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Abstract

This paper presents the GRASP team’s sys-
tems for the CoMeDi 2025 shared task on dis-
agreement prediction in semantic annotation.
The task comprises two subtasks: predicting
median similarity scores and mean disagree-
ment scores for word usage across multiple lan-
guages including Chinese, English, German,
Norwegian, Russian, Spanish, and Swedish.
For subtask 1, we implement three approaches:
Prochain, a probabilistic chain model predict-
ing sequential judgments; FARM, an ensem-
ble of five fine-tuned XLM-RoBERTa models;
and THAT, a task-specific model using XL-
Lexeme with adaptive thresholds. For subtask
2, we develop three systems: LAMP, combin-
ing language-agnostic and monolingual mod-
els; BUMBLE, using optimal language com-
binations; and DRAMA, leveraging disagree-
ment patterns from FARM’s outputs. Our re-
sults show strong performance across both sub-
tasks, ranking second overall among participat-
ing teams. The probabilistic Prochain model
demonstrates surprisingly robust performance
when given accurate initial judgments, while
our task-specific approaches show varying ef-
fectiveness across languages.

1 Introduction

The growing importance of modeling annotator
disagreement in NLP has emerged as a crucial chal-
lenge for developing more robust and nuanced lan-
guage understanding systems. While traditional ap-
proaches often treat divergent annotations as noise
to be filtered out, recent work suggests that system-
atic patterns in annotator disagreement can provide
valuable insights into linguistic ambiguity, contex-
tual interpretation, and the inherent complexity of
language understanding tasks (Uma et al., 2021;
Leonardelli et al., 2023).

The 2025 Workshop on Context and Meaning
- Navigating Disagreements in NLP Annotations

(CoMeDi)1 addresses this challenge through a
shared task focused on predicting patterns of anno-
tator disagreement across multiple languages. The
task encompasses seven languages (Chinese, En-
glish, German, Norwegian, Russian, Spanish, and
Swedish), drawing from various semantic change
datasets as shown in Table 1. This multilingual
scope provides a unique opportunity to explore how
annotator disagreement patterns manifest across
different linguistic and cultural contexts.

In this paper, we present a range of approaches
for modeling annotator behavior and predicting
disagreement patterns. Our methods span from
probabilistic modeling of sequential judgments to
neural architectures specifically designed to capture
the nuanced nature of semantic annotation tasks.
Through these diverse approaches, we aim to con-
tribute to the broader understanding of how to ef-
fectively model and utilize annotator disagreement
in NLP systems.

2 Related Work

Prior work on modeling annotator disagreement
falls into several key areas. Early approaches
treated disagreement primarily as noise to be fil-
tered out through measures like inter-annotator
agreement (Artstein and Poesio, 2008) or adjudi-
cation (Passonneau, 2004). However, recent work
has shown that systematic patterns in annotator
disagreement can provide valuable linguistic in-
sights (Plank et al., 2014; Pavlick and Kwiatkowski,
2019).

In the context of semantic annotation, several
studies have specifically examined disagreement
patterns in word sense annotation. Erk et al. (2013)
introduced a graded approach to word sense, show-
ing that annotators often perceive multiple valid
interpretations rather than discrete senses. This
finding was further supported by Jurgens (2014),

1https://comedinlp.github.io/

https://comedinlp.github.io/
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Language Datasets (version) [citation]

Chinese ChiWUG (1.0.0) [Chen et al. (2023)]
English DWUG_EN (3.0.0), DWUG_EN_resampled (1.0.0) [Schlechtweg et al. (2024)]
German DWUG_DE (3.0.0), DWUG_DE_resampled (1.0.0), DiscoWUG (2.0.0), RefWUG

(1.1.0) [Schlechtweg et al. (2024), Kurtyigit et al. (2021)]
DURel (3.0.0) [Schlechtweg et al. (2018)]
SURel (3.0.0) [Hätty et al. (2019)]

Norwegian NorDiaChange1, NorDiaChange2 [Kutuzov et al. (2022)]
Russian RuSemShift_1, RuSemShift_2 [Rodina and Kutuzov (2020)]

RuShiftEval1, RuShiftEval2, RuShiftEval3 [Kutuzov and Pivovarova (2021)]
RuDSI [Aksenova et al. (2022)]

Spanish DWUG_ES (4.0.1) [Schlechtweg et al. (2024)]
Swedish DWUG_SV (3.0.0), DWUG_SV_resampled (1.0.0) [Schlechtweg et al. (2024)]

Table 1: Overview of Semantic Change Datasets by Language

who demonstrated that disagreements often reflect
genuine semantic ambiguity rather than annotator
error.

Cross-lingual aspects of semantic annotation
have been explored in various contexts. Bender
and Friedman (2018) highlighted how linguistic
and cultural differences can lead to systematic vari-
ations in annotation patterns across languages. This
work was extended by Chang et al. (2014), who
showed that annotation disagreements often reflect
genuine cross-linguistic differences in semantic cat-
egorization.

Recent work has increasingly focused on compu-
tational approaches to modeling annotator behavior.
Uma et al. (2021) demonstrated the effectiveness
of learning annotator-specific patterns for improv-
ing overall annotation quality. Similarly, Davani
et al. (2022) showed how multi-task learning can
help capture individual annotator preferences while
maintaining consistent predictions.

3 Approaches

The shared task consists of two sub-tasks. For sub-
task 1, participants are asked to predict the median
similarity score of a word in two sentences based
on multiple human annotations (between 2 and 7).
For sub-task 2, participants are asked to predict the
mean disagreement of human annotators given a
target word and two example contexts.

3.1 Sub-task 1

We approach sub-task 1 in two different ways: first,
we use a simple method that relies on probabil-
ities between human judgments. We predict the

probability of each judgment given the previous
judgment(s). Second, we model annotators using
two different architectures: XLM-RoBERTa (Con-
neau et al., 2020) and XL-Lexeme (Cassotti et al.,
2023). XL-Lexeme is a WordEncoder model that
has been fine-tuned on Word-in-Context tasks and
thus should be an apt choice to model the semantic
closeness of target words given two sentences.

3.1.1 Prochain
Our first system, Prochain (probabilistic chain), is a
non-parametric probabilistic model. While the hu-
man judgments are made independently, our model
exploits potential underlying patterns in these inde-
pendent assessments to create a probabilistic frame-
work for prediction. This approach assumes that
even though judges make decisions independently,
there exist statistical relationships between differ-
ent judgment aspects that can be leveraged for pre-
diction.

For training, given a tuple of three judgments
(j1, j2, j3), we calculate the frequency distribution
of j2 given j1, and of j3 given (j1, j2). We then
normalize these frequency distributions to obtain
probability distributions, as shown in Equations 1
and 2.

P (j2|j1) =
count(j1, j2)

count(j1)
(1)

P (j3|j1, j2) =
count(j1, j2, j3)

count(j1, j2)
(2)

For prediction, given a first judgment j1, we predict
j2 as a probability distribution based on the nor-
malized frequencies observed during training. Sim-
ilarly, given (j1, j2), we predict j3 as a probability
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distribution based on the observed frequencies of
j3 for each combination of (j1, j2) in the training
data.

Since this method requires the first judgment to
be calculated by other means, we use the training
data and XL-Lexeme to calculate the cosine simi-
larity between the target word in the two sentences
for each item in the training data, then map this
continuous value to a discrete value j0 as shown
in Equation 3, then learn mappings between the
predicted value j0 and j1 in the training data, as we
did for j2 and j3.

j0 =


1 if sim < 0.4

2 if 0.4 ≤ sim < 0.6

3 if 0.6 ≤ sim < 0.8

4 if sim ≥ 0.8

(3)

At prediction time, for the prediction of the first
judgment, we calculate the cosine similarity be-
tween the target word in the two sentences, map
this value to a discrete value, then use the Prochain
method to predict 11 values, of which we take the
most frequently predicted value as j1.

3.1.2 FARM
Our second system, FARM (Five Adapted Roberta
Models), is an XLM-Roberta-base model which is
fine-tuned for sentence classification, in the stan-
dard way, i.e. a classification head is placed on the
special first token, 〈s〉. To model the disagreement
between judgments we create 5 separate “datasets”
and train a model on each of these sets. The
datasets vary simply in which label we select as the
target. If J is the set of judgments for a particular
pair of sentences then dataset di labels the pair with
jimod|J |.

For prediction we simply have each of the five
models predict their output and then take the me-
dian of the 5 predictions.

Each of the Roberta models is trained for 3
epochs using learning rate 2e−5 and 200 warmup
steps. A batch size of 8, a linear learning rate
scheduler, the ADAM optimizer, optimized against
cross-entropy loss. We use the hugging face trainer
interface with any unmentioned arguments left as
the default.

3.1.3 THAT
Our third system, THAT (Task-specific Human-like
Adaptive Thresholds), is a fine-tuned XL-Lexeme
model (Cassotti et al., 2023). The model is trained

to embed two sentences such that the cosine simi-
larity between the sentences is inverse proportional
to to the label between them, i.e., sentences which
are scored as 4 are closer together while sentences
which are labeled 1 are further apart. The model
is trained to minimize the contrastive loss (Hadsell
et al., 2006) as described in in Cassotti et al. (2023).

At prediction time we calculate the cosine simi-
larity between the sentences and we then set three
thresholds, t1, t2, t3. We label a sentence pair as 1
if cosine(s1, s2) < t1, 2 if its less than t2, 3 if its
less than t3 and 4 otherwise. We tune the thresholds
on the dev-set using the following algorithm.

We begin the thresholds regularly spaced: t1 =
0.4, t2 = 0.6, t3 = 0.8 we then vary the thresholds
between −0.05, 0, or +0.05 from the base thresh-
old. This creates 33 different possible threshold
combinations. We evaluate each against the dev-
set, selecting the threshold which gives the highest
score. We then repeat the process until we converge
on stable threshold values.

We found that the method converged such that
t1 = t2 = t3 which means in practice that the best
results were gained when we simply predicted 1 or
4.

However, for the purpose of this task we wanted
to actually model disagreement between annotators.
One way in which annotators may be different is
that they have different thresholds for what they
think is for example a 3 vs 4. We model this by
creating 5 different threshold functions. The thresh-
olds are random perturbations around the optimal
threshold. These are not validated directly on the
dev set. We then select the median value as the
actual label. Given that they all rely on the same
underlying similarity function the main benefit of
this method is to find examples which are close to
the decision boundary and perhaps changing their
label from for example 1 to 2.

3.2 Subtask 2
We approach sub-task 2 in two different ways: first,
we use feature-engineering to extract features from
the sentences and target words. The features were
specifically developed for the shared task. We then
train regression models on the features, with the
target mean disagreement as label. Second, we
use the output from our FARM model to calculate
disagreement.

Systems 1 and 2 are feature-based systems using
a common set of features described in the next sec-
tion and XGBoost as regressor (Chen and Guestrin,
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2016). We performed a hyper-parameter search to
fix the best parameters using the dev set. For tag-
ging, we use spacy (Honnibal et al., 2020), and for
WordNet features, we use nltk (Bird et al., 2009).
For preprocessing, we use pymorphy2 (Korobov,
2015) to lemmatize Russian and jieba2 to tokenize
Chinese. All other languages are transformed to
lowercase.

3.2.1 Feature extraction
NLP features We use various NLP features to rep-
resent the example contexts. The features are: co-
sine similarities between context 1 and 2 based
on XLM-RoBERTa embeddings of the target to-
ken, and between each context (CLS token) and
the target word (target token embedding), as well
as cosine similarities based on XL-Lexeme, the
length of each context, and the length difference in
characters between the two contexts, and between
each context and the target word, as well as the
ratio of lengths between the two contexts, word
overlap between the two contexts, fuzzy ratios be-
tween the two contexts, and each context and the
target word, NER overlap between the two con-
texts, n-gram overlap (n = 2 and n = 3) between
the two contexts, the position of the target word in
each context, whether the target word has the same
(1) part-of-speech, (2) NER tag, (3) dependency
relation in the two contexts, and WordNet features
for supported languages (all except Russian and
German): the number of lemmas in the first synset,
the depth of the first synset, and the number of
hypernyms and hyponyms.
Psycholinguistic features We use concreteness,
imageability, familiarity and age-of-acquisition
from the MRC database (Wilson, 1988). Since
this database only contains data for English, we
fine-tuned XLM-RoBERTa models on each of the
features for 3 epochs, then use these models to
predict the features for all languages.
Prototype features We calculate sense prototypes
for each target word using a custom algorithm.3

The algorithm is an iterative, non-parametric ap-
proach to inducing word sense prototypes from
contextual representations using the XL-Lexeme
transformer model. The core induction process
performs multiple iterations (default: 51) where
each iteration processes contexts in random order,
maintaining a set of induced sense prototypes while

2https://github.com/fxsjy/jieba
3https://github.com/daalft/

senseprototypeinduction

comparing new contextualized embeddings with
existing prototypes using cosine similarity, either
merging similar senses or creating new prototypes
based on a similarity threshold. The prototype
merging strategy computes pairwise similarities
between sense representations, identifies the most
similar pairs across different iteration results, and
creates aggregate prototypes by averaging the vec-
tor representations, using a similarity threshold to
control the granularity of sense distinctions. The
algorithm builds consensus across iterations by
identifying the most frequent number of induced
senses (mode), filtering iteration results to retain
only those matching the modal number of senses,
aligning similar senses across different iterations
through similarity-based matching, and creating
final sense prototypes by merging aligned sense
representations. In the final stage, the algorithm as-
signs sense labels to the induced prototypes, maps
each context back to its most similar prototype,
and creates a mapping between context IDs and
sense labels. This approach allows for dynamic
sense discovery without pre-specifying the number
of senses, while maintaining consistency through
multiple iterations and consensus building.

After running the algorithm, we assign each
word its closest prototype vector. For a target word
t and two contexts, we then use the cosine similar-
ity between the prototypes p1 and p2, and between
each prototype and each target word embedding (t1
to p1, t1 to p2, t2 to p1 and t2 to p2).
On length differences Two of the less straight-
forward features might be differences in context
length and between contexts and target words. Let
us imagine two contexts for the target word bark:

• The bark was rough
• The bark was rough and dark brown, typical of

old oak trees in this forest that had weathered
many storms

A longer context provides more specific infor-
mation and constraints about what the target word
means (tree bark), while the shorter context leaves
more room for ambiguity (it could be dog bark or
tree bark). This difference in specificity could lead
annotators to have more disagreement with shorter
contexts due to lack of disambiguating information,
and show more agreement with longer contexts that
provide clear contextual clues.

For the difference in length between the words
and the contexts, it can be said that a short target
word in a long context usually has clear situational
grounding, while a longer target phrase in a short

https://github.com/fxsjy/jieba
https://github.com/daalft/senseprototypeinduction
https://github.com/daalft/senseprototypeinduction
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context might lack sufficient contextual support for
judgment. This could lead to systematic patterns
in annotator disagreement based on these length
relationships.
Feature importance Given the large number of
features, we use CorrelationAttributeEval from
WEKA (Frank et al., 2016) with ten-fold cross-
validation to calculate feature importance, and find
that all features are important to the task, with the
most predictive features being character overlap
of trigrams, word overlap between sentences, and
familiarity. See Appendix A for the full list of fea-
tures. Table 9 in the Appendix lists the average
merit and rank of each feature.

3.2.2 LAMP
Our first submission, LAMP (Language Agnos-
tic, Monolingual, Prochain), uses a combination of
models to produce a result. We train one language-
agnostic model on all languages, as well as one
model per language. We also include Prochain
with an iteration count of 3, based on which we
calculate disagreement. We then average all predic-
tions to arrive at the final prediction.

3.2.3 BUMBLE
Our second submission, BUMBLE (Best Univer-
sal Model By Language Ensemble), uses a single
model to predict the disagreement. We train dif-
ferent models on all possible combinations of lan-
guages (single-language models, two languages,
. . . up to all languages), then select the best model
for each language based on its score on the dev
set. Results show that the best models are two- or
three-language models, but that these models do
not always include the language they are predict-
ing.

3.2.4 DRAMA
Our third submission, Disagreement Rating Across
Multiple Answers (DRAMA), uses the five judg-
ments generated from FARM and calculates the dif-
ference scores from those judgments. I.e. FARM,
being 5 different fine-tuned Roberta models output
five different judgments J and while FARM calcu-
lates the median value over these five judgments,
DRAMA calculates the mean difference score as
described in the task:

D(J) =
1

|J |
∑

(j1,j2)∈J

(|j1 − j2|) (4)

Due to the fact that we use 5 judgments while
the actual data uses a varying number of judgments

which is usually lower than 5 (e.g. 2 for Chinese)
the scores are likely to be higher on average than
the true data. However, if the models have success-
fully modeled the variation in the data, i.e., that
more ambiguous utterances have more variance,
then the correlation score would still reflect this.

4 Results and Analysis

Tables 2 and 3 summarize our results on the test
set for Tasks 1 and 2 respectively. All of our sub-
mitted systems demonstrate strengths in specific
languages and scenarios, suggesting that different
approaches capture different aspects of annotator
behavior.

Language Prochain FARM THAT

Chinese 0.332 0.177 0.317
German 0.619 0.515 0.656
English 0.565 0.608 0.555
Norwegian 0.469 0.285 0.589
Russian 0.464 0.344 0.487
Spanish 0.593 0.582 0.636
Swedish 0.556 0.481 0.648

Overall 0.514 0.428 0.555

Table 2: Results for task 1 according to Krippendorff’s
α. The best results per language are indicated in bold.

Language LAMP DRAMA BUMBLE

Chinese 0.265 0.498 0.539
German 0.135 0.123 0.108
English 0.062 0.097 0.041
Norwegian 0.269 0.317 0.272
Russian 0.110 0.159 0.167
Spanish 0.102 0.101 0.115
Swedish 0.204 0.233 0.296

Overall 0.164 0.218 0.220

Table 3: Results for task 2 calculated according to equa-
tion 4. The best results per language are indicated in
bold.

4.1 Task 1

For predicting median similarity scores, our task-
specific model THAT achieved the best overall per-
formance (α = 0.555), followed by Prochain (α =
0.514) and FARM (α = 0.428). Several interesting
patterns emerge from these results:
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1. The systems consistently performed better on
Germanic languages, with particularly strong
results for German (THAT: 0.656), Swedish
(THAT: 0.648), and English (FARM: 0.608).
This pattern holds across all three systems,
suggesting that either these languages share
helpful structural similarities, or their anno-
tators demonstrate more consistent judgment
patterns.

2. Despite its simplicity, Prochain performed
surprisingly well, even outperforming FARM
overall. This suggests that sequential depen-
dencies between judgments might be more
important than previously thought. When pro-
vided with correct initial judgments on devel-
opment data, Prochain achieves remarkably
high performance (see Section 5.2), indicating
strong predictability in how annotators influ-
ence each other’s subsequent judgments.

3. All systems struggled most with Chinese data,
with the best performance being Prochain’s α
= 0.332. This might be attributed to several
factors:

• The extremely skewed label distribution
(83% label 4)

• The fundamental differences in how
word meanings are constructed in Chi-
nese

• The smaller number of annotators per
item in the Chinese dataset

4.2 Task 2
The disagreement prediction task proved more chal-
lenging overall, with markedly different patterns
from Task 1: BUMBLE (0.220) and DRAMA
(0.218) performed similarly overall but showed dis-
tinct strengths across languages. Notably, the best
performance was achieved on Chinese (0.539 with
BUMBLE) - a striking contrast to Task 1 where
Chinese was the most challenging language.

BUMBLE’s language combination strategy re-
vealed that optimal performance often came from
models trained on two or three languages, but sur-
prisingly, these optimal combinations didn’t always
include the target language. This suggests the
existence of cross-linguistic patterns in annotator
disagreement that transcend individual language
boundaries.

4.3 Overall
In the context of other participating teams, our sys-
tems achieved competitive results: Second place

overall in both tasks, first place for Chinese, En-
glish, and Norwegian in Task 2, and second place
for Russian, Spanish, and Swedish in both tasks.

These results suggest that our multi-strategy ap-
proach, combining probabilistic modeling, neural
architectures, and feature engineering, successfully
captures different aspects of annotator behavior
across languages.

5 Discussion

5.1 Label distribution

Overall, we notice that the data labels are strongly
skewed towards label 4, as illustrated in Table 4.
For all languages, most of the labels are 4, and
on average, label 1 comes second. This might ex-
plain why THAT was gravitating towards a binary
threshold, i.e., dividing the data into labels 1 and 4.

1 2 3 4

Overall 0.150 0.094 0.130 0.630
Chinese 0.009 0.043 0.120 0.830
German 0.130 0.210 0.170 0.500
Russian 0.230 0.032 0.170 0.650
Norwegian 0.140 0.032 0.088 0.770
Spanish 0.210 0.088 0.210 0.500
English 0.230 0.170 0.140 0.460
Swedish 0.200 0.089 0.090 0.620

Table 4: Label distribution for median judgments task
1. Percentage of samples given a particular label in the
train-set.

5.2 Prochain

The Prochain method is surprisingly strong in sub-
task 1, despite its simplicity, if the first judgment is
given and correct. This is confirmed by the results
on the development data for subtask 1: when taking
the first judgment from the development data label
file, and predicting a second and third judgment us-
ing PROCHAIN, then calculating the median value,
we reach results of 0.938 on average,as illustrated
in Table 5.

5.3 THAT – DRAMA

Table 6 shows the results of DRAMA and THAT2
(calculating disagreement on the output of THAT;
we did not submit THAT2 run) on the dev data of
the second task. The NaN numbers for Chinese
come from the fact that in the dev-set there is no
disagreement which means that the Spearman rank
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Language Krippendorff’s α

Average 0.938
Chinese 1.000
English 0.950
German 0.902
Norwegian 0.948
Russian 0.862
Spanish 0.962
Swedish 0.939

Table 5: Results of Prochain if the first judgment is
taken from the gold labels

cannot calculate a difference. A surprising fact is
how poorly XL-Lexeme with 5 different thresholds
performs. It was our best model in the first subtask,
however, it seems that the thresholding technique
does not align with the difference observed in the
human judges. This would suggest that the judges
do not have an equivalent difference space to XL-
Lexeme in their heads but different thresholds for
judging something a 2 or a 3. Our choice of thresh-
olds may also have been suboptimal.

DRAMA THAT2

German 0.158 0.049
Russian 0.028 0.043
Swedish 0.125 0.083
Spanish 0.014 -0.051
English 0.084 0.051
Chinese NAN NAN
Norwegian 0.275 0.0551

All 0.114 0.0383

Table 6: Results for DRAMA and THAT2 on the dev
set

5.4 The lack of disagreement in Chinese data

We noticed that in the Chinese data for task 1, no
disagreement was found between annotators. In
addition, only two annotations were present. While
puzzling at first, this may well be due to differences
in annotation procedure. It is conceivable that anno-
tations were consolidated to resolve disagreements
before the data was released. However, the data
paper states that they follow the same guidelines as
other data sets (Chen et al., 2023).

5.5 The case of English
An unexpected finding in our results is the partic-
ularly challenging nature of English data for dis-
agreement prediction, despite the language’s exten-
sive resources and representation in training data.
While English achieves moderate performance in
median prediction (Task 1) with α = 0.565, it shows
strikingly low correlation scores in disagreement
prediction (Task 2), with even our best system
DRAMA achieving only 0.097. Several factors
may contribute to this counterintuitive result. First,
the English dataset demonstrates more balanced la-
bel distribution (46% label 4 compared to the over-
all average of 63%), suggesting annotators may
be making more nuanced distinctions rather than
defaulting to high similarity judgments. Second,
English’s rich polysemy and extensive metaphori-
cal usage may lead to more genuine cases of ambi-
guity, making annotator disagreement patterns less
systematic and therefore harder to predict. This hy-
pothesis is supported by the fact that even our more
sophisticated neural approaches failed to capture
these patterns effectively.

6 Conclusion

The GRASP team’s participation in the CoMeDi
shared task has led to several important insights
into modeling annotator disagreement across mul-
tiple languages. Our diverse approach, implement-
ing both probabilistic and neural methods, proved
effective across both subtasks, securing second
place overall.

The strong performance of our simple Prochain
model highlights the value of probabilistic ap-
proaches in capturing annotator behavior, while
the varying success of our more complex models
across languages suggests that language-specific
factors play a crucial role in disagreement predic-
tion.

The skewed label distribution toward label 4 sig-
nificantly influenced model behavior, particularly
affecting our threshold-based approaches. Future
work could focus on better handling this class im-
balance and developing more robust cross-lingual
disagreement modeling techniques.
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A Feature list

Feature Name Description

cosine_sim_sent1_sent2 BERT embedding cosine similarity between the two sentences
cosine_sim_sent1_target BERT embedding cosine similarity between first sentence and target

word
cosine_sim_sent2_target BERT embedding cosine similarity between second sentence and target

word
len_diff_sent1_sent2 Absolute character length difference between sentences
len_ratio_sent1_sent2 Ratio of first sentence length to second sentence length
len_diff_sent1_target Character length difference between first sentence and target
len_diff_sent2_target Character length difference between second sentence and target
word_overlap_sent1_sent2 Jaccard similarity of word sets between sentences
word_overlap_sent1_target Jaccard similarity between first sentence words and target word
word_overlap_sent2_target Jaccard similarity between second sentence words and target word
fuzz_ratio_sent1_sent2 Levenshtein ratio between the two sentences
fuzz_ratio_sent1_target Levenshtein ratio between first sentence and target
fuzz_ratio_sent2_target Levenshtein ratio between second sentence and target
ner_count_sent1 Number of named entities in first sentence
ner_count_sent2 Number of named entities in second sentence
ner_overlap Number of shared named entities between sentences
char_ngram_overlap_2 Overlap of character bigrams between sentences
char_ngram_overlap_3 Overlap of character trigrams between sentences
target_position_sent1 Relative position of target word in first sentence
target_position_sent2 Relative position of target word in second sentence
sent1_length Word count of first sentence
sent2_length Word count of second sentence
length_diff Absolute difference in sentence word counts
word_overlap Jaccard similarity of lowercased words
same_pos Binary indicator if target words have same POS tag
same_ner Binary indicator if target words have same NER tag
same_dep Binary indicator if target words have same dependency relation
corpus_frequency Brown corpus frequency (English only)
avg_word_vec_similarity Cosine similarity of averaged spaCy word vectors
num_synsets Number of WordNet synsets for target word
num_lemmas Number of lemmas in target word’s synsets
first_synset_depth Depth of first synset in WordNet hierarchy
num_hypernyms Number of hypernyms for first synset
num_hyponyms Number of hyponyms for first synset
xl_similarity XL-Lexeme embedding cosine similarity between the two sentences

Table 7: Features Extracted for Disagreement Prediction (NLP features)
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Feature Name Description

conc Concreteness
imag Imageability
fam Familiarity
aoa Age-of-acquisition
proto_sim Cosine similarity between the prototypes (p1, p2) of the target word in both

sentences
proto_sim_sent1 Cosine similarity between the target word embedding in sentence 1 (t1) and its

prototype (p1)
proto_sim_sent2 Cosine similarity between the target word embedding in sentence 2 (t2) and its

prototype (p2)
cross_proto_sim1 Cross-prototype similarity: target word embedding from sentence 1 (t1) to proto-

type from sentence 2 (p2)
cross_proto_sim2 Cross-prototype similarity: target word embedding from sentence 2 (t2) to proto-

type from sentence 1 (p1)

Table 8: Features Extracted for Disagreement Prediction (Psycholinguistic and prototype features)
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Average Merit Average Rank Attribute

0.119 ± 0.003 1.0 ± 0.00 char_ngram_overlap_3
0.107 ± 0.003 2.0 ± 0.00 word_overlap_sent1_sent2
0.093 ± 0.003 3.3 ± 0.46 char_ngram_overlap_2
0.089 ± 0.003 3.8 ± 0.60 len_diff_sent1_target
0.085 ± 0.002 4.9 ± 0.30 len_diff_sent2_target
0.079 ± 0.002 6.0 ± 0.00 same_pos
0.067 ± 0.002 8.1 ± 0.94 num_lemmas
0.067 ± 0.002 8.1 ± 0.94 num_synsets
0.066 ± 0.002 8.5 ± 1.12 word_overlap
0.064 ± 0.002 9.3 ± 1.00 sent2_length
0.054 ± 0.003 11.0 ± 0.00 sent1_length
0.044 ± 0.002 12.0 ± 0.00 len_diff_sent1_sent2
0.035 ± 0.002 13.1 ± 0.30 same_ner
0.032 ± 0.004 14.1 ± 0.70 word_overlap_sent2_target
0.026 ± 0.002 15.7 ± 0.64 cosine_sim_sent1_sent2
0.027 ± 0.002 16.0 ± 1.48 conc
0.024 ± 0.003 16.8 ± 1.17 avg_word_vec_similarity
0.022 ± 0.003 17.7 ± 0.90 x1_p1
0.018 ± 0.004 19.7 ± 1.42 aoa
0.018 ± 0.001 19.9 ± 0.83 corpus_frequency
0.016 ± 0.003 21.1 ± 1.45 x1_p2
0.015 ± 0.002 21.9 ± 1.04 length_diff
0.014 ± 0.002 22.2 ± 1.40 word_overlap_sent1_target
0.010 ± 0.002 24.4 ± 1.20 same_dep
0.010 ± 0.002 25.0 ± 0.63 cosine_sim_sent2_target
0.007 ± 0.003 26.1 ± 0.94 imag
0.004 ± 0.004 27.6 ± 1.96 fuzz_ratio_sent1_sent2
0.003 ± 0.002 27.8 ± 1.08 len_ratio_sent1_sent2
0.001 ± 0.003 29.2 ± 1.25 x2_p2

-0.002 ± 0.002 30.9 ± 1.37 cosine_sim_sent1_target
-0.004 ± 0.003 31.6 ± 1.28 p1_p2
-0.008 ± 0.003 33.8 ± 0.98 x2_p1
-0.008 ± 0.002 34.1 ± 0.94 xl_sim
-0.010 ± 0.004 34.6 ± 1.56 fuzz_ratio_sent2_target
-0.012 ± 0.002 35.5 ± 1.02 fuzz_ratio_sent1_target
-0.017 ± 0.003 37.5 ± 1.12 target_position_sent1
-0.018 ± 0.003 38.0 ± 0.77 target_position_sent2
-0.019 ± 0.003 38.2 ± 0.98 first_synset_depth
-0.051 ± 0.005 40.4 ± 0.49 num_hyponyms
-0.051 ± 0.002 40.6 ± 0.49 num_hypernyms
-0.101 ± 0.003 42.0 ± 0.00 fam

Table 9: Feature ranking by average merit (correlation with target variable). Positive values indicate features
positively correlated with annotator agreement, while negative values indicate features correlated with disagreement.
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