with the assump-
tion that only a limited number of data points have
mutual influence. This strategy enables the con-
struction of sparse kernel matrices that are more
efficient in terms of storage and computation. An-
other option is to apply the Nyström Method (Xia,
2024) to approximate the kernel matrix with a low-
rank factorization, which can greatly decrease its
size and the computational burden for inference.

The selection of priors in Bayesian inference is
a subtle process (Martin et al., 2024). In our study,
we focus on computational efficiency and mathe-
matical sophistication by employing conjugate pri-
ors. Asymmetric priors (Liu and Zhu, 2024) enable
the encoding of specific beliefs or knowledge about
the process under investigation. This is especially
useful when prior knowledge about the expected di-
rection or shape of the variable relationships exists.
Incorporating this knowledge via an asymmetric
prior can steer the model towards a more accurate
and realistic solution. Analogous to the way reg-
ularization techniques mitigate overfitting in deep
neural networks, asymmetric priors can serve a
similar purpose in deep Gaussian Processes. They
introduce a preference for simpler models or pro-
mote smoothness in predictions, which can prevent
the models from becoming excessively complex
and overfitting to the data noise.

Unlike conjugate priors (Huang and Huang,
2024), which provide a convenient closed-form

solution for posterior inference, asymmetric priors
necessitate more complex numerical methods to
approximate the posterior distribution. This com-
plexity can challenge the selection of an appro-
priate prior that balances the desired influence on
the model with computational feasibility. Introduc-
ing asymmetric priors can also complicate inter-
pretability, making it more difficult to understand
how the prior shapes the posterior distribution and
influences the model’s predictions. The increased
complexity of inference with asymmetric priors
makes it harder to verify and validate the model.
Techniques such as cross-validation may require
adjustments to consider the prior’s influence on the
results.

Moreover, Bayesian methodologies are inher-
ently prone to data quality issues such as biases
and outliers (Vieider, 2024). Thus, thorough data
cleaning and preprocessing are essential to ensure
reliable posterior estimates. Although our specific
case has not shown signs of overfitting or under-
fitting, these issues are potential concerns, espe-
cially for Bayesian models with complex structures
and limited data. We are exploring regularization
techniques to improve the model’s robustness. By
recognizing these limitations and actively seeking
solutions, we aim for consistent performance en-
hancements.
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