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Abstract

In this work, we evaluate annotator disagree-
ment in Word-in-Context (WiC) tasks explor-
ing the relationship between contextual mean-
ing and disagreement as part of the CoMeDi
shared task competition. While prior studies
have modeled disagreement by analyzing an-
notator attributes with single-sentence inputs,
this shared task incorporates WiC to bridge the
gap between sentence-level semantic represen-
tation and annotator judgment variability. We
describe three different methods that we devel-
oped for the shared task, including a feature
enrichment approach that combines concatena-
tion, element-wise differences, products, and
cosine similarity, Euclidean and Manhattan dis-
tances to extend contextual embedding repre-
sentations, a transformation by Adapter blocks
to obtain task-specific representations of con-
textual embeddings, and classifiers of varying
complexities, including ensembles. The com-
parison of our methods demonstrates improved
performance for methods that include enriched
and task-specfic features. While the perfor-
mance of our method falls short in comparison
to the best system in subtask 1 (OGWiC), it is
competitive to the official evaluation results in
subtask 2 (DisWiC).

1 Introduction

Disagreement in annotation tasks has been widely
studied, with various methods proposed to address
it (Leonardelli et al., 2023). One of the most com-
mon approaches is majority voting (Nguyen et al.,
2017), where the most frequently chosen annota-
tion is treated as the correct label. Recent research
explores alternatives to this traditional majority vot-
ing paradigm, modeling individual annotators and
their labels to predict perspectives, aiming to ac-
count for individual differences in judgment (Plepi
et al., 2022; Mostafazadeh Davani et al., 2022;
Oluyemi et al., 2024) and exploring the use of de-
mographic information to cluster annotators, using

these clusters to model disagreement (Deng et al.,
2023). However, fewer authors considered the role
of contextual information in pairwise sentences,
which can shed light on the root causes of disagree-
ment (Pilehvar and Camacho-Collados, 2019; Ar-
mendariz et al., 2020). Understanding these causes
may reveal ambiguities in data and help to gain
insights into why annotators diverge in their judg-
ments.

While not explicitly posed as such, we view the
CoMeDi shared task (Schlechtweg et al., 2025)
in light of these recent trends, offering potential
avenues for a better understanding of contextual
ambiguities and their consequences on annotator
disagreement. This shared task involves model-
ing disagreement in word sense annotation for the
Word-in-Context (WiC) task, where annotators pro-
vide judgments on the relatedness of two word uses
in a sentence pair, rated on an ordinal scale from
1 (homonymy) to 4 (identity). It includes two sub-
tasks: Median Judgment Classification, which pre-
dicts the median of annotator ratings as an ordinal
classification task evaluated with Krippendorff’s α,
and Mean Disagreement Ranking, which quantifies
the magnitude of disagreement between annotators
by ranking instances based on pairwise absolute
differences evaluated with Spearman’s ρ. From
the methods we developed, the inclusion of task-
specific representations obtained by transforma-
tions of contextual embeddings via Adapter blocks
outperformed our other methods in predicting the
median in the OGWiC task, In the DisWiC task, the
best performance among our approaches alternated
between this method and an ensemble of XGBoost
and CatBoost on enriched feature combinations of
contextual embeddings.

We made submissions to the shared task at the
post evaluation phase and make our implementa-
tion publicly available.1

1https://github.com/funzac/comedi

https://github.com/funzac/comedi
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2 Shared Task

The shared task is subdivided into two sub-
tasks, Median Judgment Classification with Or-
dinal Word-in-Context Judgments (OGWiC) and
Mean Disagreement Ranking with Ordinal Word-
in-Context Judgments (DisWiC). In both tasks, a
training instance consists of (i) a pair of two con-
texts (each context is a sentence or paragraph), (ii)
a target word (lemma) that appears in both contexts,
(iii) ordinal ratings by multiple annotators of how
related the meanings of the lemma are in the two
contexts on a scale from 1 (completely unrelated)
to 4 (identical). Each instance contains additional
information on the language of contexts, lemmas,
and indices of the target word. The two tasks differ
in their prediction targets:

OGWiC Predict the median rating. Predictions
are evaluated by the ordinal version of Krip-
pendorf’s α against the ground truth median
ratings.

DisWiC Predict the mean disagreement, i.e., the
mean of average pairwise differences in re-
latedness ratings and rank by magnitude of
disagreement. Predictions are evaluated by
Spearman’s ρ against ground truth disagree-
ment ranking.

3 System Description

Following the setup of the baseline method pro-
vided by the task organizers, our system builds
upon contextual embeddings of the lemma in
both contexts, obtained from the XLM-RoBERTa
(XLM-R2) transformer model (Conneau et al.,
2020). We investigated three methods (XLM-R,
XLMR + Ensemble, XLM-R + Adapter), featur-
ing different classifiers in the ordinal classification
task OGWiC and different regressors in the Dis-
WiC task. We additionally enriched the input to
XLMR + Ensemble and XLM-R + Adapter by pair-
wise comparisons of the contextual embeddings,
such as element-wise difference. The XLM-R +
Adapter method further includes the transforma-
tion of the contextual embeddings in the input to a
task-specific representation.

3.1 CoMeDi Baselines
The baseline methods provided by the task organiz-
ers start from contextual embeddings e1 and e2 of

2https://huggingface.co/FacebookAI/
xlm-roberta-base
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Figure 1: Densities of cosine similarity (x-axis) of con-
text embeddings e1 and e2 vs median similarity rating
(y-axis). Note that the x-axis does not start at 0.

the lemma in context 1 and context 2 respectively.
These contextual embeddings are obtained from a
pre-trained XLM-RoBERTa model. Specifically,
e1 and e2 are the mean of the last hidden states
of the hidden states corresponding to the subword
tokens of the lemma in each respective context.

In the DisWiC task, the contextual embeddings
are concatenated to obtain an input representation
f = [e1|e2] (where | denotes concatenation) for a
Linear Regression model. The dependent variable
in the linear regression is the average disagreement
of annotators.

In the OGWiC task, the organizers first calculate
the cosine similarity between e1 and e2 and place
them into four bins, corresponding to the median
judgement values. The bin boundaries are directly
optimized with respect to the target measure of the
task, Krippendorf’s α.

3.2 XLM-R

Our XLM-R method uses the concatenation of con-
textual embeddings f = [e1|e2] as input in both,
the OGWiC classification and the DisWiC regres-
sion task.

Analyzing the cosine similarities between pairs
of contextual embeddings (e1 and e2) in the OG-
WiC task, we discovered that these are hardly sep-
arable into distinct bins (see Figure 1). Therefore,
we decided to cast the task as multi-class classi-
fication, aiming to predict the median similarity
judgement per instance. On the concatenation of
contextual embeddings f = [e1|e2], we train a sim-
ple linear classification head with dropout.

This method for the DisWiC task is almost iden-
tical to the baseline, only adding dropout to the
linear regression head.

https://huggingface.co/FacebookAI/xlm-roberta-base
https://huggingface.co/FacebookAI/xlm-roberta-base
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3.3 Feature Enrichment

Inspired by Reimers and Gurevych (2019), we
enrich the original input f = [e1|e2], i.e., the
concatenation of contextual embeddings, by pair-
wise comparisons and similarity measures of the
two embeddings. Specifically, we extend f to
fe = [e1|e2|e1 − e2|e1 ∗ e2|C|E|M ] where "−"
and "∗" indicate element-wise difference and mul-
tiplication, and C, E, and M indicate cosine simi-
larity, Euclidean and Manhattan distance. We use
this extended feature representation fe as input in
both, XLM-R + Adapter and XLM-R + ensemble
for both tasks (OGWiC and DisWiC).

3.4 XLM-R + Adapter

In this method, we first transform the original
contextual embeddings e1 and e2 in the input
fe = [e1|e2|e1 − e2|e1 ∗ e2|C|E|M ] (cf. sec-
tion 3.3) to task-specific representations e′1 and e′2,
followed by a classification/regression network on
the adapted representations fa = [e′1|e′2|e1|e2|e1 −
e2|e1 ∗ e2|C|E|M ]. For the transformation, we
use the architecture of adapter blocks (Houlsby
et al., 2019), which is a bottleneck architecture
with down-projection, GELU activation, dropout
for regularization, up-projection, and a residual
connection. We use a separate adapter block for
each transformation e1 → e′1 and e2 → e′2.

The classification/regression network consists of
two hidden layers of size 512 and 256 with GELU
activation, each preceded by layer normalization
and followed by dropout, and a final linear classifi-
cation (OGWiC) or regression (DisWic) head.

The adapter blocks are jointly trained with the
classification/regression network, turning the con-
textual embeddings into a task-specific representa-
tion: While the contextual embeddings are obtained
from a frozen XLM-RoBERTa model optimized
for language modeling, their transformation is opti-
mized for the classification/regression task.

3.5 XLM-R + Ensemble

We train the two ensemble methods, CatBoost
(Prokhorenkova et al., 2018) and XGBoost (Chen
and Guestrin, 2016), independently on the enriched
input fe = [e1|e2|e1 − e2|e1 ∗ e2|C|E|M ] (cf. sec-
tion 3.3). We then combine their predictions, ef-
fectively forming an ensemble of ensembles. In
the OGWiC task, we weigh the predictions of the
CatBoost and XGBoost classifiers with 0.4 and 0.3
in the combined prediction (linear combination).

In the DisWiC task we weigh the CatBoost and
XGBoost regressors with 0.4 and 0.6 (weighted
average).

3.6 Hyper-parameters

We train all our networks (including adapter blocks)
for 10 epochs with a learing rate of 1e-4, AdamW
optimizer, batch size of 32 and dropout rate of 0.2.

We train both ensemble models (XGBoost and
CatBoost) with a learning rate of 0.05, a maximum
depth of 6, and 500 iterations/estimators. Addi-
tionally, we set the column sub-sampling rate in
XGBoost to 0.8.

We keep all other hyper-parameters at the default
values provided by their respective libraries.

4 Dataset

Separate datasets were provided for OGWiC and
DisWiC task. However, the uses of a word, i.e.,
a lemma in one particular context are identical
for both tasks. That is, both tasks have the same
set of available contexts and lemmas. Yet, the
instances per task differ in the extent that they
make use of the combinatorial options to com-
bine different contexts for the same lemma and
do not necessarily make use of all combinatorial
options (probably due to the unavailability of rat-
ings). From what we observed, instances in the
OGWiC task are a subset of the instances in Dis-
WiC, discarding instances where no meaningful
median of the ratings can be obtained. For both
tasks (OGWiC and DisWiC), the datasets were di-
vided into pre-defined train, dev and test splits.
The OGWiC task data includes 47.8K training,
8.3K dev and 15.3K test instances in different lan-
guages from prior work, specifically Chinese (Chen
et al., 2023), German (Schlechtweg et al., 2024),
Russian (Kutuzov and Pivovarova, 2021; Aksen-
ova et al., 2022), English (Schlechtweg et al.,
2018), Swedish (Schlechtweg et al., 2024), Span-
ish (Zamora-Reina et al., 2022), and Norwe-
gian (Kutuzov et al., 2022). The DisWiC task data
includes 82.2K training, 13.1K dev and 26.7K test
instances from the same languages. Table 1 details
the training set statistics per language.

5 Results

In Table 2, we compare our three models (XLM-R,
XML-R + Adapter, XML-R + Ensemble) to each
other, to the baselines provided by the task organiz-
ers, and to the best performing submission in the
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AVG ZH DE EN NO RU ES SV

Available Set of Contexts and Lemmas

Unique Contexts 7,844 1,119 12,141 6,565 1,222 24,848 2,757 6,256
Unique lemmas 74 28 117 31 56 189 70 30
Context length 218 58 3,369 1,167 352 4,278 1,410 1,397

OGWiC

Instances 6,833 10,833 8,279 5,910 4,504 8,029 4,821 5,457

DisWiC

Instances 11,740 20,461 13,690 10,831 6,041 12,698 9,339 9,117

Table 1: Training set statistics of both tasks (OGWiC and DisWiC) per language (ISO codes in column headings)
and on average (AVG, rounded to the nearest integer). The set of available contexts and lemmas is identical in both
tasks (top part), but the use of possible combinations differs in the two tasks, yielding varying amounts of training
instances across tasks (bottom part). Unique contexts is the amount of unique contexts, unique lemmas the amount
of unique words in consideration and context length is the average number of words per context (rounded to the
nearest integer).

AVG ZH DE EN NO RU ES SV

OGWiC (Krippendorff’s α)

Baseline 0.123 0.059 0.274 0.102 0.124 0.112 0.175 0.018
XLM-R 0.174 0.068 0.185 0.280 0.025 0.192 0.375 0.091
XLM-R + Adapter 0.340 0.187 0.396 0.394 0.283 0.341 0.435 0.347
XLM-R + Ensemble 0.242 -0.052 0.199 0.347 0.217 0.316 0.330 0.337
Top Submission 0.656 0.424 0.723 0.723 0.668 0.623 0.748 0.675

DisWiC (Spearman’s ρ)

Baseline 0.118 0.387 0.093 0.064 0.076 0.049 0.077 0.081
XLM-R 0.083 0.398 0.067 0.016 -0.118 0.045 0.052 0.119
XLM-R + Adapter 0.146 0.402 0.127 0.092 0.113 0.091 0.103 0.097
XLM-R + Ensemble 0.170 0.433 0.167 0.056 0.178 0.076 0.088 0.194
Top Submission 0.226 0.301 0.204 0.078 0.286 0.175 0.187 0.350

Table 2: Results on the test sets of both subtasks (OGWiC and DisWiC, evaluation metric in parentheses) per
language (ISO codes in column headings) and on average (AVG). We compare our methods against the baselines
provided by the task organizers (cf. section 3.1 and the best performing system (Deep Change) at the time of
evaluation of the competition (indicated by “Top Submission” in the table). Best scores of our methods in bold and
best overall underlined.

shared task. Since the shared task is still open for
participation, post-evaluation results are subject to
change. Therefore, we compare against the official
evaluation results from within the competition and
report corresponding scores for the best submission.
By average scores, our XLM-R + Adapter method
would have ranked 5th in the OGWiC task and the
XLM-R + Ensemble method 3rd in DisWiC.

In the OGWiC task, XLM-R + Adapter consis-
tently performs best across all languages among our
methods, but falls short in comparison to the best
submission. On average, also the simple XLM-R
method performs better than the baseline.

In the DisWiC task, best performance among
our models varies between XLM-R + Adapter and
XLM-R + Ensemble. While XLM-R + Ensem-
ble outperforms the best submission on Chinese

language and XLM-R + Adapter performs better
than the best submission on English, scores of the
best submission are highest on the remaining five
languages and on average. In comparison to the
Linear Regression baseline as provided by the or-
ganizers, the addition of dropout in XLM-R seems
to be harmful rather than helpful.

6 Discussion

Expectably, our methods with enriched features
and more complex classifiers/regressor (XLM-R +
Adapter and XLM-R) outperform our baseline of
a simple classification/regression head directly on
top of the concatenation of contextual embeddings
(XLM-R). This behavior is consistent across lan-
guages, except for Chinese, where the XLM-R +
Ensemble performs worst among all methods (in-
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cluding the CoMeDi baseline) in the OGWiC task.
Generally, the subset of Chinese instances reveals
interesting patterns. Despite that Chinese has the
highest number of training instances in both tasks,
performance is almost opposite between the two
tasks: Chinese has the lowest score among almost
all methods in OGWiC (and in particular the lowest
score in the best submission), whereas it has the
highest score among almost all methods in DisWiC
(second-highest in best submission). We hypothe-
size that this gap may be rooted in the set of avail-
able contexts, which is smallest for Chinese, de-
spite Chinese having the highest amount of training
instances in both tasks. That means, several con-
texts must appear in multiple instance whereas for
example the Russian instances could be constructed
almost exclusively from unique contexts (each in-
stance is a pair of two contexts, i.e., 12698*2 =
25396 unique contexts would be required for every
context to appear only once, whereas 24848 unique
contexts are available). Since our methods build on
contextual embeddings, for contexts that appear a
lot of times, they might learn to rely on patterns in
the corresponding contextual embeddings that are
determined by context only and try to use these as
shortcuts. This behavior might work in DisWiC, if
the disagreement of annotators is governed by con-
text rather than the lemma, but fail in the prediction
of the relatedness of the actual lemma. However,
that is only one potential explanation, while other
components in the pipeline of our methods or dif-
ferences in the task/data configuration may offer
equally valid explanations. We also do not know
details about the best performing submission and
hence cannot judge whether that explanation would
hold for it.

In the initial submission, we related the perfor-
mance of individual methods to properties of the
data for different languages, such as duplicated
contexts. However, we noticed a mistake in the def-
inition/calculation of duplicated contexts and that
these conclusions were drawn erroneously. There-
fore, we dropped this part of the discussion in the
final submission.

7 Conclusion

In this shared task paper, we introduced multi-
ple methods that incorporate extensions of con-
textual embeddings by pairwise comparison, such
as element-wise difference and similarity measures,
and additonal transformations of these embeddings

by Adapter blocks to task-specific representations.
We use the contextual embeddings (and their ex-
tensions) with classifiers and regressors of varying
complexity.

While the performance of our methods falls short
in comparison to the best submission in the OGWiC
task, it is competitive in terms of official evaluation
results in the DisWiC task.

We are curiously looking forward to the descrip-
tions of the other systems and plan to investigate
potential options to combine approaches and ideas
to advance future research on disagreement model-
ing in multilingual and multi-contextual settings.

Limitations

This study focuses exclusively on WiC tasks involv-
ing seven specific languages, leaving the general-
ization of the models to other languages outside the
scope of this shared task uncertain. Additionally,
our approach is limited to the methods described
in this work. Future research could explore the per-
formance of these models across a wider range of
languages and investigate the impact of alternative
fine-tuning strategies on their overall effectiveness.
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