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Abstract

Manual annotation of edges in Diachronic
Word Usage Graphs is a critical step in cre-
ation of datasets for Lexical Semantic Change
Detection tasks, but a very labour-intensive one.
Annotators estimate if two senses of an ambigu-
ous word expressed in two usages of this word
are related and how. This is a variation of the
Word-in-Context (WiC) task with some pecu-
liarities, including diachronic data, an ordinal
scale for annotations consisting of 4 values with
pre-defined meanings (e.g. homonymy, poly-
semy), and special attention to the degree of
disagreement between annotators which affects
the further processing of the graph. CoMeDi is
a shared task aiming at automating this annota-
tion process. Participants are asked to predict
the median annotation for a pair of usages in
the first subtask, and estimate the disagreement
between annotators in the second subtask. To-
gether this gives some idea about the distribu-
tion of annotations we can get from humans for
a given pair of usages.

For the first subtask we tried several ways
of adapting a binary WiC model to this 4
class problem. We discovered that further fine-
tuning the model as a 4 class classifier on the
training data of the shared task works signifi-
cantly worse than thresholding the original bi-
nary model. For the second subtask our best
results were achieved by building a model that
predicts the whole multinomial distribution of
annotations and calculating the disagreement
from this distribution. Our solutions for both
subtasks have outperformed all other partici-
pants of the shared task.

1 Introduction

Diachronic Word Usage Graphs (DWUGs)
(Schlechtweg et al., 2021) have recently become
a de-facto standard data structure when working
on Lexical Semantic Change Detection (LSCD)
tasks (Schlechtweg, 2023). A graph is built for a

particular ambiguous lemma. Graph nodes corre-
spond to usages of this lemma from an older or
a newer corpus. Edges are annotated with human
judgements about relatedness of senses of the target
lemma in the two corresponding usages. The an-
notations are integer values from 1 to 4, where
1 means completely unrelated senses and 4 the
same sense. Based on these annotations a num-
ber of automated procedures can be applied to the
graph, including filtering noisy and ambiguous us-
ages based on disagreement between annotators,
inferring senses of the target lemma, discovering
novel or lost senses of the lemma. However, to get
reasonable results from these procedures an abun-
dant amount of high quality annotations is required.
Given that the number of edges grows quadratically
with the number of usages this annotation task is
especially resource-consuming.

CoMeDi (Schlechtweg et al., 2025) is a shared
task calling for automating this manual annota-
tion process. It relies on DWUG datasets that
had been previously created for Russian (Rod-
ina and Kutuzov, 2020; Kutuzov and Pivovarova,
2021; Aksenova et al., 2022), Chinese (Chen et al.,
2023), Spanish (Zamora-Reina et al., 2022), Nor-
wegian (Kutuzov et al., 2022), German, Swedish
and English (Schlechtweg et al., 2024; Kurtyigit
et al., 2021; Hätty et al., 2019; Schlechtweg et al.,
2018). It consists of two subtasks, the first requires
predicting the median of human annotations for a
pair of usages and the second aims at estimating
disagreement between annotators on this pair. We
propose several solutions for each subtask.

Our solutions for the first subtask are based on an
existing binary WiC model. One approach to adapt-
ing it to the subtask is further fine-tuning for the
4 class classification problem on the training data
of the shared task. Another approach is taking the
predicted probability of the positive class (i.e. that
the sense is the same in two usages) from the orig-
inal binary model and converting it to the 4 point



49

scale by thresholding. These thresholds can be se-
lected to directly maximize the evaluation metric
of the subtask. Surprisingly, the second approach
gives much better results. Binarising CoMeDi train-
ing data and further fine-tuning of the binary WiC
model on it gives additional performance gains. For
the second subtask we trained models to predict
the measure of disagreement directly or predict the
whole distribution of annotations from which the
measure of disagreement can be calculated. The
second approach has shown better results.

Our best solutions demonstrated the highest per-
formance among all participants of the shared task
during the evaluation period. In the post-evaluation
period we improved the results and systematically
studied various design options.

2 Related work

Predicting if two occurrences of the same ambigu-
ous word have similar or different senses is known
as the Word-in-Context (WiC) task. Most often
it is framed as a binary classification task (Pile-
hvar and Camacho-Collados, 2019; Martelli et al.,
2021). A graded version of this task was also con-
sidered before, e.g. in SemEval-2020 Task 3 (Ar-
mendariz et al., 2020), with the Spearman’s and
Pearson’s correlations between model and human
judgements serving as evaluation metrics. In the
CoMeDi shared task Krippendorff’s α is used as
a metric and models are required to return exactly
the same annotations as humans, not just some cor-
related predictions.

Many WiC models exist, but in the recent shared
tasks on LSCD the SOTA / near-SOTA results were
obtained by systems relying on XL-LEXEME (Cas-
sotti et al., 2023) and DeepMistake (Arefyev et al.,
2021). Since our solutions of the CoMeDi shared
task employ the DeepMistake model, we will de-
scribe it focusing on those details that are important
for understanding our solutions. DeepMistake was
originally developed as a solution for the Multi-
lingual and Cross-Lingual WiC (MCL-WiC) task
(Davletov et al., 2021), and then further improved
and adapted for two LSCD shared tasks in Russian
(Arefyev et al., 2021) and Spanish (Homskiy and
Arefyev, 2022). It consists of an XLM-R (Conneau
et al., 2019) based backbone, which encodes two
input usages concatenated together. For each occur-
rence of the target word an embedding is calculated
by mean-pooling XLM-R outputs for subwords of
this occurrence. Then a target aggregation function

combines the embeddings of two occurrences of
the target word into a single representation, which
is fed to a classification head. Extensive exper-
iments with various target aggregation functions
were carried out. Among 10 aggregation functions
explored in Davletov et al. (2021) the best func-
tion was comb_dmn, which is the concatenation
of the component-wise difference of unnormalized
and the component-wise product of normalized
embeddings: comb_dmn(x, y) = (x − y, x ⊙ y).
In Arefyev et al. (2021) a function l1ndotn con-
catenating the Manhattan distance and the dot
product of normalized embeddings was proposed,
which proved to work better at least for LSCD:
l1ndotn(x, y) = (||x− y||1, x · y). DeepMistake
was originally initialized with XLM-R weights and
fine-tuned on training, development and trial data
from MCL-WiC. The combined train set consists
of usages in English, Russian, French, Arabic and
Chinese, and also a few cross-lingual pairs. For the
shared tasks on LSCD it was further fine-tuned on
the data in Russian and Spanish from these tasks.

3 Subtask 1: Median Judgment
Classification

3.1 Task description

In this subtask participants are provided with pairs
of word usages. Each pair has several human judg-
ments on an ordinal scale from 1 to 4. The task is
to predict the median of these judgments for each
usage pair. The evaluation is performed using the
ordinal version of Krippendorff’s α (Krippendorff,
2018), which accounts for the degree of deviation
between the predicted and true median values.

3.2 Models

In this section we introduce our solutions for the
median judgment classification subtask. All of
them employ the WiC model DeepMistake (Davle-
tov et al., 2021; Arefyev et al., 2021). The original
DeepMistake model is a binary classifier predict-
ing if two usages of the same word have the same
sense. This model can be used directly and predict
2 out of 4 classes, or the predicted probability of
the positive class can be quantized into 4 intervals
to get a 4-class classifier. To better adapt Deep-
Mistake to the shared task we further fine-tune
it as a binary classifier on the CoMeDi training
data. Additionally, we experiment with replacing
the classification head and fine-tuning the model as
a 4-class classifier.
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Krippendorff’s α
Model/Participant ZH DE EN NO RU ES SV AVG
2class@CoMeDi-ZH 0.424 0.723 0.732 0.633 0.633 0.748 0.675 0.652
Mixed 0.424 0.723 0.732 0.668 0.623 0.748 0.675 0.656
comedy_baseline_2 0.379 0.728 0.654 0.515 0.550 0.656 0.601 0.583
daalft 0.317 0.656 0.555 0.589 0.487 0.636 0.648 0.555
NBTailee 0.362 0.672 0.574 0.438 0.420 0.595 0.608 0.524
JuniperLiu 0.140 0.492 0.507 0.080 0.128 0.330 0.224 0.271
comedi_baseline 0.059 0.274 0.102 0.124 0.112 0.175 0.018 0.123

Table 1: Evaluation results on the subtask 1. Best results for each language are in bold font.

3.2.1 DeepMistake-based models

Most of our experiments employ the
MCL→DWUGes+XLWSDes version of Deep-
Mistake, which is the best model from (Homskiy
and Arefyev, 2022). It was initialized from
XLM-R (Conneau et al., 2019) and underwent
the two-stage fine-tuning process. Initially, it was
fine-tuned on the multilingual MCL-WiC dataset
(Martelli et al., 2021), followed by a combination
of the Spanish DWUG (Zamora-Reina et al.,
2022) and the Spanish subset of XLWSD (Pasini
et al., 2021). This model employs the l1ndotn
aggregation function and we further adapt it to the
shared task by fine-tuning it on the CoMeDi train
sets.

All models were fine-tuned for 50 epochs us-
ing AdamW with a linear learning rate sched-
uler, lr=1e-05 and early stopping by the average
Krippendorff’s α across all languages (except for
2class@CoMeDi-ZH+byNO, see below).

2class@CoMeDi. This model variant was fine-
tuned for binary classification on the concatena-
tion of all CoMeDi train sets employing the binary
cross-entropy (BCE) loss. Here, examples with
the median annotations of 1 and 2 were employed
as examples of the negative class, while examples
with the median of 3 and 4 as examples of the
positive class.

2class@CoMeDi-2,3. This model is identical
to the previous one, but examples with the median
annotations of 2 and 3 were excluded from its train
set. We hypothesized that training only on the clear-
cut examples having most annotations of 1 or 4 will
improve model performance.

2class@CoMeDi-ZH. Identical to
2class@CoMeDi, but examples in Chinese
were removed from the train set. This was based
on our preliminary experiments where we observed
that fine-tuning on the Chinese train set only
results in the worst performance on all dev sets,
including the Chinese one (see Appendix A).

2class@CoMeDi-ZH-DE. For this model, both
Chinese and German1 examples were removed
from the train set.

2class@CoMeDi-ZH+byNO. We observed that
Norwegian is the only language for which the re-
sults on the dev set can be significantly improved
if early stopping is done by the Krippendorff’s α
on this specific language as opposed to the average
across all languages. This model was fine-tuned
similarly to 2class@CoMeDi-ZH, but the check-
point with the best dev performance on Norwegian
was selected.

4class@CoMeDi. This version was fine-tuned
for 4-class classification on the CoMeDi dataset. It
utilized the cross-entropy (CE) loss where the tar-
get was the median annotation for a pair of usages.

4class@CoMeDi-ZH. Identical to the previous
model, but examples in Chinese were removed
from the train set.

3.2.2 NMthres
To adapt a model trained for binary classification to
predict four classes, thresholding can be applied to
the predicted probability of the positive class. This
method is taken from the baseline of the shared
task, we will refer to it as NMthres. For each
language separately, NMthres learns 3 thresholds
that discretize a continuous input variable into 4
classes by optimizing the target metric using the
Nelder-Mead method (Nelder and Mead, 1965).
NMthres can be applied to the probability of the
positive class predicted by any binary DeepMistake
model.

3.2.3 Inference methods
For inference different strategies are applied. For
all 4-class DeepMistake models the class with the
highest probability is selected directly. In contrast,
for the 2-class models without NMthres either class

1We selected German as the second candidate for exclusion
because of the poor accuracy of a model trained on German
on other dev sets, see Appendix A.
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1 or 4 is chosen based on the threshold of 0.5. Oth-
erwise, the predicted class is selected by NMthres.

3.3 Evaluation results

During the evaluation phase we submitted two sets
of predictions. The first submission consists of pre-
dictions from the 2class@CoMeDi-ZH model as it
achieved the highest Krippendorff’s α on the devel-
opment set. The second submission titled Mixed
was constructed using predictions from multiple
models: for Norwegian we used predictions from
the 2class@CoMeDi-ZH+byNO model, for Rus-
sian we employed 2class@CoMeDi, and for other
languages we utilized 2class@CoMeDi-ZH. For
both submissions NMthres was optimized on the
CoMeDi dev set and applied to the predicted prob-
abilities of the positive class from the DeepMistake
models. The results on the test set are presented in
Table 1.

During the evaluation phase, both submissions
proved to outperform all other participants on av-
erage across languages. We also have achieved
the best results on all individual languages except
for German where comedy_baseline_2 secured the
top position. Our second submission was a bit bet-
ter than the first one on Norwegian, but worse on
Russian.

3.4 Post-evaluation experiments

3.4.1 Train-test overlap
After the evaluation phase it was revealed that the
Spanish portion of the CoMeDi test set is derived
from the Spanish DWUG dataset (Zamora-Reina
et al., 2022) which was partially used to fine-tune
the MCL→DWUGes+XLWSDes model. Table 2
shows the overlap between the training data for this
model and the Spanish test set.

Due to the significant overlap, we aimed to
assess its impact on the final Krippendorff’s α
on the test set. We compared four DeepMis-
take models from Homskiy and Arefyev (2022):
(1) MCL→DWUGes+XLWSDes, (2) MCL trained
solely on the MCL dataset with no overlap with
the CoMeDi test set, (3) MCL→RSS fine-tuned
on the RuSemShift (RSS) (Rodina and Kutuzov,
2020), and (4) MCL+RSS+DWUGes+XLWSDes

fine-tuned on all datasets simultaneously. Although
the models trained on RuSemShift also show some
overlap with the training set, the MCL model ex-
hibits no overlap at the usage level, as indicated in
Table 2.
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Figure 1: Krippendorff’s α of DeepMistake models w/
and w/o NMthres. Results are on Russian and Spanish
sets, and on average across all languages. See extended
plot in Figure 7.

The results of this comparison are shown in Fig-
ure 1. DeepMistake models fine-tuned on RSS
are clearly better for Russian. For Spanish the re-
sults are mixed, on the test set all models are on
par when using NMThres. On average across lan-
guages, among models that are not fine-tuned on
CoMeDi the best test result of 0.660 are achieved
by the MCL model (no overlap), this model out-
performs both of our submissions and other partici-
pants as well.

Inspired by improvements of the
2class@CoMeDi-ZH model over the non-
fine-tuned version, we similarity fine-tuned the
MCL model on CoMeDi data. We found that
with fine-tuning on CoMeDi the results of the
MCL model are worse, but still better than other
participants, see table 3.

3.4.2 Optimizing CoMeDi Training Data for
Fine-Tuning DeepMistake Models

In this subsection, we explore which subsets of
CoMeDi training data should be utilized for fine-
tuning the DeepMistake models to enhance Krip-
pendorff’s α. We conducted experiments by remov-
ing examples with the median annotation equal to
2 or 3, excluding Chinese examples, and exclud-
ing both Chinese and German language examples.
The outcomes of these experiments are depicted in
Figure 2.

Our findings indicate that for improved perfor-
mance on the Chinese development and test sets of
CoMeDi, it is beneficial to exclude Chinese data
during training (see appendix C for a more in-depth
analysis). Furthermore, removing the German ex-
amples from the training data does not significantly
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Language Part MCL DWUGes + XLWSDes RSS

Spanish dev - 3/112/175 (30/31/28 %) -
test - 4/112/155 (20/15/10 %) -

Russian dev 3/0/0 (10/0/0 %) - 8/363/180 (29/16/16 %)
test 3/0/0 (5/0/0 %) - 11/487/244 (20/11/11 %)

Table 2: Overlap between the CoMeDi evaluation data and training data of DeepMistake models. Both the
absolute counts of lemmas / usages / usage pairs in common and the proportions of test items present in the
training set (in brackets) are reported. During the evaluation phase we employed the model trained on MCL and
DWUDes+XLWSDes. Its training data overlaps with the CoMeDi test data for Spanish (in bold). It also has 3
common lemmas but no common usages with the test data for Russian. In the post-evaluation experiments we
additionally experimented with a model trained on MCL only to avoid overlaps on the level of usages and usage
pairs, as well as models trained on RSS which overlaps with the test data for Russian. MCL also contains examples
in English and Chinese, but we found no overlaps with the corresponding evaluation sets.
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Figure 2: Krippendorff’s α of 2-class DeepMistake
models fine-tuned on different subsets of CoMeDi train
data. The results on the Chinese and the German dev
sets, and on average across all dev sets are shown. See
extended plot in Figure 8.

affect performance on the German test set or the
overall Krippendorff’s α, but it does lead to better
results on the Chinese subset. Conversely, remov-
ing examples with median annotations of 2 and 3
results in poorer performance on the Chinese set
and reduces the average performance on the devel-
opment set, although there is a slight improvement
on the test set.

3.4.3 Evaluating Fine-Tuning Strategies on
CoMeDi Training Sets

In this analysis, we evaluated various training
strategies for fine-tuning DeepMistake models, as
depicted in Figure 3.

Our investigation suggests that training with a
4-class cross-entropy (CE) approach (DM-ft4) is
suboptimal. While the Krippendorff’s α on the
development set shows a slight improvement, the
performance on the test set declines compared to
the over original DeepMistake which was not fine-
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Figure 3: Average Krippendorff’s α across all
languages for models fine-tuned on CoMeDi and
CoMeDi-ZH. DM stands for DeepMistake with the
MCL→DWUGes+XLWSDes weights. ft-2 and ft-4
stand for 2-class and 4-class fine-tuning respectively.
See extended plot in Figure 9.

tuned on CoMeDi data (DM). In contrast, fine-
tuning the 2-class DeepMistake model (DM-ft2)
yields noticeable improvements over the DM on
the development set, albeit with only modest gains
on the test set. These test set improvements do
not surpass the results obtained by simply apply-
ing the initial DeepMistake model with NMthres
(DM+NMthres).

Overall, fine-tuning DeepMistake as a binary
classifier on CoMeDi training data and then apply-
ing NMthres to obtain a 4-class classifier delivers
the best results. Comprehensive post-evaluation
results are provided in Table 3, and a more detailed
comparison is provided in Appendix B.

4 Subtask 2: Mean Disagreement
Ranking

4.1 Task description

Similarly to subtask 1, participants are given pairs
of word usages. The objective is to predict the
mean absolute difference between judgments of
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Krippendorff’s α
Model ZH DE EN NO RU ES SV AVG
DM w/o NMthres
MCL 0.453 0.675 0.624 0.660 0.603 0.679 0.669 0.623
MCL→DWUGes+XLWSDes 0.408 0.689 0.520 0.575 0.585 0.653 0.628 0.580
DM w/ NMthresdev
MCL 0.465 0.741 0.727 0.688 0.645 0.737 0.617 0.660
MCL→DWUGes+XLWSDes 0.423 0.738 0.710 0.680 0.609 0.736 0.604 0.643
2class w/o NMthres
2class@CoMeDi 0.427 0.605 0.640 0.642 0.555 0.658 0.604 0.590
2class@CoMeDi-2,3 0.337 0.636 0.637 0.631 0.578 0.683 0.686 0.598
2class@CoMeDi-ZH 0.426 0.642 0.626 0.609 0.599 0.669 0.680 0.607
2class@CoMeDi-ZH+byNO 0.340 0.524 0.589 0.649 0.442 0.536 0.548 0.527
2class@CoMeDi-ZH-DE 0.461 0.635 0.644 0.631 0.554 0.677 0.671 0.610
MCL,2class@CoMeDi-ZH 0.417 0.592 0.626 0.639 0.543 0.605 0.544 0.567
2class w/ NMthresdev
2class@CoMeDi 0.393 0.698 0.712 0.649 0.6232 0.735 0.633 0.634
2class@CoMeDi-2,3 0.364 0.718 0.748 0.664 0.630 0.719 0.699 0.649
2class@CoMeDi-ZH 0.4241,2 0.7231,2 0.7321,2 0.6331 0.6331 0.7481,2 0.6751,2 0.652
2class@CoMeDi-ZH+byNO 0.436 0.620 0.637 0.6682 0.547 0.591 0.597 0.585
2class@CoMeDi-ZH-DE 0.467 0.728 0.758 0.662 0.629 0.773 0.679 0.671
MCL,2class@CoMeDi-ZH 0.392 0.692 0.733 0.642 0.619 0.728 0.637 0.635
4class
4class@CoMeDi 0.517 0.665 0.514 0.609 0.532 0.583 0.602 0.575
4class@CoMeDi-ZH 0.393 0.643 0.516 0.559 0.526 0.627 0.592 0.551

Table 3: Post-evaluation results on the test set of subtask 1. Best results for each language are in bold font.
Superscripts refer to our two submissions during the evaluation phase. By default, fine-tuned models are based on
MCL→DWUGes+XLWSDes, unless specified otherwise. Models based on MCL (no overlap with CoMeDi test
data) and their results are in italic.

different annotators for a given pair of usages:

D(J) =
1

|J |
∑

(j1,j2)∈J

|j1 − j2| (1)

J in Equation 1 is the set of pairs of judgments for
the same usage pair.

The evaluation metric is Spearman’s ρ (Spear-
man, 1904) between the predicted and the real
mean disagreements between annotators for a set
of usage pairs.

4.2 Models

In this section, we describe various approaches for
modelling annotator disagreement using the Deep-
Mistake model. Our initial strategy focused on a
regression model designed to directly predict the
mean disagreement between annotators, leveraging
the mean squared error (MSE) loss function. To ad-
dress difficulties in learning from noisy regression
target values, we introduced a binary classification
variant, which aims to identify usage pairs where
all annotators provided the same answer, applying
the binary cross-entropy (BCE) loss for learning.
Furthermore, we experimented with a model that
predicts the entire distribution of annotations and
calculates disagreement from this distribution. It is

trained on individual annotations as separate train-
ing examples. To improve the predicted distribu-
tion we also implemented a Power selector method.
This method transforms the predicted probabilities
by raising them to the language-specific powers
that are selected to maximize the target metric.

4.2.1 DeepMistake-based models
Similarly to subtask 1, our models for subtask 2
are based on MCL→DWUGes+XLWSDes. To
predict the level of disagreement between anno-
tators, we employed the comb_dmn aggregation
function during the fine-tuning process. In con-
trast to l1ndotn returning a two-dimensional vector
of distances which should represent sense proxim-
ity but not ambiguity or difficulty leading to dis-
agreements, comb_dmn returns a high-dimensional
representation potentially preserving more informa-
tion relevant to the subtask. To test this hypothesis,
we also trained a model using the l1ndotn function
for comparison.

All models were fine-tuned using the same opti-
mizer hyperparameters as in Subtask 1. Early stop-
ping was performed based on the average Spear-
man’s ρ across all languages.

comb_dmn,mse@CoMeDi-#less4: Our initial
approach was a regression model that directly pre-
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Spearman’s ρ
Model/Participant ZH DE EN NO RU ES SV AVG
comb_dmn,ce@CoMeDi-#less4 0.301 0.204 0.078 0.286 0.175 0.187 0.350 0.226
daalft 0.539 0.108 0.042 0.272 0.167 0.115 0.296 0.220
comedy_baseline_2 0.485 0.085 0.060 0.235 0.116 0.078 0.079 0.163
chuphuocvip123 0.362 0.099 0.018 0.156 0.050 0.012 0.172 0.124
comedi_baseline 0.387 0.093 0.064 0.076 0.049 0.077 0.081 0.118
JuniperLiu 0.358 0.022 0.038 -0.042 0.067 0.040 0.090 0.082
sunfz1 0.302 -0.001 0.045 -0.071 0.069 0.038 0.089 0.067

Table 4: Evaluation results on the subtask 2. Best results for each language are in bold font.

dicts the quantity of interest. This model was fine-
tuned to predict the mean of pairwise absolute judg-
ment differences between annotators, employing
the mean squared error (MSE) loss function. Exam-
ples containing fewer than four annotations were
excluded to ensure robustness of the training data,
as such examples might not provide sufficient in-
formation about the distribution2. In particular, this
filtration removes all examples from the Chinese
and Norwegian train sets.

comb_dmn,bce@CoMeDi-#less4: Since the
mean disagreement is estimated from as few as 4-5
annotations for most usage pairs, learning a good
regression model from such noisy targets may be
impossible. Thus, we experimented with less noisy
targets even though they are indirectly related to
the mean disagreement we are interested in. This
model was trained with the binary cross-entropy
(BCE) loss to determine if all annotators provided
the same answer for a pair of usages. All examples
with less than 4 annotations were excluded from
the train set.

comb_dmn,ce@CoMeDi-#less4: Instead of di-
rectly predicting the mean disagreement, we can
try training a model that predicts the whole distri-
bution of annotations for a given pair of usages,
and then estimate the mean disagreement from that
distribution. Technically, 4 class models trained for
subtask 1 return the probability distribution over
possible annotations, but since they are trained to
predict the median annotation only they have no
chance to learn anything about disagreements be-
tween annotators. Thus, for subtask 2 we do not ag-
gregate annotations of each usage pair but instead
fine-tune the model on each individual annotation
as a separate training example.

2In the preliminary experiments we tried fine-tuning mod-
els directly predicting mean disagreement with both mse and
bce losses on all examples, but they achieved near zero per-
formance. This is probably due to very noisy estimates of the
mean disagreement when less than 4 annotations are available.
Thus, for the second subtask we mostly experimented with
models trained on examples with 4 or more annotations.

comb_dmn,ce@CoMeDi: To verify if remov-
ing usage pairs with less than four annotations is
really helpful when training on individual anno-
tations, we trained this model on annotations of
all pairs. This increased the number of training
examples by 5x.

l1ndotn,ce@CoMeDi-#less4: In order to check
if our initial decision to use DeepMistake with the
comb_dmn aggregation function for subtask 2 was
optimal, we trained this model which is similar to
the previous one but employs the l1dotn aggrega-
tion function instead of comb_dmn.

4.2.2 Power selector
For models trained on individual annotations and
schemed to predict the probability distribution
across annotators, we designed an approach to opti-
mize their predictions for the target metric. Specifi-
cally, for each language, we fit four powers αi to
which the class probabilities pi are raised:

p̂i =
pαi
i∑4

j=1 p
αj

j

(2)

This method is inspired by the temperature soft-
max3 often used to undersample / oversample fre-
quent / rare classes, e.g. in word2vec (Mikolov
et al., 2013). This method is also related to com-
mon calibrating techniques (Guo et al., 2017). The
selection of these powers is performed similarly
to the NMthres process, utilizing the Nelder-Mead
optimization method to maximize Spearman’s ρ.

4.2.3 Inference methods
In case of the model fine-tuned with the MSE loss
between the predicted and gold mean disagree-
ments, we directly return its predictions. For the
model trained with the BCE loss function we re-
turn the predicted probability that there are some

3The Power Selector can be viewed as a more generalized
approach compared to temperature scaling in softmax function.
While the temperature softmax technique uniformly raises all
probabilities to the same power, our approach assigns a distinct
power to each probability individually.
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Spearman’s ρ
Model ZH DE EN NO RU ES SV AVG
aggregated annotations
comb_dmn,mse@CoMeDi-#less4 0.462 0.241 0.110 0.215 0.192 0.136 0.238 0.228
comb_dmn,bce@CoMeDi-#less4 0.497 0.237 0.089 0.300 0.212 0.120 0.245 0.243
separate annotations w/o pows
comb_dmn,ce@CoMeDi 0.484 0.206 0.130 0.276 0.237 0.232 0.262 0.261
comb_dmn,ce@CoMeDi-#less4 0.426 0.197 0.148 0.298 0.183 0.123 0.297 0.239
l1ndotn,ce@CoMeDi-#less4 0.605 0.148 0.084 0.448 0.162 0.108 0.282 0.262
separate annotations w/ powsdev
comb_dmn,ce@CoMeDi 0.571 0.218 0.128 0.421 0.256 0.159 0.302 0.293
comb_dmn,ce@CoMeDi-#less4 0.3011 0.2041 0.0781 0.2861 0.1751 0.1871 0.3501 0.226
l1ndotn,ce@CoMeDi-#less4 0.616 0.148 0.084 0.454 0.162 0.108 0.282 0.265
separate annotations w/ powstrain
comb_dmn,ce@CoMeDi 0.616 0.236 0.129 0.424 0.253 0.236 0.297 0.313
comb_dmn,ce@CoMeDi-#less4 0.574 0.241 0.143 0.294 0.194 0.161 0.360 0.281
l1ndotn,ce@CoMeDi-#less4 0.616 0.227 0.080 0.456 0.234 0.109 0.266 0.284

Table 5: Post-evaluation results on the test set of subtask 2. Best results for each language are in bold font.
Superscripts refer to our submission during the evaluation phase.

disagreements between annotators assuming that
higher probability corresponds to larger disagree-
ments. For models trained on individual annota-
tions we take the whole predicted probability dis-
tribution over 4 classes and calculate its standard
deviation. Additionally, the power selector can be
applied.

4.3 Evaluation results

During the evaluation phase, our sole submis-
sion was from the comb_dmn,ce@CoMeDi-#less4
model, which incorporated a power selection model
optimized on the development set. This model
achieved the best performance across all languages
except for Chinese, where it recorded the poor-
est results among all participants. Comprehensive
results of the evaluation phase are presented in Ta-
ble 4.

4.4 Post-evaluation experiments

Upon completion of the evaluation phase, we pro-
ceeded to evaluate all models using the test set. For
models that were trained on individual annotations,
we explored several strategies: not employing the
power selection model, fitting it on the CoMeDi
train sets, and fitting it on the CoMeDi development
sets. The results of these evaluations are detailed
in Table 5. It is clear that the power selector helps
significantly, and it is better to fit it on the train sets.
Removing examples with less than 4 annotations
hurts the performance on average across languages,
at least when training on individual annotations,
though the results vary from language to language.
Comparing l1ndotn with comb_dmn, the results are
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Figure 4: Best achieved Spearman’s ρ and #UMD per
language on the test set.

not consistent across languages as well requiring
more experiments to draw reliable conclusions.

Comparing the results for different languages,
Chinese and Norwegian have higher metrics while
there are only two annotations per example for
this languages which should result in quite noisy
ground truth mean disagreement. We hypothesised
that the good results may be related to fewer unique
values of the mean disagreement when there are
fewer annotators. We investigated the impact of
the number of unique values of the mean pairwise
absolute judgment (#UMD) on the Spearman’s cor-
relation across different languages. For each lan-
guage, we selected the best result achieved during
the post-evaluation phase and #UMD, as depicted
in Figure 4.

Our analysis indicates that languages with the
best results – Chinese and Norwegian, exhibit rel-
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atively low #UMD, characterized by less than 7
unique values for mean disagreement. Conversely,
English and German, which have some of the low-
est ρ, are associated with the highest #UMD.

5 Conclusion

We have proposed the winning solutions for the
CoMeDi shared task and experimented with differ-
ent design choices. To our surprise fine-tuning a
4 class WiC model on the training data from the
shared task has shown worse results than threshold-
ing the original binary WiC model. Whether it is
due to the insufficient or noisy training data, or bad
correlation between the cross-entropy loss and the
target metric Krippendorff’s alpha remains to be
investigated. A promising direction for the future
experiments is designing surrogate losses that are
better correlated with Krippendorff’s alpha. We
also observed that removing CoMeDi training data
in Chinese significantly improves results, including
the results for Chinese. A reasonable next step may
be selecting an optimal combination of training sets
for each test language separately.

For the second subtask our best solution was
learning to predict the whole distribution of anno-
tations for a given usage pair. In the future work
it is reasonable to try alternative loss functions as
well, e.g. minimizing the KL-divergence between
the predicted and the real probability distributions.
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the binary DeepMistake model used in our sub-
missions on all CoMeDi training data we excluded
training examples in Chinese. It seems potentially
beneficial to construct an optimal subset of training
data for each language separately, e.g. excluding
Norwegian from the training data of a model that is
not targeted at Norwegian, but we leave systematic
experiments in this direction for the future work.

For comparison, figure 6 shows the learning
curves for the same models but taking accuracy
as an evaluation metric instead of Krippendorff’s
alpha. Surprisingly, the observations drastically
differ when changing the evaluation metric. The
best accuracy on the Chinese dev set is achieved
when training on English or Chinese train sets. The
model trained on Norwegian is now among the
best models for all dev sets. And the one trained
on German is among the worst models for all dev
sets except German and English. This shows that a
model achieving the best accuracy may be among
the worst for Krippendorff’s alpha and vice versa.
See appendix C for a more in-depth analysis of this
discrepancy.

B Detailed model comparison

In Figure 7, we compare different DeepMistake
models. Training data of these models has no over-
lap with following CoMeDi dev/test sets: German,
English, Norwegian, Chinese, and Swedish. For
German and English, all models with NMthres
exhibit similar performance across both sets. In
contrast, for Norwegian and Chinese, the mod-
els MCL and MCL→DWUGes+XLWSDes

perform better than others. Meanwhile,
in Swedish, the models MCL→RSS and
MCL+RSS+DWUGes+XLWSDes emerge as
superior.

Our analysis, depicted in Figure 8, which com-
pares different training sets, reveals that fine-tuning
models with NMthres on CoMeDi-2,3 significantly
improves performance for Swedish subsets. For
other languages, using the complete CoMeDi train-
ing data is equally effective, and sometimes even
more beneficial. While CoMeDi-ZH and CoMeDi-
ZH-DE do not show much difference from CoMeDi
in most cases, with the exception of Chinese, they
generally perform better overall.

As shown in Figure 9, the DeepMistake model
with NMthres consistently outperforms variant
without it across all languages, except for Swedish.
This trend is also observed in the 2-class fine-tuned

models. Additionally, when comparing the 4-class
fine-tuned model trained on CoMeDi-ZH with the
DeepMistake model without NMthres, the fine-
tuned model shows better performance on all devel-
opment sets, except Russian. However, on the test
set, the situation reverses, with the non-fine-tuned
model performing better.

C Chinese mystery

Removing the Chinese train set when fine-tuning
DeepMistake as a binary classifier on the CoMeDi
training data strikingly improves the Krippen-
dorff’s alpha on the Chinese development set in
subtask 1 (from 0.48 to 0.71) while giving only a
small improvement in accuracy (from 0.88 to 0.90).
Here we investigate why this happens. Krippen-
dorff’s α is defined as:

α = 1− Do

De
, (3)

where Do is the observed disagreement and De the
disagreement expected by chance. The observed
disagreement in general case is defined as:

Do =
1

n

∑
i∈R

∑
j∈R

δij
∑
u

mu ∗ niju

P (mu, 2)
, (4)

where n is the total number of labels (in our case
both predicted labels and ground truth labels), R is
the set of possible labels, u is a usage pair, mu is
the number of labels assigned to the usage pair u.
Finally, niju is the number of pairs (i, j) consisting
of labels assigned to u.

For the ordinal version of Krippendorff’s α:

δij = (

j∑
k=i

nk −
ni + nj

2
)2, (5)

where nx is the number of labels equal to x among
both the predicted and the ground truth labels of all
usage pairs.

In our case mu = 2 because for each example
there is a ground truth label and a predicted label.
After substituting this into formula 4 we get Do =
1
n

∑4
i=1

∑4
j=1 δij ∗ 2

∑
u I[yu = i, ŷu = j] =

1
n

∑4
i=1

∑4
j=1 2δijcij , where cij is the number of

usage pairs with the ground truth label of i and the
predicted label of j. Thus, the final formula for
Krippendorff’s α in our case can be written as:

α = 1−
4∑

i=1

4∑
j=1

2δijcij
n ∗De

(6)
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Figure 10 plots confusion matrices where a cell
(i, j) shows the contribution 2δijcij

n∗De
of the corre-

sponding type of errors (when class i is misclassi-
fied as class j) to Krippendorff’s α, and also stan-
dard confusion matrices showing proportions of
examples with different predicted and ground truth
labels. We can observe proportions of different
types of errors (i, j) and how they contribute to the
final value of Krippendorff’s α in 6.

While the error rates of two models on the Chi-
nese dev set are comparable, the proportions of
different types of errors differ drastically. For the
model trained on all training sets including the
Chinese one all errors are related to predicting 4
instead of some other class. Such types of errors
strongly reduce Krippendorff’s alpha because of
the dominating frequency of label 4 resulting in
large values of δi4 (see formula 5) and thus large
contribution of ci4 in formula 6. On the other hand,
the model trained without the Chinese train set
produces fewer errors of such types and more er-
rors related to predicting 1 instead of some other
class. However, the latter types of errors make
much smaller contribution to Krippendorff’s alpha
(unless the correct label is 4).

For the development sets in languages other than
Chinese such a large difference in error types and
thus Krippendorff’s alpha is not observed, as shown
in Figures 11, 12. We believe that this is related to
the proportions of negative examples (classes 1 and
2) in the training sets for different languages, see
Figure 13. In the Chinese train set this proportion
is negligible, thus, the model learns to predict the
positive class for inputs in Chinese unless there are
very strong evidences in favour of negative class. In
the Chinese dev set the proportion of classes 1 and 2
is significantly larger, so this learnt strategy leads to
some errors for examples of these classes which are
fatal for Krippendorff’s alpha. When the Chinese
train set is excluded the model cannot learn any
specific strategy for inputs in Chinese. For other
languages the proportions of negative examples in
the corresponding train sets are reasonable and for
them we don’t observe significant changes in the
proportions of errors of different types between two
models.
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Figure 5: Cross-lingual transfer evaluation. Krippendorff’s alpha on the dev sets for the DeepMistake models being
fine-tuned as a 4-class classifiers on the train sets for each language separately.
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Figure 6: Cross-lingual transfer evaluation. Accuracy on the dev sets for the DeepMistake models being fine-tuned
as a 4-class classifiers on the train sets for each language separately. The horizontal dashed lines show the proportion
of the most frequent class.
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Figure 8: Krippendorff’s α of 2-class DeepMistake models fine-tuned on different subsets of CoMeDi train data.
The simplified version of the plot is shown in Figure 2.
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Figure 11: Confusion matrixes on CoMeDi dev sets of 2class@CoMeDi and 2class@CoMeDi-ZH.
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Figure 12: Confusion matrices built on the CoMeDi dev sets for the 2class@CoMeDi and 2class@CoMeDi-ZH
models, (i, j)-th cell quantifies the contribution 2δijcij

n∗De
of the corresponding type of errors to Krippendorff’s α.

These contributions sum up to 1 - α.
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Figure 13: Class proportions in the train and dev sets for different languages and in combined train and dev sets.


	Introduction
	Related work
	Subtask 1: Median Judgment Classification
	Task description
	Models
	DeepMistake-based models
	NMthres
	Inference methods

	Evaluation results
	Post-evaluation experiments
	Train-test overlap
	Optimizing CoMeDi Training Data for Fine-Tuning DeepMistake Models 
	Evaluating Fine-Tuning Strategies on CoMeDi Training Sets


	Subtask 2: Mean Disagreement Ranking
	Task description
	Models
	DeepMistake-based models
	Power selector
	Inference methods

	Evaluation results
	Post-evaluation experiments

	Conclusion
	Cross-lingual transfer
	Detailed model comparison
	Chinese mystery

