@inproceedings{schlechtweg-etal-2025-comedi,
title = "{C}o{M}e{D}i Shared Task: Median Judgment Classification {\&} Mean Disagreement Ranking with Ordinal Word-in-Context Judgments",
author = "Schlechtweg, Dominik and
Choppa, Tejaswi and
Zhao, Wei and
Roth, Michael",
editor = "Roth, Michael and
Schlechtweg, Dominik",
booktitle = "Proceedings of Context and Meaning: Navigating Disagreements in NLP Annotation",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2025.comedi-1.4/",
pages = "33--47",
abstract = "We asked task participants to solve two subtasks given a pair of word usages: Ordinal Graded Word-in-Context Classification (OGWiC) and Disagreement in Word-in-Context Ranking (DisWiC). The tasks take a different view on modeling of word meaning by (i) treating WiC as an ordinal classification task, and (ii) making disagreement the explicit detection aim (instead of removing it). OGWiC is solved with relatively high performance while DisWiC proves to be a challenging task. In both tasks, the dominating model architecture uses independently optimized binary Word-in-Context models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schlechtweg-etal-2025-comedi">
<titleInfo>
<title>CoMeDi Shared Task: Median Judgment Classification & Mean Disagreement Ranking with Ordinal Word-in-Context Judgments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dominik</namePart>
<namePart type="family">Schlechtweg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tejaswi</namePart>
<namePart type="family">Choppa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of Context and Meaning: Navigating Disagreements in NLP Annotation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dominik</namePart>
<namePart type="family">Schlechtweg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We asked task participants to solve two subtasks given a pair of word usages: Ordinal Graded Word-in-Context Classification (OGWiC) and Disagreement in Word-in-Context Ranking (DisWiC). The tasks take a different view on modeling of word meaning by (i) treating WiC as an ordinal classification task, and (ii) making disagreement the explicit detection aim (instead of removing it). OGWiC is solved with relatively high performance while DisWiC proves to be a challenging task. In both tasks, the dominating model architecture uses independently optimized binary Word-in-Context models.</abstract>
<identifier type="citekey">schlechtweg-etal-2025-comedi</identifier>
<location>
<url>https://aclanthology.org/2025.comedi-1.4/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>33</start>
<end>47</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CoMeDi Shared Task: Median Judgment Classification & Mean Disagreement Ranking with Ordinal Word-in-Context Judgments
%A Schlechtweg, Dominik
%A Choppa, Tejaswi
%A Zhao, Wei
%A Roth, Michael
%Y Roth, Michael
%Y Schlechtweg, Dominik
%S Proceedings of Context and Meaning: Navigating Disagreements in NLP Annotation
%D 2025
%8 January
%I International Committee on Computational Linguistics
%C Abu Dhabi, UAE
%F schlechtweg-etal-2025-comedi
%X We asked task participants to solve two subtasks given a pair of word usages: Ordinal Graded Word-in-Context Classification (OGWiC) and Disagreement in Word-in-Context Ranking (DisWiC). The tasks take a different view on modeling of word meaning by (i) treating WiC as an ordinal classification task, and (ii) making disagreement the explicit detection aim (instead of removing it). OGWiC is solved with relatively high performance while DisWiC proves to be a challenging task. In both tasks, the dominating model architecture uses independently optimized binary Word-in-Context models.
%U https://aclanthology.org/2025.comedi-1.4/
%P 33-47
Markdown (Informal)
[CoMeDi Shared Task: Median Judgment Classification & Mean Disagreement Ranking with Ordinal Word-in-Context Judgments](https://aclanthology.org/2025.comedi-1.4/) (Schlechtweg et al., CoMeDi 2025)
ACL