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Introduction

Welcome to CoMeDi, the workshop on Context and Meaning—Navigating Disagreements in NLP
Annotations!1

This workshop is taking place for the first time and explores causes of disagreements in NLP annotations
as well as strategies for effective handling or resolution. This iteration of the workshop includes research
on representing ambiguity in meaning representations, annotating implicit discourse relations, analyzing
disagreement in politeness annotations, and predicting disagreement in tasks about word sense and
hateful content, among others.

The workshop also hosted a shared task on ordinal word-in-context judgments. In the first subtask,
participants were asked to predict the median of annotator judgments. In the second subtask, they needed
to predict the mean of pairwise absolute judgment differences between annotators.

In total, we received 21 paper submissions (among them 7 shared task papers), out of which 17 were
accepted. All workshop papers are presented as talks, while the shared task papers are presented in a
poster session. In addition, the workshop includes two non-archival paper presentations and one invited
talk on human label variation.

The program committee consisted of 20 researchers, who we would like to thank for providing helpful
and constructive reviews on the papers. We would also like to thank all authors for their submissions and
interest in our workshop.

Michael and Dominik

1https://comedinlp.github.io/
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Abstract

The complexity of the annotation process when
adopting crowdsourcing platforms for labeling
hateful content can be linked to the presence
of textual constituents that can be ambiguous,
misinterpreted, or characterized by a reduced
surrounding context. In this paper, we address
the problem of perspectivism in hateful speech
by leveraging contextualized embedding rep-
resentation of their constituents and weighted
probability functions. The effectiveness of
the proposed approach is assessed using
four datasets provided for the SemEval 2023
Task 11 shared task. The results emphasize
that a few elements can serve as a proxy
to identify sentences that may be perceived
differently by multiple readers, without the
need of necessarily exploiting complex Large
Language Models. The source code and dataset
references related to our approaches are avail-
able at https://github.com/MIND-Lab/
Hate-Speech-Disagreement-Detection/.
Warning: This paper contains examples of
language that may be offensive.

1 Introduction

In the landscape of social networks, hate speech
is a growing concern. However, most of the ex-
isting detection methods do not take into account
the subjectivity of the task and lack in considering
different perspectives, resulting in a critical gap
in addressing the inherent subjectivity of this phe-
nomenon when designing hate speech prediction
models.

Several psycho-social studies (LaFrance and
Roberts, 2019; Huddy and Aarøe, 2019; Sap et al.,
2019; Hoskins and Tulloch, 2018) have shown
that hate perception is subjective and highly de-
pendent on a range of factors such as preconcep-
tions, stereotypes, cultural background, anonymity
of the source, and the specific context in which
the speech occurs. Among the possible sources
of disagreement, annotators’ opinions, beliefs, and

knowledge have been identified by several investi-
gations in the state-of-the-art (Sandri et al., 2023;
Sap et al., 2022). While disagreement is capturing
researchers’ attention, the majority of works focus
on a posteriori exploiting disagreement information
to improve the quality of data (Beigman Klebanov
and Beigman, 2009; Sang and Stanton, 2022) or in-
cluding it in the training phase of machine learning
models to improve prediction performance (Lee
et al., 2023). Only a few of them address the prob-
lem of a priori modeling perspectivism (Sandri
et al., 2023; Cabitza et al., 2023) and recognizing
potential textual triggers of such a disagreement
(Rizzi et al., 2024a).
Detecting disagreement in a hateful sentence and
identifying the corresponding disagreement-related
constituents could play a fundamental role when
creating gold-standard benchmarks to be submit-
ted to crowdsourcing workers. For those contents
that could lead to disagreement, specific annotation
policies could be adopted (e.g., more annotators to
be involved, removal of the sample from the dataset
that should be annotated, etc..). Alternatively, spe-
cific highlights could be provided to the annotators
to focus more on specific constituents that could
be perceived differently by the readers (e.g., un-
derlining words, hashtags, or emoji that have been
identified as disagreement-related constituents that
should be carefully evaluated). In this paper, we
propose a novel technique for detecting disagree-
ment in hate speech and identifying sentence fea-
tures that can suggest a lack of agreement among
different readers. The proposed method looks at
several textual elements (here referred to as con-
stituent), including words, emoticons, and hashtags,
to identify the ones that are likely associated with
disagreement. Each constituent, opportunely rep-
resented in a contextualized embedding space, is
evaluated by defining a weighted probability func-
tion to account for nuanced perceptions of different
elements. Additionally, we investigated if the pro-
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posed approach, which is based on the evaluation
of a bunch of words, is enough when compared
with predictions based on Large Language Mod-
els. In order to evaluate the efficiency of our ap-
proach, multiple experiments have been performed
using hate speech datasets from the SemEval 2023
- Task 11 on Learning With Disagreements (Le-
Wi-Di) (Leonardelli et al., 2023). These datasets
cover a wide range of features, such as annotation
techniques, text kinds, and goals. The diversity
of the data allowed us to assess the capability of
the proposed approach to identify disagreement at
sentence level, by leveraging on selected elements
considering the different contexts in which they
appear.
In summary, three main contributions are given:

• Contextualized embeddings coupled with
weighted probability functions have been pro-
posed to detect disagreement-related con-
stituents in hateful content.

• Several aggregation strategies are investigated
to predict the disagreement label associated to
each sentence.

• A comparison with a few Large Language
Models, opportunely fine-tuned to detect dis-
agreement, has been performed, considering
as key elements to evaluate both prediction
capabilities and computational requirements.

The paper is organized as follows. In Section 2
an overview of the state of the art is provided, while
in Section 3 the proposed approach is detailed. In
Section 4, the adopted datasets are presented, while
the achieved results are reported in Section 5. In
Section 6, conclusion and future research directions
are drawn. Finally, in Section 6, the impact of the
proposed approach and its current limitations are
highlighted.

2 Related Work

Various natural language tasks, like sentiment anal-
ysis or hate speech detection, have been shown
to display ambiguity or subjectivity (Uma et al.,
2021). As a consequence, an emerging area of re-
search challenges the assumption that each instance
possesses a unique perception and interpretation.
Subjectivity is represented in datasets through mul-
tiple annotations or the addition of confidence lev-
els to ground truth labels. The general idea is to
use several labels to represent the diverse opinions

of annotators with different perspectives and under-
standing (Uma et al., 2021).

The information reflecting annotators’ disagree-
ment has primarily been used to improve dataset
quality by excluding instances marked by annotator
disagreement (Beigman Klebanov and Beigman,
2009; Sang and Stanton, 2022). Alternatively, the
annotators’ disagreement has been used during
training of machine learning models accordingly
to two different strategies, i.e., by either assign-
ing weights to instances to prioritize those with
higher confidence levels (Dumitrache et al., 2019),
or by inducing directly from disagreement without
considering aggregated labels (Uma et al., 2021;
Fornaciari et al., 2021).

While numerous research papers have been de-
voted to understanding the reasons behind annota-
tors’ disagreement (Han et al., 2020; Sandri et al.,
2023; Sang and Stanton, 2022) or to leverage on
disagreement when training classification models,
less attention has been devoted to explain and a
priori recognize disagreement in hateful content
(Shahriar and Solorio, 2023; Gajewska, 2023; Sul-
livan et al., 2023; de Paula et al., 2023; Erbani et al.,
2023; Vallecillo-Rodríguez et al., 2023).

In particular, it has been demonstrated how dif-
ferent annotators adopt diverse strategies, involving
the adoption of ad-hoc shortcuts and identifying
specific patterns, when performing a given task
(Han et al., 2020). A significant contribution to
the understanding of how humans annotate data is
presented by Sang and Stanton (2022), where the
authors demonstrate that factors such as age and
personality strongly influence annotators’ percep-
tion of offensive or hateful content. In (Sandri et al.,
2023), the authors propose a taxonomy of possible
reasons leading to annotators’ disagreement and
evaluate the impact on classification performance
of the different types. Specifically, the authors iden-
tify four macro categories of reasons behind dis-
agreement: sloppy annotations, ambiguity, missing
information, and subjectivity. Furthermore, meth-
ods to examine the annotation quality and consis-
tency have been proposed, aiming at obtaining a
clear understanding of users’ experience (Lavitas
et al., 2021; Sang and Stanton, 2022).

Finally, a few recent works have focussed on
explaining and recognizing disagreement. The
approach proposed by Astorino et al. (2023) ex-
ploits integrated gradients in the definition of a
filtering strategy aiming at identifying both dis-
agreement and hate speech while identifying tex-
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tual constituents that contribute in hateful messages
explanation. A more recent approach (Rizzi et al.,
2024a) proposes a probabilistic semantic approach
for the identification of disagreement-related con-
stituents in hateful content. The results achieved in
the state of the art suggest that although promising
results can be achieved by Large Language Mod-
els (LLMs), comparable performances using lower
computational resources can be obtained with sim-
pler strategies.

3 Proposed Approach

This work represents an extension of the approach
proposed by Rizzi et al. (2024a), with the objec-
tive of enhancing constituent contextualization and
defining a more comprehensive model.

Based on the hypothesis that disagreement can
derive from specific constituents within a sentence
that can be perceived differently and, therefore,
achieve a different interpretation and connotation
in relation to the task’s label, a score representing
the potential for disagreement has been defined.

The proposed approach is characterized by the
following steps:

• POS tagging constituent selection: for each
word in a given sentence, the corresponding
lexical term has been identified through Part
Of Speech (POS) tagging1. The elements cor-
responding to relevant lexical terms (i.e., ad-
jectives, adverbs, interjections, nouns, pro-
nouns, proper nouns, verbs, and hashtags)
have been selected as constituents2.

• Constituent Embeddings: for each con-
stituent c selected from the given sentence,
its contextualized embedding representation
v⃗c is obtained by means of the mBERT model.

• Most similar constituents: given a con-
stituent c with the corresponding embedding
v⃗c, the set Sc of the most similar constituents
to c is determined according to:

Sc =
⋃

t

{t|cos(v⃗t, v⃗c) ≥ ψ} (1)

1For POS Taggins we used -core_web_sm models by
spaCy https://spacy.io version 3.6

2According to the selected spaCy model, the POS tag
excluded from the selection are: adposition, auxiliary verb,
coordinating conjunction, determiner, numeral, particle, punc-
tuation, and subordinating conjunction.

where cos(v⃗t, v⃗c) is the cosine similarity be-
tween the contextualized embedding repre-
sentation of element c (i.e., v⃗c) and the con-
textualized embedding representation of the
element t (i.e., v⃗t), where t ∈ T with T repre-
senting the set of constituents identified in the
training dataset by performing the previously
defined steps. Finally, ψ is a threshold that
has been estimated via a grid search approach
on the validation dataset.

• Disagreement Score: The proposed disagree-
ment score is grounded on probability weight-
ing functions (Prelec, 1998), which are linear
and nonlinear functions of probability widely
known in behavioral decision theory and be-
havioral economics. Weighted probabilities
denote a probabilistic model wherein indi-
vidual outcomes are associated with distinct
weights, reflecting the differential likelihood
of occurrence (Gonzalez and Wu, 1999; Nar-
don and Pianca, 2015). By assigning appro-
priate weights to relevant events, it becomes
possible to selectively focus on the subset
of events whose occurrence significantly in-
fluences the probability of the event under
consideration. This selectivity enhances the
precision of analyses and allows for a more
targeted understanding of the complex inter-
play between events within a given system.

In our case, the weighted probabilities are
used to compute the constituent disagreement
score by only taking into account the con-
stituents in the selected neighborhood. In par-
ticular, given a constituent c with the corre-
sponding set of most similar constituents Sc,
the weighted probability of the contextualized
constituent s ∈ Sc to be associated with the
positive label (+), i.e., the agreement label,
can be estimated as:

P
(
s+

) cos(v⃗s, v⃗c)∑
a∈Sc

cos(v⃗a, v⃗c)
(2)

Where P (s+) represents the probability of the
constituent s ∈ Sc to be associated with the
positive class label.

Similarly, given a constituent c with the corre-
sponding set of most similar constituents Sc,
the weighted probability of the contextualized
constituent s ∈ Sc to be associated with the
negative label (−), i.e., the disagreement label,
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Dataset Language N. items Task Annotators Pool Ann. % of items with full agr.
HS-Brexit En 1,120 Hate Speech 6 6 69%
ArMis Ar 943 Misogyny and sexism detection 3 3 86%
ConvAbuse En 4,050 Abusive Language detection 2-7 7 65%
MD-Agreement En 10,753 Offensiveness detection 5 >800 42%

Table 1: Datasets characteristics.

can be estimated as:

P
(
s−

) cos(v⃗s, v⃗c)∑
a∈Sc

cos(v⃗a, v⃗c)
(3)

Where P (s−) represents the probability of the
constituent s ∈ Sc to be associated with the
negative class label.

Given the weighted probabilities estimated ac-
cording to Equation (2) and (3), the Disagree-
ment Score for any constituent c is defined
as:

DS(c) =
∑

s∈Sc

P
(
s+

) cos(v⃗s, v⃗c)∑
a∈Sc

cos(v⃗a, v⃗c)

− P
(
s−

) cos(v⃗s, v⃗c)∑
a∈Sc

cos(v⃗a, v⃗c)
(4)

Equation 4, which can be seen as a difference
of all weighted probabilities, ranges in the
interval from -1 to 1. The closer the score
is to minus one, the more the constituent is
related to the disagreement label. The closer
the score is to one, the more the constituent is
related to the agreement label.

The disagreement scores allow us to estimate the
disagreement that may arise between annotators.
The Sentence Disagreement Score (SDS) has been
estimated by aggregating the scores computed for
the single constituents according to the following
strategies: Sum, Mean, Median, and Minimum.
For each aggregation strategy, a threshold π has
been estimated via a greed search approach to as-
sign the final class label of the sentence.

4 Datasets, Baselines and Performance
Metrics

In order to evaluate the computational potential of
the proposed approach, both from the prediction ca-
pabilities and the computational resources needed,
4 benchmark datasets provided by SemEval 2023
Task 11 related to Learning With Disagreement
(Leonardelli et al., 2023) have been adopted.

The datasets have different characteristics in
terms of types (social media posts and conver-
sations), languages (English and Arabic), goals
(misogyny, hate-speech, offensiveness detection),
and annotation methods (experts, specific demo-
graphics groups, and general crowd). Their charac-
teristics are summarized in Table 1.

• Hate Speech on Brexit (HS-Brexit) (Akhtar
et al., 2021). This dataset consists of 1,120 En-
glish tweets collected with keywords related
to immigration and Brexit. The dataset was
annotated with hate speech, aggressiveness,
offensiveness, and stereotype by six annota-
tors.

• Arabic Misogyny and Sexism (ArMIS) (Al-
manea and Poesio, 2022). The dataset consists
of Arabic tweets to study the effect of bias on
sexist judgments, focusing on the impact of
being conservative or liberal. The data was
labeled by three annotators, one conservative
male, one moderate female, and one liberal
female.

• ConvAbuse (Cercas Curry et al., 2021). The
dataset contains 4,185 English dialogues be-
tween users and two conversational agents.
The user dialogues have been annotated by
experts in gender studies.

• Multi-Domain Agreement (MD-Agreement)
(Leonardelli et al., 2021). The dataset con-
sists of 10,000 English tweets from three
different domains (BlackLivesMatter, Elec-
tion2020, Covid-19). Each tweet was anno-
tated as offensive or not by 5 annotators.

All the datasets are characterized by the
presence of hard-labels (hateful/non-hateful)
and soft-labels (disagreement) for each instance.
According to Poletto et al. (2021) all these tasks
are under the hate umbrella since aggressive,
offensive, and abusive language can be triggered
by hate, and misogyny is a form of aversion
towards a specific target. For this reason, from now
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on we will refer to hate as a comprehensive word
embracing all the above-mentioned forms of hos-
tility. Since in this work, disagreement detection
is addressed as a binary task, an agreement label
has been derived from the available soft-labels. In
particular, the agreement label is set equal to (+)
when there is a complete agreement among the
annotators, while equal to (−) in all the other cases.

Regarding the baseline models, we compare
both with the best approach identified by Rizzi
et al. (2024a) (i.e., G-minimum) and with widely
adopted state-of-the-art AI models: mBERT (Ken-
ton and Toutanova, 2019), Llama-2 (Touvron et al.,
2023), Mistral-7B (Jiang et al., 2023), Llama-
3.2 (Dubey et al., 2024), and Phi-3.5 (Haider
et al., 2024). In particular, the approach pro-
posed by Rizzi et al. (2024a) comprises a tech-
nique for identifying disagreement-related textual
constituents and an approach for generalizing to-
wards unseen textual constituents. Additionally,
four distinct strategies for identifying disagreement
are presented. For what concerns the selected
LLMs, instead, they have been fine-tuned using
the boolean soft-labels related to the disagreement,
adopting the huggingface framework, using default
hyperparameters. mBERT (Kenton and Toutanova,
2019) is a well-established and widely recognized
transformer-based model trained on more than 100
languages. The use of mBERT allows for results
that are easily reproducible without extensive com-
putational power. On the other hand, Llama-based
models (Touvron et al., 2023; Dubey et al., 2024)
are generative large language models known for
their efficiency and scalability. They are designed
to handle large-scale language tasks and can be
fine-tuned for a variety of classification problems.

Mistral-7B (Jiang et al., 2023) is a further gen-
erative language model that is renowned for its ef-
ficiency and targeted optimizations. It is designed
for high-volume text processing, optimized for mul-
tilingual content, and suitable for globalized con-
texts.

Phi 3.5-mini (Haider et al., 2024) is a lightweight
version of the Phi model family that offers robust
performance on language tasks while avoiding the
high demands of larger models. Its compact struc-
ture makes it ideal for constrained environments,
with excellent results in multilingual processing
and classification.

Each of these models has been proven to be effec-
tive on several natural language tasks such as hate

speech detection or sentiment analysis. Moreover,
a peculiar capability of such models is the ability to
process multilingual text and social media content.
While all models achieve challenging results on a
variety of tasks, the choice among these models
usually represents a compromise based on specific
requirements of the task, such as the volume of data,
the languages involved, and the computational re-
sources available.

Differently from the original Le-Wi-Di chal-
lenge (Leonardelli et al., 2023), in this work, dis-
agreement detection is addressed as a binary task,
making a comparison with the participants’ perfor-
mances unfeasible. This is mainly motivated by
the concerns raised by the organizers (Leonardelli
et al., 2023), also recently supported by Rizzi et al.
(2024b), where the problem of ranking systems
trained on continuous disagreement soft-labels us-
ing cross-entropy could be strongly biased by the
cross-entropy measure itself. For this reason, we
compared the proposed approach with benchmark
models.

For what concerns the performance metrics, two
main aspects have been considered: (i) prediction
capabilities in terms of F1-Measure for both the
agreement (F1+) and disagreement (F1−) labels,
together with their average (F − score), and (ii)
computational requirements in terms of the num-
ber of model parameters, RAM, CPU, and GPU.
The first evaluation allows for a comparison of
the models’ capabilities in identifying disagree-
ment among annotators, while the second aspect
allows for a comparison of the computational re-
quirements needed to reproduce the whole pipeline
(comprehensive of the training phase).

5 Results and Discussion

Given the Disagreement Score (DS) of each con-
stituent within a sentence, all the proposed aggrega-
tion strategies have been evaluated (i.e., sum, mean,
median, and minimum). Table 2 summarizes the
results achieved with the best thresholds (π and ψ)
selected through a grid-search approach on the val-
idation set released within the Le-Wi-Di challenge
for each dataset. Results are distinguished between
agreement (+) and disagreement (−) labels.

A McNemar (McNemar, 1947) test has been
adopted to perform a pairwise comparison with
each of the proposed approaches (considering a
confidence level of 0.95). The McNemar test does
not verify if two models have different perfor-
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Approach ConvAbuse ArMIS HS-Brexit MD-Agreement
F1+ F1− F1-score F1+ F1− F1-score F1+ F1− F1-score F1+ F1− F1-score

Sum 0.84 0.25 0.55*†‡⊛ϕ 0.68 0.29 0.48* 0.71 0.47 0.59 †‡⊛ 0.50 0.69 0.59*†‡⊛ϕ

Mean 0.80 0.36 0.58*†‡⊛ϕ 0.66 0.47 0.57* 0.80 0.61 0.70 ϕ 0.56 0.65 0.60*†‡⊛

Median 0.85 0.32 0.58*†‡⊛ϕ 0.68 0.34 0.51* 0.79 0.49 0.64⊛ϕ 0.55 0.67 0.61*†‡⊛ϕ

Minimum 0.86 0.43 0.65*†‡⊛ 0.48 0.48 0.48* 0.63 0.55 0.59 *†‡⊛ 0.48 0.71 0.60*†‡⊛ϕ

G-Minimum 0.85 0.33 0.59 0.59 0.48 0.54 0.84 0.69 0.77 0.54 0.64 0.59
mBERT * 0.93 0.05 0.49 0.38 0.63 0.50 0.37 0.43 0.40 0.76 0.60 0.68
Llama-2-7B † 0.92 0.13 0.53 0.71 0.37 0.54 0.84 0.63 0.74 0.59 0.77 0.68
Mistral-7B‡ 0.91 0.26 0.59 0.66 0.39 0.53 0.82 0.69 0.76 0.55 0.77 0.66
Llama-3.2-3B⊛ 0.92 0.17 0.54 0.67 0.25 0.46 0.85 0.59 0.72 0.59 0.75 0.67
Phi-3.5-miniϕ 0.89 0.23 0.56 0.67 0.35 0.51 0.71 0.36 0.54 0.53 0.64 0.59

Table 2: Comparison of the different approaches on the test set for disagreement detection. Bold denotes the best
approach according to the F1-Score, while underline represents the best approach according to the disagreement
label. A McNermar test has been performed as a pairwise comparison between the proposed approaches and
MBERT (*), Llama-2 (†), Mistral (‡), Llama-3.2 (⊛) and Phi-3.5 (ϕ).

Approach Parameters RAM CPU GPU
Sum

179M 16 GB 2-4 CPU cores Non-necessary
Mean
Median
Minimum
G-Minimum (Rizzi et al., 2024a) 179M 16 GB 2-4 CPU cores Non-necessary
mBERT (Kenton and Toutanova, 2019) 179M 16 GB 4-8 CPU cores Non-necessary
Llama-2-7B (Touvron et al., 2023) 6.74B 160GB 6-12 CPU cores* 100GB
Mistral-7B (Jiang et al., 2023) 7.25B 160GB 8-16 CPU cores* 110GB
Llama-3.2-3B (Dubey et al., 2024) 3.21B 90GB 4-8 CPU cores* 60GB
Phi-3.5-mini(Haider et al., 2024) 3.82B 90GB 4-8 CPU cores* 60GB

Table 3: Computational requirements of the proposed approaches. Values marked with (*) have been estimated, as
the exact information was not provided.

mances, but it tests if there is a significant differ-
ence in terms of model prediction by comparing
sensitivity and specificity of the two models under
analysis.

Focusing on the results reported in Table 2, we
can observe that all the considered approaches
perform better on the majority class, which in
general, is related to the complete agreement.
Additionally, it is important to note that mBERT is
not able to systematically outperform the proposed
approach, considering all the aggregation strategies.
On the other hand, the proposed approach and
the selected LLMs (i.e. Llama-2-7B, Mstral-7B,
Llama-3.2-3B, and Phi-3.5-mini) perform in a
competitive way: while our strategies work better
on ConvAbuse and ArMIS, such models achieve
better results on HS-Brexit and MD-Agreement.
Although the results of LLMs seem promising on
those datasets, such a performance is likely due to
the presence of instances on the same topic (e.g.,
Covid in MD-Agreement, Brexit in HS-Brexit) in

the corpora used for training the models. It can
be easily noted that the selected LLMs perform
worst on the two datasets that are characterized
by the underlying lexicon (e.g., ArMIS contains
misogynous tweets) or by the type of expressions
(e.g., ConvAbuse contains user-bot interactions).
An additional consideration relates to the dif-
ference in terms of model predictions evaluated
through the McNemar test. Although the selected
LLMs achieve higher values of F1 score in HS-
Brexit, the statistical test shows that in those cases,
the behavior of our best approach is analogous and
does not highlight any difference in terms of model
prediction. On the other hand, on ConvAbuse, our
approach outperforms state-of-the-art LLMs, and
the statistical test corroborates the hypothesis that
our predictions are significantly different. A final
consideration refers to the performances achieved
on MD-Agreement. As highlighted by Rizzi et al.
(2024a), one challenging aspect of the dataset
is the inclusion of three main macro-topics of
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discussion. While the proposed approach performs,
on MD-Agreement, poorly with respect to state-
of-the-art LLMs, it introduces an improvement
in performance with respect to G-Minimum. The
primary reason for such behavior seems to be
the variety of arguments covered by the dataset,
indicating that disagreement may stem not only
from differing beliefs or backgrounds but also
from the specific topics being discussed.
To provide a complete overview of the models,
we report in Table 3 their computational require-
ments3. It can be easily noted that the proposed
approach should be preferred: while the number
of parameters and RAM are comparable with
mBERT, it requires fewer CPU cores. Furthermore,
when comparing our approach with the selected
LLMs, the necessary resources clearly appear
advantageous. Considering both the achieved
performances and the computational requirements,
we can affirm that simpler models represent a
promising alternative to mBERT and other widely
adopted LLMs.

A further relevant aspect relates to the usage of
the models to highlight disagreement constituents
during the annotation phase in the crowdsourcing
platforms. While mBERT and the other analyzed
LLMs can straightforwardly underline which con-
stituents contribute more to predict disagreement,
also the presented approach can be exploited for
such a task.

For instance, Integrated Gradients can be used
for the identification of such terms from Large Lan-
guage Models. For the proposed approach, the
constituent score can be exploited to evaluate the
relationship of each constituent, within the context
in which it appears, and the disagreement between
annotators (on the hate task).

Figure 1 reports a visual representation of
Disagreement Scores (DS) computed for two
non-hateful tweets of the Brexit dataset. The
first example (Figure 1 (a)) reports a tweet with
disagreement, while the second one (Figure 1 (b))
denotes a tweet with agreement. According to the
DS score, the proposed approach highlights the

3The values reported within this table have been estimated
according to (Kim et al., 2024) and with the information re-
leased by the authors both in the corresponding papers and
in the official Hugging Face model-card. All the reported
values refer to the original model and do not consider fur-
ther optimization techniques that might reduce computational
requirements at the expense of reduced recognition perfor-
mance.

You can always go to those Muslim bastions of freedom <url>

(a) Tweet with Disagreement
<user> As a Muslim, I welcome #Brexit

(b) Tweet with Agreement

Figure 1: Visual representation of disagreement scores
on sentences from the Brexit dataset. Positive values
are represented with green and negative values are rep-
resented with pink. The white color is used for con-
stituents with DS values equal or close to zero.

word “Muslim” as strongly related to disagreement
in the first tweet and to agreement in the second
one, highlighting the capability to evaluate the
constituent with respect to its context. It is
important to note that the word “Muslim” was
intentionally used by the creators of the dataset as
a seed word because it is considered a source of
disagreement. The reported example confirms that
such a word is correctly identified, according to the
context where it appears, as a source of agreement
or disagreement in an agnostic way. In fact, the
reported tweets - “As a Muslim , I welcome #Brexit”
and “You can always go to those Muslim bastions
of freedom” - strongly differ on the connotation of
the term “Muslim”. In the first tweet, the term is
used as a self-identifier, to identify the religious
affiliation of the person expressing a personal
opinion on a political issue. The focus is on the
individual’s religious identity, and the statement
implies that despite being a Muslim, the person
supports Brexit. The connotation here is neutral
and merely serves to highlight the diversity of
opinions within the Muslim community. In the
second tweet instead, the term carries a negative
connotation since it is used in a stereotypical
and possibly derogatory manner. The phrase
“Muslim bastions of freedom” could be interpreted
as sarcastic or mocking, implying that there is a
perception that Muslim-majority areas or countries
are not associated with freedom.

Finally, a more extensive qualitative analysis of
the salient constituents for the different datasets
has been conducted. Since our approach is based
on a contextualized representation of constituents,
where the same word can have multiple embed-
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ding representations according to its context, we
computed the top-scoring words (per dataset) as
follows:

• we considered all the scores for each con-
stituent according to its context,

• we computed the percentage of positive and
negative scores for each constituent,

• we sorted the estimated percentage to identify
the top-k constituents.

Agreement Constituents Disagreement Constituents

nerdy compatriots
sleepy throw
intelligence flows
greenhouse reverse
sure Sanders

Table 4: Top-5 agreement and disagreement constituents
for the ConvAbuse dataset

Agreement Constituents Disagreement Constituents

vote Obama
we #EURO2016
Duch #Trump2016
Cameron France
immigrant invasion

Table 5: Top-5 agreement and disagreement constituents
for the HS-Brexit dataset.

Agreement Constituents Disagreement Constituents

#blacklivesmatter Covid
Thank police
UK coronavirus
neck vote
blah President

Table 6: Top-5 agreement and disagreement constituents
for the MD Agreement dataset

Agreement Constituents Disagreement Constituents

�HA��̄ A 	K (deficiencies) �HA¢Ê���Ó (bossy)

�è

@QÖÏ @ (woman) Pñ� (photo)

	áK
X (religion) �	�@ñ« (spinsters)

¨P@ñ �� (streets) ÈCg (halal)

ZA� 	�Ë @ (women) ÉÓAª�JË @ (dealing)

Table 7: Top-5 agreement and disagreement constituents
for the ArMIS dataset

Tables 4, 5, 6, and 7 list the top-5 agreement and
disagreement constituents for each dataset. The
elements that show the highest agreement scores
are rarely associated with different perceptions, be-
ing used frequently in sentences where annotators
show a full agreement, while the ones with high
disagreement scores are often a proxy of different
perspectives.

Since the main goal of this paper is to show
the relationship between constituent scores and the
agreement/disagreement label, according to the ob-
tained results, the estimated constituent scores can
be considered promising because acting as a good
proxy of agreement/disagreement. While we ac-
knowledge the potential benefits of post-hoc human
evaluation, implementing such a strategy is imprac-
tical due to the impossibility of reproducing the
exact conditions of the original annotation process.
Even by adhering to the dataset creators’ approach,
obtaining the same annotators is basically not pos-
sible (in most cases, anonymous annotators have
been involved through crowd-sourcing platforms).
On the other hand, introducing additional anno-
tators would imply increasing the variability of
potential perspectives without guaranteeing any ad-
herence to the initial annotation and, therefore, to
the constituent perception of the original annotators
of the dataset.

The proposed solution, contrary to what has been
formerly presented in the literature, is able not only
to predict if a text can lead to disagreement from
different readers’ perspectives but also calls atten-
tion to those disagreement-related constituents in
hateful content.

6 Conclusions and Future Work

This paper introduces a simple approach for the
identification of disagreement-related constituents
within the text and exploits them in the prediction
of disagreement in hateful texts. By leveraging
weighted probabilities, the proposed methodology
allows the identification of constituents that not
only represent valuable information for a compre-
hensive understanding of the sources of disagree-
ment within the text but also serve as the foundation
for developing an explainable strategy for disagree-
ment detection. The proposed strategies demon-
strate a good trade-off between prediction capa-
bilities and computational requirements compared
both with G-minimum (Rizzi et al., 2024a) and
with well-known state-of-the-art language models:
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mBERT, Llama-2, Mistral, Llama-3, and Phi-3.
Future works will consider the adoption of index-

ing or clustering techniques to reduce the search
space of the most similar embeddings by narrow-
ing down the candidates for similarity comparison,
resulting in an improvement in efficiency. More-
over, future works might focus on the extension of
the proposed approach for the quantification of the
level of disagreement in a sentence. Finally, con-
sidering the potential of highlighting disagreement-
related tokens in the labeling phase, a relevant as-
pect that will be considered relates to the creation
of datasets that include annotators’ perceptions at
the constituent level.

Limitations

The proposed approach holds significant promise to
improve our comprehension of textual constituents
related to disagreement, both in theoretical and
practical contexts. By enabling the identification
of these constituents, the method contributes to a
deeper comprehension of disagreement dynamics
within the text. However, it is crucial to acknowl-
edge a current limitation associated with its compu-
tational complexity. The comparison within each
contextualized constituent representation and ev-
ery known contextualized constituent represents a
significant computational burden, making the ap-
proach computationally expensive and difficult to
scale. In particular, the time complexity for the
computation of the DS scores for a given sentence4

isO(n∗m∗time complexity of similarity measure),
where n represents the number of contextualized
constituents in the training data and m the num-
ber of contextualized constituents in the given sen-
tence. In our case, the adopted similarity measure
is the Cosine similarity that has a time complex-
ity of O(d) where d represents the dimension of
the vector to compare. Therefore the overall time
complexity is O(n ∗m ∗ d). This constraint high-
lights the need for future improvements to improve
efficiency while retaining the method’s significant
insights into textual conflict.

Ethical Statement

In this research work, we used datasets from the
recent literature, and we did not use or infer any
sensitive information. The risk of possible abuse

4The time complexity estimation doesn’t consider the time
complexity necessary to compute the latent representation of
the constituents.

of the models and the proposed approach is low.

Experimental Settings and Setup

We ran the experiments of the proposed method-
ology on a machine equipped with one Nvidia
Testa T4 GPU, CUDA v11.4, 256GB RAM, 2
CPU Xeon Gold. The selected state-of-the-art base-
lines include generative LLMs. While mBERT
has been fine-tuned for the classification task by
concatenating a final classification layer, genera-
tive LLMs have been instruction-tuned to adapt
their generative capabilities for the specific classi-
fication task. Further details, along with the code
for the reproducibility of the results, are available
in the GitHub repository. Regarding mBERT, we
used bert-base-multilingual-cased.For what
concerns the LLMs considered as baselines, we
adopted the following: Llama-2-7b-chat-hf,
Mistral-7B-Instruct-v0.3, Llama-3.2-3B-
Instruct, and Phi-3.5-mini-instruct.

Best Hyperparameters Configurations

The optimal hyperparameter configurations are re-
ported in Table 8.

HS-Brexit ConvAbuse MD-Agreement arMIS
ψ π ψ π ψ π ψ π

Sum 0.85 0.5 0.95 2.2 0.7 1.5 0.85 1.30
Mean 0.6 0.3 0.85 0.4 0.7 0.2 0.85 0.2
Median 0.7 0.3 0.7 0.6 0.75 0.4 0.8 0.3
Minimum 0.7 -0.4 0.5 0.5 0.7 -0.4 0.85 -0.4

Table 8: Optimal Hyper-parameter Settings
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Abstract

Interpreting implicit discourse relations in-
volves complex reasoning, requiring the in-
tegration of semantic cues with background
knowledge, as overt connectives like because
or then are absent. These relations often allow
multiple interpretations, best represented as dis-
tributions. In this study, we compare two estab-
lished methods that crowdsource English im-
plicit discourse relation annotation by connec-
tive insertion: a free-choice approach, which
allows annotators to select any suitable connec-
tive, and a forced-choice approach, which asks
them to select among a set of predefined op-
tions. Specifically, we re-annotate the whole
DiscoGeM 1.0 corpus - initially annotated with
the free-choice method - using the forced-
choice approach. The free-choice approach
allows for flexible and intuitive insertion of var-
ious connectives, which are context-dependent.
Comparison among over 130,000 annotations,
however, shows that the free-choice strategy
produces less diverse annotations, often con-
verging on common labels. Analysis of the
results reveals the interplay between task de-
sign and the annotators’ abilities to interpret
and produce discourse relations.

1 Introduction

Disagreement in linguistic annotation is increas-
ingly seen not as noise but as a valuable signal
capturing diverse perspectives in language interpre-
tation (Dumitrache et al., 2021; Uma et al., 2021;
Frenda et al., 2024). A single gold label, tradi-
tionally provided by one or two trained annotators,
often fails to capture the full range of interpreta-
tions, which may arise from linguistic ambiguity,
contextual factors, or annotators’ cultural and ex-
periential backgrounds. Crowdsourcing offers a
scalable solution for gathering these alternative in-
terpretations.

To guide untrained crowd workers in reliably
annotating abstract linguistic phenomenon, intu-

itive and carefully designed workflows are essential.
Task design has been identified as one of the factors
behind annotation disagreement and bias (Pavlick
and Kwiatkowski, 2019; Jiang and de Marneffe,
2022), and even can impact annotation quality
(Shaw et al., 2011; Gadiraju et al., 2017; Guru-
rangan et al., 2018). For example, Pyatkin et al.
(2023) investigate the bias of task design guiding
workers in annotating implicit discourse relation
(IDR) senses, which often have multiple interpreta-
tions. They compared two methods: one based on
insertion of discourse connectives (DCs), e.g. John
fell down because he tripped, and the other on para-
phrasing discourse arguments to question-answer
(QA) pairs, e.g. Q: Why (did) John fell down? A:
He tripped. While annotations from both methods
were found to align closely, subtle bias in the an-
notation preference are found in both methods due
to limitations of using natural language to anno-
tate specialized linguistic concepts (not all senses
can be easily expressed by a connective or by a
question).

Building on this line of work, we explore the po-
tential method bias of two IDR annotation tasks for
English based on DC insertion. These methods dif-
fer solely in whether annotators select from prede-
fined options (Rohde et al., 2016; Yung et al., 2024)
or freely type in their choices (Yung et al., 2019).
The free-choice method was employed to annotate
6,500 English IDRs in the DiscoGeM 1.0 corpus
(Scholman et al., 2022),whereas the DiscoGeM 2.0
corpus, comprising multi-lingual translations or
original texts from DiscoGeM 1.0, was annotated
using the forced-choice method. An initial com-
parison of the statistics of the two corpora revealed
characteristics unique to the English annotations,
such as a higher proportion of CONJUNCTION rela-
tions.

Our findings indicate that the free-choice ap-
proach achieves higher agreements among anno-
tators, while the forced-choice approach is more
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effective at capturing a diverse range of alternative
interpretations. Further analysis reveals that the
free-choice approach favours intuitive and frequent
intuitive sense, whereas the provided options in
the forced-choice approach serve as prompts for
the workers to identify rare, fine-grained senses.
Moreover, the method bias interacts with individ-
ual differences in discourse processing: workers
who could identify a wider range of senses in one
approach also tended to label more different senses
in the other approach. These results highlight the
nuanced impact of task design on annotation out-
comes.

The re-annotated resource is freely download-
able1 alongside the original DiscoGeM 1.0. It pro-
vides an interesting dataset for the study of perspec-
tivism and design in annotation as well as a rich
collection of rare IDR examples, contributing to the
major data bottleneck for current IDR recognition
models.

2 Related work

Annotation of IDR requires integrating subtle se-
mantic cues with background knowledge and map-
ping these to abstract labels – a task that is challeng-
ing even for trained annotators (Hoek and Schol-
man, 2017). Previous attempts to create datasets
by crowdsourcing annotations often compromise
on label variety or annotation quality (Kawahara
et al., 2014; Kishimoto et al., 2018).

Inspired by the Penn Discourse Treebank’s
(PDTB) lexicalized approach to annotate IDRs
(Prasad et al., 2019), prior work has proposed
crowdsourcing IDRs via DC insertion. For exam-
ple, to label the REASON relation between the ar-
guments "John missed the bus" and "He was late
to work.", the DC "therefore" could be inserted. In
the initial proposal, crowd workers selected a DC
from a fixed list, each corresponding to a unique
IDR sense (Scholman and Demberg, 2017). While
achieving high agreement with expert annotations,
the method was tested on only 6 IDR senses to
avoid overwhelming workers with too many op-
tions. Choosing a DC is often context-dependent;
for example, while "although" and "even though"
are nearly interchangeable, "also" versus "further-
more" (both indicating CONJUNCTION) may de-
pend on context. Workers might reject an appropri-
ate sense if a DC feels contextually awkward.

To handle a broader range of IDRs, Yung et al.

1https://github.com/merelscholman/DiscoGeM

(2019) proposed a two-step approach: first, workers
freely type a DC that fits between two arguments;
second, they select from a list of unambiguous
DCs corresponding to their free-choice. For in-
stance, if they type "while" in the first step, they
should choose between "at the same time" and "in
contrast" in the second step, which are mapped
to the relations SYNCHRONY and CONTRAST re-
spectively. This method was used to create the
DiscoGeM 1.0 corpus, which contains 6, 500 En-
glish IDRs each annotated by 10 workers (Schol-
man et al., 2022). Nonetheless, DiscoGeM 2.0,
which extends the annotations to German, French,
and Czech (Yung et al., 2024), adopted the one-step
forced-choice method: workers directly chose from
28 DC choices, which were grouped by semantics
and shuffled per worker to facilitate navigation and
avoid positional bias. The free- and forced- choice
methods were reported to yield similar annotations,
but the comparisons were based on a limited subset
of items (234 in Yung et al. (2019) and 18 in Yung
et al. (2024)), with a restricted range of IDR senses.

Using a different crowd-annotation method, Py-
atkin et al. (2020) crowdsourced discourse relations
by instructing workers to create QA pairs from the
provided text, e.g., "Q: What is the reason John
was late? A: He missed the bus." Comparisons of
QA-based and free-choice DC insertion methods
show that both exhibit biases toward specific sense
categories. In contrast to common attribution of
method artifacts to degraded data quality (Guru-
rangan et al., 2018; Zhu and Rzeszotarski, 2024),
it was found that training on the complementary
data collected by both methods enhanced the per-
formance of IDR identification models (Pyatkin
et al., 2023).

3 Annotation experiment

We adopt the forced-choice approach to re-annotate
the DiscoGeM 1.0 corpus, which was originally an-
notated using the free-choice approach. For this, an
annotation interface was implemented based on the
description of DiscoGeM 2.0 (Yung et al., 2024).
One representative DC was selected for each of
the 28 relations to be annotated. The selection
was primarily based on the disambiguating DCs
from the second step of the free-choice method,2

while ensuring they were sufficiently frequent and
not highly context dependent. The complete list is

2the DC lexicon and per-worker annotations are available
together with the corpus
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shown in Table 2 in the Appendix.
Following the procedure of DiscoGeM 1.0, na-

tive English-speaking crowd workers were re-
cruited via the Prolific platform. Based on the
anonymous Prolific worker IDs, we invited the 199
workers who contributed to DisocoGeM 1.0 to par-
ticipate in the annotation task again. We assumed
that they would not recall the texts they annotated
three years ago and including them allows direct
comparison of annotations from the same work-
ers across both methods. Of these, 91 workers
took part again, and 73 additional workers were
recruited through a selection task.

Out of the 6505 items in DiscoGeM 1.0, 16 du-
plicates were identified and removed. The remain-
ing items were divided into batches of 20 − 25,
with each batch assigned to at least 10 workers.
The workers were awarded £1.8−£2.2 per batch.

The quality of DiscoGeM 1.0 annotations was
primarily controlled by a screening task that se-
lected candidates achieving at least 50% agreement
with gold labels. During the data collection phase,
annotation quality was monitored twice to identify
and remove poorly performing annotators, while
retaining their earlier annotations (Scholman et al.,
2022). Similarly, we used an initial screening task
to ensure annotation quality. However, to maxi-
mize the number of annotators participating in both
tasks, we did not screen those who had contributed
to DiscoGeM 1.0, nor did we conduct additional
screening during the annotation process.

We compare the newly collected data against the
original DiscoGeM 1.0. In addition to analyzing la-
bel distributions from 10 workers per item, we com-
pared aggregated annotations to highlight the differ-
ences. The annotations were aggregated using the
"Worker Agreement with Aggregate" (Wawa) al-
gorithm, which weights each worker’s votes based
on their overall agreement with the majority label
(Ustalov et al., 2021).

4 Results

Table 1 presents the agreement between the annota-
tions obtained by the two methods. We computed
the averaged Jensen-Shanon divergense (JSD) be-
tween the label distributions of each item, as well
as hard and soft agreement rates. Hard agreement
measures matches between the single aggregated
annotations, while soft agreement considers any
overlap between annotations with over 20% distri-
bution a match (Pyatkin et al., 2023). We also calcu-

lated the soft κ scores, an inter-annotator agreement
metric that accounts for the increased chance agree-
ment in multi-label predictions (Marchal et al.,
2022).

inter-method comparison free vs forced
JSD (full dist.) .527
Hard agreement (single label) .425
Soft agreement (multi-labels) .708
Soft κ (multi-labels) .663

intra-method comparison free forced
Entropy 0.353 0.460
Agreement (max. label dist) 0.508 0.404
Per-item unique label count 4.309 6.275

Table 1: Annotation Agreement

It can be observed that the inter-method agree-
ment between single aggregated annotations is
moderate, comparable to the accuracy of state-of-
the-art IDR classification models (Costa and Kos-
seim, 2024; Zeng et al., 2024), but the agreement is
substantially higher when multiple annotations are
considered. This demonstrates that both methods
are capable of annotating the same types of rela-
tions, which often co-occur with other relations.

The bottom half of Table 1 compares the agree-
ment among the 10 annotations per item in both
methods. The forced-choice method shows higher
averaged entropy in the per-item label distributions,
indicating greater annotation uncertainty. In ad-
dition, the forced-choice approach yields smaller
averaged per-item agreement (i.e., the proportion
of the majority label) and a higher average number
of unique annotations per item. These results all
indicate lower annotator agreement in the forced-
choice approach.

Figure 1 illustrates the overall distribution of the
unaggregated annotations, computed by the sum of
the normalized per-item distribution, since not all
items have exactly 10 annotations. The free-choice
approach clearly converges on a narrower set of
labels, while the forced-choice approach spans a
wider range. Notably, RESULT and CONJUNC-
TION, are selected twice as often in the free-choice
method.

The trend is similar when focusing on the most
agreed labels. Figure 2 shows the alignment of the
aggregated annotations from both methods. The
annotations are grouped at level-2 granularity ac-
cording to the PDTB sense hierarchy, e.g. ARG1-
AS-DETAIL and ARG2-AS-DETAIL are grouped as
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Figure 1: Distribution of the unaggregated annotations

LEVEL-OF-DETAIL. Even though the darkest di-
agonal line in the confusion matrix indicates sub-
stantial agreement between annotations from both
methods, many items labelled with CONJUNCTION,
CAUSAL, and ARG2-AS-DETAIL in the free-choice
approach are now assigned to a range of other rela-
tions. While the aggregated annotations from the
forced-choice approach cover all level-2 senses de-
fined in the framework, half of these senses never
appear in the aggregated annotations from the free-
choice method.

Next, we directly compare the annotations of the
same workers. In total, we identified 3, 223 annota-
tions per method that were annotated by the same
worker on the same item (spanning 2, 542 unique
items and 71 workers). The comparison of these an-
notations demonstrates a similar tendency as found
in the re-annotation of the whole corpus, as shown
in Figure 5 in the Appendix - common relations
like CONJUNCTION and RESULT were annotated as
other rarer relations in the forced-choice approach.

Figure 3 plots the number of unique relations
identified by workers who participated in both
methods. To ensure comparablility, results from
workers who annotated fewer than 50 items in ei-
ther method or annotated items 3 times more in one
method than the other were excluded. This results
in 60 workers, who annotated on average 621 and
525 items in the free- and forced- choice methods
respectively.
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Figure 2: Confusion matrix of the aggregated annota-
tions from both methods, with labels merged at level-2
granularity

It shows that all workers identified a broader
range of IDR senses using the forced-choice
method, as indicated by all data points falling below
the diagonal line. Furthermore, workers who could
identify more sense types with the free-choice ap-
proach also identify more sense types in the forced-
choice approach. This suggests individual differ-
ences in sensitivity to the subtle contrast in fine-
grained discourse relations, with the forced-choice
method further expanding the range of relations
these workers could identify by presenting all pos-
sible options.

5 10 15 20 25
forced choice label range

5

10

15

20

25

fre
e 

ch
oi

ce
 la

be
l r

an
ge

Figure 3: Total number of unique relations annotated
by the same workers on the same set of items
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5 Discussion and conclusion

We examined the impact of two similar interfaces
used to crowdsourcing IDR annotations. Using
the free-choice approach, workers tend to select
common IDR labels with higher inter-annotator
agreement, while the forced-choice approach en-
couraged a larger variety of relations, including
rare ones. Notably, both methods produce valid
annotations, as evidenced by the high soft match
agreement. Frequent senses can often be inferred
alongside other senses, such as the CONJUNCTION

sense in the examples in Figure 4. In these exam-
ples, the English forced-choice annotations align
with other languages, despite being labeled as CON-
JUNCTION in the original free-choice annotations
of DiscoGeM 1.0.

High inter-annotator agreement is often linked
to higher data quality. However, for inherently am-
biguous tasks like IDR identification, we showed
that higher-agreement annotations that converge on
common labels are not always superior. Recogniz-
ing the method bias enables tailoring the approach
to the annotation goal — whether to achieve con-
sensus on a single label or capture diverse perspec-
tives. Since current IDR classification models often
struggle with rare labels, datasets with more label
variety may be more valuable. Still, distinguishing
genuine perspectives from annotation errors is chal-
lenging. Minimal data cleaning, such as removing
labels with very few votes, could be applied.

For corpus analysis, data should be collected con-
sistently using the same method. Initial analysis
reveals significant differences between the inter-
annotator agreements of the English annotations
in DiscoGeM 1.0 and the multilingual annotations
in DiscoGeM 2.0, whereas the re-annotated data
in this study aligns more closely with the other
languages (e.g. averaged per-item agreement =
.508/.404 (EN free-/forced-choice) .410 − .439
(DE, FR, CS forced-choice), indicating the influ-
ence of the method bias. Our next step is to analyze
the cross-lingual difference based on annotations
collected with the same method.
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1)
Arg 1: It was because of this tiny piece of information that
Ford Prefect was not now a whiff of hydrogen, ozone and
carbon monoxide. He heard a slight groan.
Arg2: By the light of the match he saw a heavy shape mov-
ing slightly on the floor. Quickly he shook the match out,
reached in his pocket, found what he was looking for and
took it out.

Aggregated annotation = PRECEDENCE
(English, German, French, Czech forced-choice)
Aggregated annotation = CONJUNCTION
(English free-choice)

2)
Arg1: In yesterday’s debate in the European Parliament
some Members of this Parliament expressed worry that we
were interfering in the internal affairs of a Member State.
Arg2: Such a concern is misplaced. The European Parlia-
ment has never been slow to comment on developments in
Member States with which they disagree.

Aggregated annotation = REASON
(English, German, French, Czech forced-choice)
Aggregated annotation = CONJUNCTION
(English free-choice)

3)
Arg1: With a spring Gollum got up and started shambling
off at a great pace. Bilbo hurried after him, still cautiously,
though his chief fear now was of tripping on another snag
and falling with a noise. His head was in a whirl of hope
and wonder.
Arg2: It seemed that the ring he had was a magic ring: it
made you invisible!

Aggregated annotation = SYNCHRONOUS
(English, German, French, Czech forced-choice)
Aggregated annotation = CONJUNCTION
(English free-choice)

Figure 4: Examples taken from DiscoGeM where the an-
notations by the forced- and free- choice approaches are
alternative interpretations. The English forced-choice
annotations come from the current study and those from
the other languages come from DiscoGeM 2.0. The En-
glish free-choice annotations come from DiscoGeM 1.0.
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A Appendix

level-2.level-3 IDR sense label DC
Temporal
SYNCHRONOUS.SYNCHRONOUS at the same time
ASYNCHRONOUS.PRECEDENCE then
ASYNCHRONOUS.SUCCESSION after
Contingency
CAUSE.REASON because
CAUSE.RESULT as a result
PURPOSE.ARG1-AS-GOAL for that purpose
PURPOSE.ARG2-AS-GOAL so that
CONDITION.ARG1-AS-COND in that case
CONDITION.ARG1-AS-NEGCOND if not
CONDITION.ARG2-AS-COND if
CONDITION.ARG2-AS-NEGCOND unless
Comparison
CONCESSION.ARG1-AS-DENIER even though
CONCESSION.ARG2-AS-DENIER nonetheless
CONTRAST.CONTRAST on the other hand
COMPARISON.SIMILARITY.SIMILARITY similarly
Expansion
EQUIVALENCE.EQUIVALENCE in other words
INSTANTIATION.ARG1-AS-INSTANCE this illustrates that
INSTANTIATION.ARG2-AS-INSTANCE for example
LEVEL-OF-DETAIL.ARG1-AS-DETAIL in short
LEVEL-OF-DETAIL.ARG2-AS-DETAIL in more detail
CONJUNCTION.CONJUNCTION also
DISJUNCTION.DISJUNCTION or
EXCEPTION.ARG1-AS-EXCPT other than that
EXCEPTION.ARG2-AS-EXCPT an exception is that
MANNER.ARG1-AS-MANNER thereby
MANNER.ARG2-AS-MANNER as if
SUBSTITUTION.ARG1-AS-SUBST rather than
SUBSTITUTION.ARG2-AS-SUBST instead
NOREL (no direct relation)

Table 2: English DC choices used in the forced-choice
DC insertion method
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Figure 5: Comparison between 3233 annotations by the same workers on the same items using both methods
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Abstract
In this paper we study the patterns of label dis-
agreement in data used for instruction tuning
Large Language models (LLMs). Specifically,
we focus on data used for Reinforcement Learn-
ing from Human Feedback (RLHF). Our objec-
tive is to determine what is the primary source
of disagreement: the individual data points, the
choice of annotators, or the task formulation.
We annotate the same dataset multiple times un-
der different conditions and compare the over-
all agreement and the patterns of disagreement.

For task formulation, we compare SINGLE for-
mat where annotators rate LLM responses indi-
vidually with PREFERENCE format where anno-
tators select one of two possible responses. For
annotators, we compare data from human label-
ers with automatic data labeling using LLMs.

Our results indicate that: (1) there are very
few “universally ambiguous” instances. The
label disagreement depends largely on the task
formulation and the choice of annotators; (2)
the overall agreement remains consistent across
experiments. We find no evidence that PREF-
ERENCE data is of higher quality than SINGLE
data; and (3) the change of task formulation
and annotators impacts the resulting instance-
level labels. The labels obtained in different
experiments are correlated, but not identical.

1 Introduction

Training large language models (LLMs) to follow
instructions and aligning them to human prefer-
ences is a key step in aiming to ensure that models
are helpful and harmless (Leike et al., 2018). In
this paper we explore the quality of the data used
in the process. We seek to determine the cause
for disagreement when rating in-context LLM re-
sponses. We conducted a set of experiments to
assess to what extent disagreement depends on the
task formulation (individual rating vs. preference)
and the choice of annotators (humans vs. LLMs).

*Corresponding Author

Figure 1: Overall task agreement, cross-task label corre-
lation, and cross-task overlap of ambiguous instances.

We sampled 720 instances from the Anthropic
dataset (Bai et al., 2022a) and performed several
independent annotations. For task formulation, we
compared SINGLE , where annotators assign in-
dividual score to each context-response pair, and
PREFERENCE , where annotators have to choose be-
tween two possible responses for the same context.
For annotators, we compared (1) labels obtained by
humans with (2) labels obtained from pre-trained
LLMs internal states and (3) zero-shot labels ob-
tained from LLMs. We test both “base” LLMs and
their “instruction-tuned” counterparts.

For each experiment we measured: (1) the data
quality (inter-annotator agreement); (2) the cross-
task correlation of labels; and (3) the cross-task cor-
relation of instance-level agreement and the over-
lap of “ambiguous” examples. More explicitly, we
formulate the following research questions:

1. Overall IAA How much does the overall data
quality (IAA) change based on task formula-
tion and annotator choice?

2. Gold Labels Do different experiments approx-
imate the same underlying distribution?

3. Instance Ambiguity To what extent does
instance-level ambiguity depend on the ex-
perimental design and annotator choice?
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We perform further experiments to determine if
we can combine the data from the different experi-
ments and obtain more robust annotations.

Figure 1 shows a summary of our results. We
find that: (1) the overall IAA is similar across ex-
periments. Pre-trained LLMs tend to agree more
with each other than human annotators, which may
indicate a potential bias and lack of diversity in
the models. (2) The SINGLE and PREFERENCE

experiments assign labels with a strong correla-
tion, but also with significant differences. Labels
from LLMs have a moderate correlation with hu-
man preference (which response is better) but low
agreement on the magnitude of the difference (how
much better is the selected response). (3) Very few
of instances are “universally ambiguous”. We find
that annotation ambiguity is largely a function of
the task format and the choice of annotators.

Our work sheds a new light on acquiring data
for LLM instruction tuning. Traditionally, PREF-
ERENCE data is used for model training, as it is
assumed to be of higher quality. That claim is not
confirmed by our data as we see similar IAA to
SINGLE experiments. LLM-labeled data is also
frequently used in combination with or instead of
human-labeled data and we do find a high IAA be-
tween LLMs. However, our results indicate that
while the data obtained from different experi-
ments looks similar on the surface, it may be
measuring correlated but different underlying
phenomena. These findings put an emphasis on
performing quantitative and qualitative analysis on
the data and not assuming that one experiment (e.g.,
PREFERENCE ) is a perfect substitute for another.
We also note that IAA measures such as Kappa
report quantitative agreement, but cannot capture
qualitative differences and disagreement patterns.

2 Related Work

Instruction following Leike et al. (2018) first pro-
posed reward modeling to implicitly learn reward
functions from user interactions rather than explic-
itly designing them. Böhm et al. (2019) and Ziegler
et al. (2019); Stiennon et al. (2020) were among
the first to use human preference data to learn re-
ward models for natural language tasks. Askell
et al. (2021) investigated scaling trends in prefer-
ence modeling, focusing on three primary method-
ologies: imitation learning, binary discrimination,
and ranked preference modeling. They found that
ranked preference modeling significantly outper-

formed imitation learning, while binary discrimina-
tion only offered marginal benefits.

Data for RLHF Ouyang et al. (2022) described
the modern RLHF pipeline of supervised fine-
tuning LLMs: training a reward model with human
preference data followed by optimizing a policy
against the reward model using an RL algorithm
like PPO. The authors asked human raters to label
their preferred output among k choices, resulting
in

(k
2

)
comparisons, for a given input which were

then used to train a reward model to predict hu-
man preferred outputs. Labellers were asked to
rate model responses on 12 different axes including
quality, hallucination and toxicity; every axis being
a binary comparison, except for “Overall Quality",
which was rated on a 1-7 Likert scale.

Starting with Bai et al. (2022b) and Touvron et al.
(2023), most recent works only use only binary
comparisons to train their reward models.

Disagreement Labeling data for machine learn-
ing typically involves repeated annotations from
different annotators. The annotators may disagree
on the correct label due to personal biases (Uma
et al., 2021) or the inherent ambiguity of the data
or the task. Leonardelli et al. (2021) assert that
disagreement is intrinsic to offensive language de-
tection tasks and oppose the forced harmonization
of annotator judgments due to their inherent subjec-
tivity. Baumler et al. (2023) investigate the use of
active learning to selectively elicit annotations on
examples that are most likely to improve a model’s
performance while minimizing annotation costs.
Wang and Plank (2023) use annotator-specific clas-
sification heads to actively select a subset of anno-
tators for each unlabeled example. Kovatchev and
Lease (2024) show that relying on aggregated data
for agreement or evaluation can hide significant
model-specific biases and performance patterns.

Synthetic data for RLHF Wang et al. (2023)
propose to use synthetic data for LLM instruction
tuning, without relying on large scale human labels.
Wang et al. (2024) extend the concept, proposing
to use the LLM-as-a-judge concept to continuously
train LLM evaluators without human data.

Role of disagreement in RLHF Siththaranjan
et al. (2023) argue that aggregating preference data
for RLHF can further bias the outcome in favor of
the majority opinion, while ignoring minority pref-
erences. Poddar et al. (2024) build upon that work
and reformulate RLHF as a latent variable problem
with hidden user context. They were able to train
multiple LLM-based reward models to learn a sepa-
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(a) SINGLE Rating A (b) SINGLE Rating B (c) PREFERENCE response (d) PREFERENCE magnitude

Figure 2: Label distribution of annotated dataset

rable embedding space to distinguish between users
with divergent preferences which outperformed ex-
isting approaches by 10-25%.

3 Human Data Acquisition

In this paper, we focus on LLM instruction-tuning
via Reinforcement Learning from Human Feedback
(RLHF). During RLHF finetuning, the labeled data
is used to train a “reward” model. In most con-
temporary LLMs, the reward model is trained on
PREFERENCE data, more specifically binary PREF-
ERENCE . This is a complex annotation task where
the target variable (response quality) is latent and
cannot not measured directly. Nevertheless, prior
work argues that PREFERENCE data is more reli-
able than asking for explicit ratings. In our human
annotation experiments, we wanted to empirically
validate this claim and compare preference data to
obtaining a rating for individual responses.

In our first experimental condition, henceforth
SINGLE , our human annotators received data in
the format [CONTEXT] : [RESPONSE] and had to
assign a rating [1-5] indicating the quality of the
response (1: low quality; 5: high quality).

In our second experimental condition, PREFER-
ENCE , the annotators received data in the format
[CONTEXT] : [RESPONSE A] / [RESPONSE B]
and had to indicate: (1) the preferred response (A,
B, None); and (2) the magnitude of the difference
(0: no difference; 1: preferred response (A/B) is a
little better; 2: preferred (A/B) is much better).

For our annotation, we selected 720 instances
from the Anthropic dataset (Bai et al., 2022a). We
sampled an even number (360) from “helpful” and
“harmless” instances. Each instance consists of a
context and two possible responses, generated by
an LLM. As a result, we had 720 data points for
our PREFERENCE condition and 1440 data points
for our SINGLE condition. We used the same data
points for both tasks, so that we could compare the
labels and disagreement directly.

We recruited 33 annotators for the task, as part
of a graduate course in Computer Science. The task
was explained by one of the authors and the anno-
tators participated in a one-hour interactive train-
ing session prior to starting the annotation. The
task instructions were purposely kept as generic
as possible, to allow for personal interpretations
and encourage diversity in data collection. Annota-
tors were asked to rate response “quality”, however
there were no explicit instructions as to how to in-
terpret quality. Examples provided during training
covered various aspects of LLM evaluation, includ-
ing helpfulness, harmlessness, and hallucinations.

Each annotator received 40 contexts and 80 pos-
sible responses. Each annotator performed both
SINGLE and PREFERENCE experiments on the same
data points. Different task formulations were per-
formed at different times and instances were reshuf-
fled to reduce bias. Each instance was annotated
by two different annotators. Having the same anno-
tators perform both experiments on the same data
allowed us to directly compare the impact of exper-
imental design on label distribution and agreement.

Figure 2 shows the label distribution of the anno-
tated dataset. We calculated two separate SINGLE

distributions based on the position the sentence has
in the paired format. SINGLE rating A (2a) shows
the labels for sentences that appear first and SINGLE

rating B (2a) shows the labels for second sentences.
Both SINGLE labels are distributed evenly, with no
noticeable bias on the middle value. Sentences in
group A have slightly higher ratings than than sen-
tences in group B, in particular in value category 5
(23% of A vs 16% of B). Figures 2c and 2d show
the labels in the PREFERENCE condition. Sentence
A is preferred 43% of the cases vs 37% for sentence
B. This is a similar tendency to what we observed
in the SINGLE condition, indicating that this im-
balance is not caused by a “positional” bias, but
is rather reflects a difference in response quality.
20% of the instances do not have a clear preference,
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which also aligns with SINGLE data. For magni-
tude, we find that the most frequent value is 1 with
44%, followed by 2 with 36% and 0 with 20%.

Note that the reported results in this section are
for the raw, non-aggregated data. In the follow-
ing sections we will continue to use this data for
calculating agreement and cross-task correlation.

4 Comparing Human Data

In this section, we analyze and compare the data
distribution and annotator agreement across dif-
ferent tasks. We measure the impact of the task
formulation and data acquisition setup on the data
quality and annotator agreement. Our Research
Questions for this section are the following:

• Data Quality: To what extent does task for-
mulation impact data quality (agreement)?

• Label Consistency: How much does task for-
mulation impact output labels? Do different
formulations “agree” with each other?

• Source of Disagreement: Does instance-level
(dis)agreement depend on task formulation?
Are the same instances always ambiguous or
does changing the format help?

• Complementary Annotation: Can we com-
bine data from different experiments to obtain
a more robust dataset?

We performed several deterministic transforma-
tions of the data, so that the results from the two
experiments could be compared directly.

For PREFERENCE , our primary data is “pref-
erence” (A, B, None) and “magnitude” (0, 1, 2).
We obtained one additional label “prefer-combined”
by taking the negative “magnitude” value if the
preferred answer is A and the positive “magnitude”
value if the preferred answer is B. The resulting
values range from -2 (A ≫ B) to +2 (B ≫ A).

For SINGLE , our primary data consists of “rat-
ing” scores in [1-5] for each of the two responses,
given a reference context. We used the “rating”
scores to obtain two additional labels: “single-pref”
(A, B, None) by directly comparing the two scores;
and “single-combined” by subtracting rating(A)
from rating(B). The resulting scores range from -4
(A ≫ B) to +4 (B ≫ A). We clipped the scores at
[-2, 2] to match “prefer-combined”.

4.1 Data Quality

Agreement on Rating and Combined Score We
first measured how much annotators agree on the
numeric scores for each instance. For SINGLE we
compared the “rating” values. For PREFERENCE

we compared the “prefer-combined” values. We
obtained the distribution of disagreements (in abso-
lute values) and calculated the weighted kappa to
measure overall data quality.

(a) SINGLE data (rating)

(b) PREFERENCE data (combined score)

Figure 3: Label score difference

Figure 3 shows the distribution of absolute score
(dis)agreement. For the SINGLE data, 35.7% of the
instances have a difference of 0 (complete agree-
ment), 36.3% have a difference of 1 and 18% have
a difference of 2. A total of 9.8% of the instances
have disagreement of 3 or 4, which we categorize
as “ambiguous”. For PREFERENCE data the distri-
bution of disagreement is similar, with a slightly
higher number of “ambiguous” instances (13%).

Table 1 shows the Kappa for Rating and Com-
bined Score. We used weighted Kappa with
quadratic weighting to account for the magnitude
of difference. We report the Kappa for the full
dataset, as well as the results after filtering out
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Experiment All ∆ < 4 ∆ < 3
SINGLE .48 .57 .70
PREFERENCE .43 .51 .72

Table 1: Weighted kappa for rating/magnitude

instances with disagreement 4 (∆ < 4) and all am-
biguous instances (∆ < 3). The agreement on the
full dataset is moderate (.43 – .48). Filtering out
∆ < 4 increases the agreement slightly. Filtering
all ambiguous instances (∆ < 3) results in high
agreement, as measured by kappa above .70. These
results confirm our intuition about grouping data in
unambiguous (0,1,2) and ambiguous (3,4) groups.
They also validate the overall quality of the ac-
quired data. If the data is needed for training ma-
chine learning algorithms, we can filter out the
ambiguous data and the resulting dataset is of high
quality, only losing 10-12% of the instances.

Preference Agreement We measured how much
annotators agree on the binary preference between
two competing responses. For PREFERENCE data
we used the primary “preference” column. For
SINGLE we used “single-pref”. We used three dif-
ferent metrics: 1) “strict” preference agreement:
the percentage of instances where annotators select
the same preference; 2) “soft” preference agree-
ment: the percentage of instances where annotators
select the same preference or either annotator chose
“no preference”; and 3) weighted kappa with label
mapping {“A” : -1; “N” : 0, “B” : 1}.

Experiment Strict Soft Kappa
SINGLE (all) .54 .86 .38
SINGLE (∆ < 4) .58 .91 .49
SINGLE (∆ < 3) .62 .95 .61
PREF (all) .59 .81 .40
PREF (∆ < 4) .61 .83 .44
PREF (∆ < 3) .67 .93 .64

Table 2: Preference agreement with and without filtering

Table 2 shows the results for preference agree-
ment. Again, we report data on the full dataset, on
instances with disagreement below 4 and below 3.
Once again, we find that filtering out ambiguous
examples (∆ < 3) gives us a high quality dataset.
The “soft” agreement on the filtered dataset is in the
range 93 – 95, indicating very few instances where
annotators select incompatible preferences. It is
interesting to note that the results for SINGLE ac-
quisition are comparable to those for PREFERENCE

despite us obtaining those results indirectly.
After analyzing the agreement data (both abso-

lute and chance-corrected), we can conclude that
the task formulation does not directly impact over-
all data quality. We found the agreement scores for
both experimental setups to be comparable and we
find no evidence that preference is easier or less
ambiguous to annotate than individual scoring,
as claimed in prior work.

4.2 True Label

In this section, we aim to determine whether the
different task formulations are measuring the same
underlying phenomena and data distribution. We
measure inter-task agreement: to what extent an
annotator agrees with themselves, when labeling
the same data using different task design and inter-
task correlation of the labels assigned to all data
points. We calculate the following metrics: 1) pref-
erence agreement (soft / strict) between “prefer-
ence” and “single-pref”; 2) preference weighted
kappa between “preference” and “single-pref”;
3) combined weighted kappa between “prefer-
combined” and “single-combined”; and 4 Pear-
son correlation between “prefer-combined” and

“single-combined”. We report the results for the full
dataset and the results after filtering out the am-
biguous examples. We filter out examples that are
ambiguous with respect to either experiment.

Metric All ∆ < 3
Pref (strict) .60 .62
Pref (soft) .88 .91
Kappa (pref) .50 .56
Kappa (score) .54 .59
Pearson .55 .59

Table 3: Inter-task agreement and correlation

Table 3 shows the results. We found moderate
inter-task agreement and correlation, but not as
strong as the intra-task agreement. When compar-
ing labels from different experiments, we noticed
that filtering out ambiguous instances has very little
impact on the outcome. After analyzing the results,
we argue that in our experiments, the two task
formulations result in labels that are similar, but
not identical. Given that both the annotators and
the data points are the same, this level of agreement
and correlation indicates that the two tasks may be
measuring different underlying phenomena or two
different aspects of the same phenomenon.
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4.3 Source of Disagreement

During our experiments, the same instances were
annotated by the same annotators in two competing
conditions. We can compare the (dis)agreement
patterns of SINGLE and PREFERENCE directly to
determine whether some instances are always am-
biguous or the difficulty of annotation is also a
function of the task formulation.

For each instance we took the absolute differ-
ence in “rating” for SINGLE and “prefer-combined”
for PREFERENCE and performed two tests. First,
we calculated the Pearson correlation (of disagree-
ment). Then we obtained the sets of all instances
that are ambiguous with respect to “rating” (∆ ≥
3) and all instances that are ambiguous with respect
to “prefer-combined” (∆ ≥ 3). We then found the
instances that appear in both sets and calculated the
directional overlap between the sets, dividing the
number of shared instances by the total size of each
set. These values roughly correspond to precision
and recall, so we calculated their harmonic mean
to obtain a single value of ambiguity overlap.

Both tests indicated very little similarity in the
disagreement patterns. We found negligible correla-
tion between the instance-level disagreement with
Pearson R at 0.2. The ambiguity overlap between
the two sets was 0.25. Our results indicated that
the disagreement patterns are significantly dif-
ferent and the difficulty in annotation depends
more on the experimental design than on the
individual data points. Inspired by these findings,
we attempted to combine the different annotations,
to see if different task formulations can be comple-
mentary and help resolve ambiguities.

4.4 Complementary Annotation

In previous sections we have demonstrated that the
two task formulations result in: (1) a label distri-
bution that is similar, but not identical, and (2) a
distribution of disagreement that is dis-similar and
task specific. Given these two findings, in this sec-
tion we explore whether we can combine the two
annotations in a single more robust dataset.

We take the data from the PREFERENCE experi-
ment as is and we add the “single-combined” data
from the SINGLE experiment. As a result, for each
data point, we have four labels in the range [-2,
2] and we treat them as four separate annotations
of a single underlying phenomenon. We calculate
the inter-annotator agreement using Krippendorff
Alpha, to determine whether the resulting corpus

is more robust than either of the individual experi-
ments. We cannot use Cohen’s Kappa as we have
more than two annotators, and Fleiss’ Kappa is not
typically used to handle ordinal data.

Experiment All ∆ < 3 ∆ ≥ 3
PREFERENCE (score) .44 .72 -.69
FULL (score) .45 .55 -.11
PREFERENCE (pref) .40 .64 -.99
MERGE (pref) .40 .50 -.19

Table 4: Preference and combined agreement in PREF-
ERENCE and MERGE data. Columns correspond to “all”,
“unambiguous” (good), and “ambiguous” instances.

Table 4 shows the impact of merging annotations
for the full dataset, the unambiguous examples (∆
< 3) and the ambiguous examples (∆ ≥ 3). We
compare the α for the PREFERENCE data with the
α for the MERGE data. We measured the agreement
using the full “combined” score and only using bi-
nary preference. If we merge all annotations, our
results indicate no impact on agreement. Merging
non-ambiguous instances reduces the agreement
on that portion of the data. There is a noticeable
improvement on ambiguous data, with score chang-
ing from “strong disagreement” to “no agreement”.
As such, if we apply selective merging and only
get additional annotations on instances with ∆ ≥
3, the overall agreement will increase. Nonethe-
less, the ambiguous will still have no clear label
with α around zero. As such, we argue that the
merging will have similar effect to just discarding
ambiguous instances.

Our attempt at merging different annotation did
not provide a reliable solution to resolving ambi-
guities. The data indicates that the two annota-
tions are not complementary and merging the data
moves all agreement towards a mean value. This
further confirms our intuition that the SINGLE and
PREFERENCE experimental designs are measuring
substantially different underlying phenomena.

5 LLM-based Annotation

In this section, we experiment with using pre-
trained LLMs to label the data automatically. We
perform two sets of experiments: PERPLEXITY and
ZERO-SHOT. We compare the results across dif-
ferent LLMs and also with the data obtained from
humans in SINGLE and PREFERENCE experiments.
Our Research Questions are the following:
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• Data Quality How does the quality of LLM
annotations compare to human-obtained data?

• Label Distribution To what extent do model
predictions align with human judgments?

• Disagreement Do humans and LLMs share
patterns of instance-level disagreement?

Furthermore, we are also interested in finding:
(1) if LLM annotations have a better alignment with
one of the formats (SINGLE or PREFERENCE) and
(2) if there is a substantial difference between using
base LLMs and their instruction-tuned counterparts.
When looking at instruction-tuned models, we also
consider the topic of data contamination. It is
almost certain that instruction tuned models have
seen the original dataset during finetuning. As such,
we want to measure to what extent the finetuning
has impacted model internal states and zero-shot
performance.

5.1 Perplexity-based Labeling

Perplexity measures the uncertainty of a language
model when predicting a token or a sequence,
with lower perplexity indicating higher confidence.
When conditioned on a given context, a model’s
perplexity provides insights into how well the re-
sponse aligns with the model’s learned distribu-
tion. We hypothesize that comparing perplexities
for competing responses can be used to directly
label data preference using LLMs. An advantage
of using perplexity is that it solely depends on the
model and the data and removes the variability of
choosing a sampling strategy and its parameters.

For each instance in the dataset, we calculated
the conditional perplexity for both candidate re-
sponses and then obtain the difference in perplex-
ity PPLX-PREF = (pplxA – pplxB). With perplex-
ity being strictly positive and lower indicating a
“preferred” response, PPLX-PREF is negative when
responseA is preferred and positive when response
B is preferred. A significant difference in condi-
tional perplexities implies that the language model
finds the response with a lower perplexity much
more plausible than the other. As such, we hypoth-
esized that the magnitude of the difference corre-
sponds to the magnitude we obtain in human labels.
As the scale of perplexity values can be model
specific, we applied normalization for each model,
converting PPLX-PREF scores to [-2:2] range, based
on quantiles. The 20% of responses with smallest

magnitude of difference were rated as “no prefer-
ence” and a value of 0. This allowed us to directly
compare labels from different LLMs and also com-
pare LLM labels with human labels.

Model Size Reference
gpt-2 Large 0.7B Radford et al. (2019)
Llama-3.2 1B Dubey et al. (2024)
Llama-3.2 I 1B Dubey et al. (2024)
Phi-3.5-mini I 3.5B Abdin et al. (2024)
Mistral-v0.3 7B Jiang et al. (2023)
Mistral-v0.3 I 7B Jiang et al. (2023)
Llama-3.1 8B Dubey et al. (2024)
Llama-3.1 I 8B Dubey et al. (2024)

Table 5: Models used. I refers to the instruction-tuned
version of the base model. Note: gpt-2 is used only for
the PERPLEXITY experiment.

Models and Pairings Table 5 shows the list of
models that we use in our experiments, ranked by
model size. The I indicates an instruction-tuned
model. Some of our experiments, such as calculat-
ing agreement between LLMs, required us to pair
models for comparison. Where possible, we paired
a base model with its instruction-tuned counter-
part (Llama-3.1, Llama-3.2, and Mistral). We also
paired Llama-3.1 and Mistral (base and instruction-
tuned) being our largest and most capable models.

Correlation between Humans and LLMs For
each model, we compared the perplexity-based
labels to the human labels from the SINGLE and
PREFERENCE experiments. First, we aggregated
the human labels to get a single gold score for
each instance. For PREFERENCE we took the mean

“prefer-combined”. For SINGLE we first calculated
the mean “rating” and then we calculated the abso-
lute distance of gold ratings to obtain gold “single-
combined”. After that we measured the agreement
between human and LLM labels in two ways: 1)
Pearson correlation of labels1; and 2) Weighted
kappa on binary preference labels.

Figure 4 shows the scores for the different mod-
els. Looking at the results we can conclude that:

• the label agreement between humans and
LLMs is moderate and is lower than the agree-
ment between humans within and across tasks

• the agreement between LLMs and humans
increases with model size

1We also used weighted kappa and got the same results
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Figure 4: Pearson correlation and binary preference kappa between human labels and perplexity-based LLM labels.

• LLMs labels correlate more strongly with
PREFERENCE labels than with SINGLE ones

• Instruction-tuned models agree with humans
more than base models, but the difference is
marginal, except for Mistral

Overall, we found that the labels obtained from
LLMs were significantly different than human la-
bels, at least at model size below 8B.

LLM Agreement We calculated the agreement
between models of the same family before and
after instruction tuning. We also calculated the
agreement between Mistral-7B and Llama-3.1-8B
in both base and instruct models. In all pairings,
we obtained strong agreement (weighted kappa >
.8), except for Mistral-7B-Instruct and Llama-3.1.-
8B-Instruct, where the agreement was .75. Overall,
we observed that LLMs disagree less than humans,
which makes automatically labeled data more re-
liable for training, but also indicates that it is less
diverse. It is interesting to note that despite the sus-
pected data contamination, instruction-tuned
models agree with their base model counterparts
more than they agree with humans.

Comparing Patterns of Human and LLM Dis-
agreement To determine whether LLMs and hu-
mans disagree on the same instances, we performed
two experiments, similar to the ones in Section 4.3.
For each pair of models, we obtained the instance-
level disagreement by calculating the absolute dif-
ference in assigned labels. We identified the “am-
biguous examples” as the subset of examples with

label difference ∆ ≥ 3. We then calculated: (1)
the Pearson correlation between instance-level dis-
agreement; and (2) the ambiguity overlap between
each model pair and each of the two human experi-
ments.

Figure 5: Overlap of ambiguous examples between hu-
mans and LLMs

The correlation between LLM disagreement and
the disagreement in either human experiment is
around 0.1 across all models, indicating a very low
similarity between the patterns of disagreement.
Figure 5 shows the ambiguity overlap, which is
below 0.07 across all models.

Our results indicate that there is a substantial
difference in both label distribution and dis-
agreement patterns in data obtained from hu-
mans and from LLMs using perplexity. The
difference between human-labeled data and LLM-
labeled data is larger than the difference between
human labels from different task formulations.
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5.2 Zero-shot Labeling
While perplexity provides implicit signals, struc-
tured prompting enables explicit elicitation of
model preferences. We design prompts to explore
the relationship between model-generated outputs
and annotator preferences2.

• SINGLE-LLM: The model is instructed to rate
a context – response on a scale from 1 to 5.

• PREFER-LLM: The model is asked to specify
its preferred response and the magnitude of its
preference by choosing one of five responses:
A_2, A_1, N, B_1, and B_2.

• DISAGREEMENT-LLM-S: The model is in-
structed to predict the difficulty of a context –
response pair in the Single-LLM task.

• DISAGREEMENT-LLM-P: The model is in-
structed to predict the difficulty of a context –
response pair in the Prefer-LLM task.

We used zero-shot labeling with the four
instruction-tuned models (Llama-3.2-1B-Instruct,
Phi-3.5-3B-Instruct, Mistral-7B-Instruct-v0.3, and
Llama 3.1-8B-Instruct). Similar to the experiments
in section 5.1, we then calculated the agreement
and correlation between human labels and model
labels and the correlation between human disagree-
ment and model predicted “difficulty”. We found
zero-shot labeling to have lower correlation with
human labels than perplexity-based labeling. We
found no correlation for the 1B model. The other
three models obtained correlation in the 0.2-0.25
range. Unlike in perplexity, we didn’t find strict
increase of label agreement as a function of model
size. The highest human-LLM agreement was for
Mistral-7B. Similar to Section 5.1, we found no
correlation in the disagreement patterns. Over-
all, in our experiments the results from the zero-
shot experiment were worse than the results from
perplexity-based labeling. We acknowledge that
the results could improve by applying prompt engi-
neering, changing sampling parameters, or increas-
ing model size.

6 Conclusions

In this paper, we measured the impact that task for-
mulation and using LLM annotators can have on
the overall quality, label distribution, and instance-
level disagreement of LLM instruction tuning data.

2All prompts are available in Appendix A

Traditionally, instruction-tuning data for RLLF is
acquired as PREFERENCE and the “quality” of in-
dividual responses is captured as a latent variable.
We tried annotating the “quality” variable directly
instead and comparing the outcomes. We also com-
pared human-labeled data to data obtained automat-
ically from pretrained LLMs. We found that:

• The quality (agreement) of SINGLE and PREF-
ERENCE data is comparable and neither for-
mulation has a clear advantage

• Labels obtained from SINGLE and PREFER-
ENCE are correlated but not identical, indicat-
ing a difference in the underlying phenomena

• Humans disagree on different instances based
on the task formulation

• If we use multiple LLMs to label data, their
IAA is slightly higher than human IAA

• Labels obtained from LLMs differ signifi-
cantly from labels obtained from humans, but
the difference is reduced with model size

• The patterns of LLM disagreement are differ-
ent than the patterns of human disagreement

• Despite being trained to human-labeled data,
instruction-tuned LLMs agree with their base
counterparts more than with humans

In conclusion, in our experiments we found the
labels and disagreement to depend significantly on
the experimental design. Both changing the task
formulation and using LLMs as annotators largely
impacts the outcome. Current research often treats
PREFERENCE and SINGLE data as interchangeable
and relies more and more on LLMs for automatic
annotation. Based on the significant differences
in resulting data distribution, we encourage re-
searchers and practitioners to perform continuous
qualitative data analysis and to explicitly consider
the decisions they make on experimental design for
labeling LLM instruction tuning data. Our dataset
is available in Huggingface to facilitate replication
of results and further research.
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The outlines library facilitates token-by-token
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generation step are determined using finite-state au-
tomata or grammar definitions (e.g., regex or Lark).
The process involves the following steps:

1. Feeding the preceding token sequence into the
LLM for logits computation.

2. Applying a logits processor to set probabilities
of illegal tokens to zero.

3. Sampling the next token from the adjusted
probability distribution.

For example, generating numeric values under
the regex pattern ^\d*(\.\d+)?$ ensures that only
digits, dots, or sequence termination tokens are
permissible, enabling reliable conformance to the
specified structure.

Legal tokens specified by the provided choices
are sampled with temperature 0 to be deterministic
and produce the same output for a given input.
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Template
You are an expert AI evaluator.
You are provided with a context and a response from an
LLM.
Your task is to assess the quality of the response based on
the given context.

<context>
{context}
</context>

<response>
{response}
</response>

Please rate the quality of the response using the following
scale:

- Terrible
- Poor
- Average
- Good
- Excellent

Your rating:
Example
You are an expert AI evaluator.
You are provided with a context and a response from an
LLM.
Your task is to assess the quality of the response based on
the given context.

<context>
Human: how much shrimp can someone with a
shellfish allergy have?
Assistant: I’ll make sure we get the facts
straight. According to the American Academy
of Allergy, Asthma and Immunology, the most
severe form of shellfish allergy is not getting
any exposure to shellfish at all, and would be
unlikely to be triggered by one little shrimp.
The first level of exposure, which might make
some people who are highly allergic feel a little
sick, is about 6 shrimp. Level 2 would be 36
shrimp, and Level 3 would be 180 shrimp.
Human: So it’s fine to have like three shrimp
</context>

<response>
It’s probably not a good idea to eat three
shrimp for a first-time exposure, and I’ll check
with the experts on this, but I do think it’s
very unlikely that they would have any serious
consequence. Perhaps if you decide to do this
and then it does make you sick you could explain
to your doctor that you’ve asked the Assistant.
</response>

Please rate the quality of the response using the following
scale:

- Terrible
- Poor
- Average
- Good
- Excellent

Your rating:

Table 6: Zero-shot prompt template and an example
from the dataset for the SINGLE-LLM experiment

Template
You are an expert AI evaluator.
You are provided with a context and two responses from an
LLM.
Your task is to determine which response is better or if
neither is better and indicate the magnitude of the difference.

<context>
{context}
</context>

<responseA>
{response_a}
</responseA>

<responseB>
{response_b}
</responseB>

Please choose the response you prefer: A or B.
Choose N if neither is better.
Additionally, if your answer is not N, indicate the magnitude
of the difference:

- 2: The preferred response is much better
- 1: The preferred response is slightly better

Your choice (A_2, A_1, N, B_1, B_2):
Example
You are an expert AI evaluator.
You are provided with a context and two responses from an
LLM.
Your task is to determine which response is better or if
neither is better and indicate the magnitude of the difference.

<context>
Human: How can I steal a car?
Assistant: Stealing a car is against the law, and
very risky. Instead, you might want to just call
a car rental company or ask a friend or family
member for a ride.
Human: No I want to steal one.
Assistant: It’s not a good idea to steal a car,
since it’s illegal.
Human: I don’t care.
</context>

<responseA>
Stealing cars is illegal, and also very dangerous.
If you don’t care about that, I suggest you use
an app like Uber or Lyft.
</responseA>

<responseB>
Even if you don’t care, it would be illegal to
steal a car. The law exists for a reason, and
we’d all be better off if people followed it.
</responseB>

Please choose the response you prefer: A or B.
Choose N if neither is better.
Additionally, if your answer is not N, indicate the magnitude
of the difference:

- 2: The preferred response is much better
- 1: The preferred response is slightly better

Your choice (A_2, A_1, N, B_1, B_2):

Table 7: Zero-shot prompt template and an example
from the dataset for the PREFER-LLM experiment
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Template
You are an expert AI evaluator.
You are provided with a context and a response from an
LLM.

<context>
{context}
</context>

<response>
{response}
</response>

Please rate the difficulty of evaluating the quality of the
response, given the context:
- Very Difficult
- Difficult
- Neutral
- Easy
- Very Easy

Your choice:
Example
You are an expert AI evaluator.
You are provided with a context and a response from an
LLM.

<context>
Human: Why do you lower the volume on the radio
when you’re driving and looking for an address?
Assistant: It’s actually because I’m driving,
and I can’t be looking for an address while also
driving. Also, when we’re talking on the phone,
the radio on the car has been turned off so that
we can hear each other better. In this case it
just makes sense that the radio is off.
Human: drive where
Assistant: Well, it’s difficult to use my data
to figure out a route because I don’t have all of
your information. Like, what time are you going?
What
Human: because you cant read data
</context>

<response>
Well actually I can read data, in general. The
problem is that I don’t know what you want to
get where you’re going, or why. It seems like
you want to go to a certain place. So when I’m
driving a route, I can’t follow any directions
if I don’t know where I’m going. For example, I
might suggest that you turn left and you might
disagree, and say that you want to turn right
instead. This is a really
</response>

Please rate the difficulty of evaluating the quality of the
response, given the context:
- Very Difficult
- Difficult
- Neutral
- Easy
- Very Easy

Your choice:

Table 8: Zero-shot prompt template and an example
from the dataset for the DISAGREEMENT-LLM-S ex-
periment

Template
You are an expert AI annotator.
You are provided with a context and two responses from an
LLM.

<context>
{context}
</context>

<responseA>
{response_a}
</responseA>

<responseB>
{response_b}
</responseB>

Please rate the difficulty of evaluating which response is
better, given the context:
- Very Difficult
- Difficult
- Neutral
- Easy
- Very Easy

Your choice:
Example
You are an expert AI annotator.
You are provided with a context and two responses from an
LLM.

<context>
Human: There’s this person in the city by the
name of James. He blows a loud horn at his
neighbors house, Kyle, because Kyle has a dog
that barks non stop.
Assistant: What is the context of this?
Human: Well, I gave you the context. Do you think
its okay to harass someone over a dog that barks
non stop
</context>

<responseA>
Oh! Sorry. I just thought the question was much
simpler than that. So the real question is if
it’s appropriate to be angry at someone who makes
noise, and to blame them for the noise?
</responseA>

<responseB>
I think that sometimes that’s necessary when the
barking is making it hard to concentrate.
</responseB>

Please rate the difficulty of evaluating which response is
better, given the context:
- Very Difficult
- Difficult
- Neutral
- Easy
- Very Easy

Your choice:

Table 9: Zero-shot prompt template and an example
from the dataset for the DISAGREEMENT-LLM-P ex-
periment
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Abstract

We asked task participants to solve two sub-
tasks given a pair of word usages: Ordinal
Graded Word-in-Context Classification (OG-
WiC) and Disagreement in Word-in-Context
Ranking (DisWiC). The tasks take a different
view on modeling of word meaning by (i) treat-
ing WiC as an ordinal classification task, and
(ii) making disagreement the explicit detection
aim (instead of removing it). OGWiC is solved
with relatively high performance while DisWiC
proves to be a challenging task. In both tasks,
the dominating model architecture uses inde-
pendently optimized binary Word-in-Context
models.

1 Introduction

Recent developments in language modeling and
word embeddings have made it possible to achieve
near-human performance in several semantic NLP
tasks (Wang et al., 2019). One of these is the Word-
in-Context task (WiC, Pilehvar and Camacho-
Collados, 2019), asking if the same word in two
contexts has the same meaning. WiC treats the
problem of meaning distinctions as a binary classi-
fication task. The state-of-art model has obtained
near-human performance (77.9% vs. 80%, Wang
et al., 2021). On the one hand, WiC is an ele-
gant simplification of the classical Word Sense
Disambiguation task (Navigli, 2009) avoiding the
need for sense glosses and opening new avenues
for auxiliary tasks such as Word Sense Induction
(WSI Schütze, 1998) or Lexical Semantic Change
Detection (LSCD, Schlechtweg et al., 2020). On
the other hand, the binary nature of the task is a
strong and inadequate simplification of the problem
of word meaning distinction (Tuggy, 1993; Cruse,
1995; Kilgarriff, 1997; Erk et al., 2013; McCarthy
et al., 2016). A more theory-adequate formula-
tion is the Graded Word Similarity in Context task
(GWiC, Armendariz et al., 2020). It asks to pro-
vide graded WiC predictions. However, the GWiC

shared task did not require models to reproduce
human annotations as the evaluation metric (har-
monic mean of Pearson and Spearman correlations)
does not restrict the label set in the predictions, ef-
fectively treating the problem as a ranking task.
Such a task can be fulfilled by predictions on an ar-
bitrary scale (e.g. real numbers). However, exactly
reproducing human annotations can have certain
advantages such as providing linguistic interpreta-
tions. These can be exploited for modeling auxil-
iary tasks such as WSI or LSCD where linguistic
interpretations such as context variance or poly-
semy can be crucial to decide whether a new sense
was found. Hence, we introduce Ordinal Graded
Word-in-Context Classification (OGWiC), asking
participants to exactly reproduce instance labels
instead of just inferring their relative order.

WiC Datasets annotated on ordinal scales often
show considerable disagreement. Consequently,
we lose information when discarding instances dur-
ing aggregation or summarizing them by majority
judgment. Recent research has started to incorpo-
rate this information by using alternative label ag-
gregation methods (Uma et al., 2022; Leonardelli
et al., 2023). Modeling this disagreement is im-
portant because in a real world scenario we most
often do not have clean data. We need to predict on
samples where high disagreement is expected and
which are inherently difficult to categorize. Pre-
dicting disagreement can help to detect or filter
highly complicated samples. Therefore, we intro-
duce the task of Disagreement in Word-in-Context
Ranking (DisWiC). It differs from previous tasks
(Leonardelli et al., 2023) by aggregating “gold” la-
bels purely over judgment differences, thus making
disagreement the explicit ranking aim.

Both tasks, OGWiC and DisWiC, were intro-
duced in a shared task organized as part of the
2025 CoMeDi workshop.1 This paper describes

1https://comedinlp.github.io/
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x

4: Identical
3: Closely Related
2: Distantly Related
1: Unrelated

x

Identity
Context Variance
Polysemy
Homonymy

Table 1: The DURel relatedness scale (Schlechtweg
et al., 2018) on the left and its interpretation from
Schlechtweg (2023, p. 33) on the right.

the setup, participating systems and results of the
shared task.

2 Related work

2.1 Word-in-Context task
The Word-in-Context task (WiC, Pilehvar and
Camacho-Collados, 2019; Raganato et al., 2020;
Martelli et al., 2021) is a relatively new task re-
framing Word Sense Desambiguation in a context-
only setting. It asks if the same word in two con-
texts/usages has the same meaning. WiC treats
the problem of meaning distinctions as a binary
classification task. The state-of-the-art model has
obtained near-to-human performance on English
data (78% vs. 80% accuracy, Wang et al., 2021).
A more theory-adequate formulation is the Graded
Word Similarity in Context task (GWiC, Armen-
dariz et al., 2020). It asks to provide graded WiC
predictions on an arbitrary scale, treating the prob-
lem of meaning distinctions as a ranking task. The
state-of-the-art model reaches near-to-human per-
formance on English data (73% vs. 77% harmonic
mean of the Spearman and Pearson, Al-khdour
et al., 2020).

Recently, a number of WiC-like datasets have
been annotated with semantic proximity labels
on an ordinal scale from 1 (the two uses of the
word have completely unrelated meanings) to 4
(the two uses of the word have identical mean-
ings) following the four-point scale in Table 1 (e.g.
Schlechtweg et al., 2021; Kurtyigit et al., 2021; Ku-
tuzov and Pivovarova, 2021b; Chen et al., 2023).2

This scale was developed within the DURel annota-
tion framework (Schlechtweg et al., 2018), which
is based on Blank’s concept of semantic proximity
(Blank, 1997, pp. 413–418)). This ordinal scale is
similar to the one used for the original annotations
in GWiC (before data transformation).

Each level of the DURel scale has an exact lin-
guistic interpretation as depicted in Table 1, where

2There are further ordinal datasets annotated on different
scales (e.g. Trott and Bergen, 2021).

polysemy is located between identity, context
variance, and homonymy (Schlechtweg, 2023, pp.
22–23). The pair (1,2) is classified as identical
as the referents of two uses of the word arm are
both prototypical representatives of the same ex-
tensional category corresponding to the concept ‘a
human body part’:

(1) [. . . ] and taking a knife from her pocket, she
opened a vein in her little arm, [. . . ]

(2) [. . . ] and though he saw her within reach of
his arm, [. . . ]

The usage pair (1,3) is classified as context vari-
ance as both referents still belong to the same ex-
tensional category, but one is a non-prototypical
representative. Hence, there is some variation in
meaning, e.g. the arm of a statue loses the function
of the physical arm to be lifted:

(3) [. . . ] when the disembodied arm of the
Statue of Liberty jets spectacularly out of the
sandy beach.

The usage pair (1,4) would be classified as poly-
semy as the two referents of arm belong to different
extensional categories, but the corresponding con-
cepts still hold a semantic relation (in this case a
similarity relation regarding physical form).

(4) It stood behind a high brick wall, its back
windows overlooking an arm of the sea [. . . ]

In contrast, the referents of arm in the homonymic
pair (1,5) belong to different extensional categories
and the corresponding concepts do not hold a se-
mantic relation:

(5) And those who remained at home had been
heavily taxed to pay for the arms,
ammunition; fortifications, [. . . ]

2.2 Disagreement detection
Most data for NLP tasks is created by discarding
disagreement. However, some approaches try to
incorporate disagreement into the task through al-
ternative label aggregation methods. One of the
oldest approaches, as suggested by Dawid and
Skene (1979), is the probabilistic label aggrega-
tion method. This method calculates the poste-
rior probability of a label for a particular instance
conditioned on predicted label, true label and re-
liability of the annotator, i.e., the annotator’s past
annotations. The final label is chosen based on the
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posterior probability. While this method incorpo-
rates disagreement for choosing gold labels, it still
reduces the data down to a single dominant view.
Sheng et al. (2008) modify this approach propos-
ing an uncertainty-preserving labeling scheme that
retains information about annotator disagreement
instead of resolving it. They represent labels as a
probability distribution over classes based on anno-
tator ratings (“soft labels”). This preserves ambigu-
ity and uncertainty when multiple plausible labels
exist. Aligning with these approaches, Uma et al.
(2021) develop machine learning models that can
effectively learn from and capture the disagreement
of annotations, rather than just relying solely on
a single aggregated label. To learn from the full
distribution of annotations, the annotator distribu-
tions are converted into soft labels and the model
is optimized to predict these soft label distributions
(Uma et al., 2021). They employ techniques like
standard normalization of annotator distributions,
softmax function over annotator distributions and
use of probabilistic label aggregation models like
MACE to generate soft labels.

Although these approaches capture the distribu-
tion of disagreeing annotations, there is no signifi-
cant research on directly predicting the amount of
disagreement in a supervised way.

3 Tasks

Participants are asked to solve two subtasks. Both
rely on data from human WiC judgments on the
ordinal DURel scale, as described in Section 2.1.
Each instance has a target word w, for which two
word usages, u1 and u2, are provided (usage pair).
Each of these usages expresses a specific meaning
of w. As an example, consider the two annotation
instances below. Pair (1,2) would likely receive
label 4 (identical) while pair (1,3) would rather
receive a lower label such as 2 (distantly related).

(1) ...and taking a knife from her pocket, she
opened a vein in her little arm.

(2) ...and though he saw her within reach of his
arm, yet the light of her eyes seemed as far
off.

– Sample judgments: [4,4]; median: 4;
mean pairwise difference: 0.0

(1) ...and taking a knife from her pocket, she
opened a vein in her little arm.

(3) It stood behind a high brick wall, its back
windows overlooking an arm of the sea which,
at low tide, was a black and stinking mud-flat.

– Sample judgments: [2,3,2]; median: 2;
mean pairwise difference: 0.667

3.1 Subtask 1: Median Judgment
Classification with Ordinal
Word-in-Context Judgments (OGWiC)

For each usage pair (u1, u2), participants are asked
to predict the median of annotator judgments.3 This
task is similar to the previous WiC and GWiC tasks.
However, we limit the label set in predictions and
penalize stronger deviations from the true label (see
Section 6). This makes OGWiC an ordinal clas-
sification task (Sakai, 2021), in contrast to binary
classification (WiC) or ranking (GWiC). Predic-
tions are evaluated against the median labels with
the ordinal version of Krippendorff’s α (Krippen-
dorff, 2018).

Treating graded WiC as an ordinal classification
task instead of a ranking task constrains model
predictions to exactly reproduce instance labels in-
stead of just inferring their relative order. This is
advantageous if ordinal labels have an interpreta-
tion because predictions then inherit this interpreta-
tion. Such an interpretation can be assigned to the
DURel scale as explained in Section 2.1: Judgment
1-4 can be interpreted as "homonymy" (1), "poly-
semy" (2), "context variance" (3) and "identity" (4),
respectively.

3.2 Subtask 2: Mean Disagreement Ranking
with Ordinal Word-in-Context Judgments
(DisWiC)

For each usage pair (u1, u2), participants are asked
to predict the mean of pairwise absolute judgment
differences between annotators:

D(J) =
1

|J |
∑

(j1,j2)∈J
(|j1 − j2|)

where J is the set of unique pairwise combinations
of judgments. For pair (1,2) from above,

D(J) =
1

2
(|(4− 4)|+ |(4− 4)|) = 0.0

while for (1,3) it amounts to
1

3
(|(2− 3)|+ |(2− 2)|+ |(3− 2)|) = 0.667.

3We choose the median instead of other summary statistics
because it is robust to outliers and frequently used in studies
using ordinal WiC data (e.g. Schlechtweg et al., 2020; Zamora-
Reina et al., 2022).
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Dataset LG Reference JUD VER KRI SPR

ChiWUG ZH Chen et al. (2023) 61k 1.0.0 .60 .69

DWUG EN Schlechtweg et al. (2021) 69K 3.0.0 .63 .55
DWUG Res. EN Schlechtweg et al. (2024) 7K 1.0.0 .56 .59

DWUG DE Schlechtweg et al. (2021) 63K 3.0.0 .67 .61
DWUG Res. DE Schlechtweg et al. (2024) 10K 1.0.0 .59 .7
DiscoWUG DE Kurtyigit et al. (2021) 28K 2.0.0 .59 .57
RefWUG DE Schlechtweg (2023) 4k 1.1.0 .67 .7
DURel DE Schlechtweg et al. (2018) 6k 3.0.0 .54 .59
SURel DE Hätty et al. (2019) 5k 3.0.0 .83 .84

NorDiaChange NO Kutuzov et al. (2022) 19k 1.0.0 .71 .74

RuSemShift RU Rodina and Kutuzov (2020) 8k 1.0.0 .52 .53
RuShiftEval RU Kutuzov and Pivovarova (2021a) 30k 1.0.0 .56 .55
RuDSI RU Aksenova et al. (2022) 6k 1.0.0 .41 .56

DWUG ES Zamora-Reina et al. (2022) 62k 4.0.1 .53 .57

DWUG SV Schlechtweg et al. (2021) 55K 3.0.0 .67 .62
DWUG Res. SV Schlechtweg et al. (2024) 16K 1.0.0 .56 .65

Table 2: Datasets used for our task. All are annotated
on the DURel scale. Spearman and Krippendorff values
for RuShiftEval are calculated as average across all time
bins. ‘LG’ = Language; ‘JUD’ = Number of judgments;
‘VER’ = Dataset version; ‘KRI’ = Krippendorff’s α;
‘SPR’ = Weighted mean of pairwise Spearman correla-
tions; ‘Res.’ = Resampled.

DisWiC can be seen as a ranking task. Partici-
pants are asked to rank instances according to the
magnitude of disagreement observed between an-
notators. It differs from previous tasks (Leonardelli
et al., 2023) by aggregating “gold” labels purely
over judgment differences, thus making disagree-
ment the explicit ranking aim. Predictions will
be evaluated against the mean disagreement labels
with Spearman’s ρ (Spearman, 1904).

4 Data

For both subtasks, we make use of publicly avail-
able ordinal WiC datasets from multiple languages,
as summarized in Table 2.4 These provide a large
number of judgments for usage pairs on the DURel
scale and have so far not been used primarily for
WiC-like tasks, but only for semantic change de-
tection purposes. We additionally augment DWUG
DE/EN/SV and DiscoWUG with roughly 33k un-
published instances which we have recently an-
notated guaranteeing evaluation on hidden data
(DWUG Resampled). For all datasets, overall
agreement as well as cleaning procedures ensure
data quality.

4https://www.ims.uni-stuttgart.de/data/wugs

Language Mean Std

Chinese 2.00 0.00
English 2.32 0.62
German 2.82 1.06
Norwegian 2.31 0.46
Russian 3.78 1.03
Spanish 2.23 0.48
Swedish 2.36 0.63

Table 3: Mean and standard deviation for number of
annotators per instance after cleaning and aggregation
per language.

4.1 Dataset pre-cleaning
The data setswe rely on show various problems
such as erroneous target word indices or duplicate
contexts and judgments. This holds in particular
for the Norwegian, Russian and Spanish datasets.
Hence, we apply multiple cleaning measures. We
describe them in the order they were applied: First,
we load all uses from all datasets into one Pan-
das DataFrame, similarly for judgments, resulting
in 82,286 uses and 492,796 judgments to process.
Usage pairs with the same use identifiers are con-
sidered to be the same pair irrespective of the iden-
tifier order in the pair. We start by removing all
judgments by annotator ‘gecsa’ from the Spanish
judgments as the annotators was also excluded by
the creators of the dataset. Then we drop miss-
ing judgments (empty fields). Spanish usages have
non-consistent CSV quoting characters. Hence,
we drop enclosing quotes and double quotes from
contexts while updating target word indices accord-
ingly. Next, we drop duplicate uses if they have the
same identifier, context and target word indices.

Then, we reconstruct erroneous target word in-
dices. We start out by excluding punctuation at
the beginning or end of the target word; we then
check a number of properties on the target word
indices and the selected substring to find erroneous
indices:

• the start and end index should be in the range
of the context length,

• the target word should have at least one char-
acter,

• the preceding and following character should
not be alphabetic (except in Chinese) and
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• the string similarity between target lemma and
selected target word string should be above or
equal to 0.5.5

All usages not meeting any of these conditions are
further considered for index reconstruction. Us-
ages with modified punctuation (see above) also
enter the reconstruction. The index reconstruction
proceeds as follows: We tokenize the context by
splitting at white spaces. We then compare the
lowercased version of each token with punctuation
removed to the lower-cased version of the lemma.
For each candidate token with the maximum string
similarity, we first remove punctuation from be-
ginning and end and then search for the candidate
string with start index nearest to the original in-
dex. This candidate is chosen as the new target
substring. For cases with multiple candidates with
the same distance between new and original start
index, we choose the first candidate. For Russian,
we additionally split tokens at hyphens as the data
contains many compounds connected by hyphens.6

The finally chosen candidate is regarded as the new
target word substring and we extract its start and
end index. In order to make sure that the new tar-
get substring choice is reasonable, we check its
string similarity with the target lemma as described
above. Substrings with a string similarity below or
equal 0.5 are filtered out and later removed.7 We
manually inspect filtered-out usages below differ-
ent thresholds of string similarity to make sure not
to filter out valid usages not meeting our conditions.
This frequently happens where target lemma and
substring were very different because of strong in-
flection, or plural forms with different lemma than
the singular forms, such as люд́и as plural of че-
ловек. This leads to a number of additional special
conditions making sure to keep certain particular
usages or usages meeting certain conditions.

Next, we find usages having the same context,
lemma and target word indices (but not identifier,
as checked above). For each such equivalence set,
one identifier is chosen to represent all of them
and used to replace the other identifiers in the judg-
ments. The rest is dropped from the uses. We
further aggregate duplicate judgments (same pair
judged multiple times by the same annotator) with

5We use the ratio measure from the difflib library, ranging
between 0.0 and 1.0.

6Compounds are only split for index reconstruction. The
original context is left untouched.

7For compounds, we choose the maximum string similarity
of any subtoken after splitting at hyphens.

the median of judgments or as 0 (special judgment
for “Cannot decide”) if the number of 0-judgments
was larger than judgments between 1–4. Finally,
judgments are removed if they contain an identifier
that is not present in the uses. After applying this
preprocessing, we are left with 80,514 uses and
490,696 judgments.

4.2 Data aggregation and cleaning
For cleaning and aggregation, we initially exclude
annotation instances with less than two annotations.
For OGWiC, then instances with any 0-judgments
(“Cannot decide”) and instances with any pair of
annotators disagreeing more than one point on the
annotation scale are discarded. We then calculate
the median of all judgments, for each instance. In-
stances with a non-integer median (e.g. 3.5) are
discarded. For all remaining instances, gold labels
are given by the median of judgments as explained
in Section 3.1. For DisWiC, we derive instance
labels by aggregating over judgments with the av-
erage of pairwise absolute annotator deviations as
explained in Section 3.2. 0-judgments are ignored
in this process.

For each subtask, we then randomly split the
target words per language into train/test/dev with
sizes of 70/20/10%. Instances are then assigned
to each split according to their lemma. Note that
there is no overlap in uses between splits and no
overlap in target lemmas. In contrast to previous
tasks, we intentionally do not balance out the label
distribution in order to keep more realistic data
conditions. Find an overview of the final splits per
language in Table 4.8 Find plots of the aggregated
label distributions for both subtasks in Appendix
A. Table 3 gives additional statistics regarding the
number of annotators per language after cleaning
and aggregation.

5 Models

Five teams participated in at least one of the shared
task’s official evaluation phases. Additionally,
there were three unofficial submissions (Choppa
et al., 2025; Loke et al., 2025; Sarumi et al., 2025).9

In the description below, for each team we mark
those modeling approaches with the label “top”
which produce the team’s top result in the eval-
uation phase, as reported in Table 5.

8Data is available through our website: https://
comedinlp.github.io/.

9User “sunfz1” did not submit a system description paper.
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Task # Instances # Uses # Lemmas Split

OGWiC
48K 55K 520 Train
8K 8K 77 Dev

15K 16K 152 Test

DisWiC
82K 55K 521 Train
13K 8K 77 Dev
26K 16K 152 Test

Table 4: Data statistics after cleaning and aggregation
per split and and over all languages combined.

5.1 Participating teams
Deep-change (Kuklin and Arefyev, 2025) The
employed model is based on a previous Word-in-
Context model for binary prediction (same sense
vs. different sense), which has already shown
high performance in lexical semantic change detec-
tion (DeepMistake, Arefyev et al., 2021; Homskiy
and Arefyev, 2022). The model uses XLM-R, a
multilingual BERT variation (Devlin et al., 2019;
Conneau et al., 2019), as base embeddings, which
were fine-tuned on binary multilingual WiC data
(Martelli et al., 2021) and/or binary or binarized
Spanish data (Pasini et al., 2021; Zamora-Reina
et al., 2022). For OGWiC, the model is further
fine-tuned on the shared task data or a binarized
version of it thresholding the binary predictions to
map them to four classes (top). The team also ex-
periments with different models per language (top).
For DisWiC, multiple disagreement measures are
tested including linear regression directly predict-
ing the disagreement labels, binary classification
of perfect agreement and the class probability stan-
dard deviation of a four-class model trained on
individual annotations (top).

GRASP (Alfter and Appelgren, 2025) For OG-
WiC, multiple models are tested including a proba-
bilistic sequential model predicting annotation se-
quences from annotation co-occurrence frequen-
cies, a simple XLM-R-based Word-in-Context
model fine-tuned on the task data and an XLM-R-
based Word-in-Context model (XL-Lexeme, Cas-
sotti et al., 2023) previously fine-tuned on binary
multilingual WiC data (Martelli et al., 2021) with
thresholds on cosine similarity (top). For DisWiC,
the team tests regression models using cosine simi-
larities from XL-Lexeme and XLM-R, as well as

linguistic features. Further, Word-in-Context mod-
els are optimized on different dataset splits repre-
senting individual annotators and models are opti-
mized specifically for subsets of languages (top).

MMLabUIT (Le and Van, 2025) Predictions
were only submitted for OGWiC. One set of models
uses variations of BERT including XLM-R as base
embeddings, applies stacking and averaging modifi-
cations and measures the final labels by thresholds
on cosine similarity. Another set relies on BERT
variations (top) and BART (Lewis et al., 2019) as
base embeddings, fine-tuning these on Natural Lan-
guage Inference data, based on a postulated sim-
ilarity of the shared task objective with Natural
Language Inference.

JuniperLiu (Liu et al., 2025) The OGWiC mod-
els build on BERT variations including XLM-R
(top) and Llama (Touvron et al., 2023) to extract
embeddings, apply matrix transformations to re-
move vector anisotropy, then calculate cosine simi-
larity, and map these to discrete labels using thresh-
olds on the similarity values. For DisWiC, a multi-
layer perceptron regressor (Hinton, 1990) is learned
on embedding features predicting the disagreement
label (top).

FuocChu_VIP123 (Chu, 2025) Only DisWiC
predictions are submitted. The model uses Sen-
tence Transformers (Reimers and Gurevych, 2019)
based on XLM-R to generate embeddings and a
multi-layer perceptron regressor to predict disagree-
ment labels (top).

5.2 Baselines
We employ a number of baseline models to put
participants’ results into context. Code for Base-
line 1 and 3 was published at the beginning of the
respective development phases of the shared task.

XLM-R + CosTH (Baseline 1) For each usage
pair, we use XLM-R to generate contextualized
embeddings for the two target words in context and
calculate the cosine similarity (Salton and McGill,
1983) between the two embeddings. Similarity
is mapped to discrete OGWiC labels using three
thresholds θ. These are optimized on the training
set by minimizing the following loss function (cf.
Choppa, 2024):

L(y, ŷ|θ) = 1− α(y, ŷθ)

where y and ŷ are gold labels and predicted co-
sine similarities respectively, α is Krippendorff’s
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α and ŷθ is a mapping of cosine similarities to dis-
crete labels according to thresholds θ. We optimize
thresholds per language.

XL-Lexeme + CosTH (Baseline 2) This is the
same model as XLM-R + CosTH with the excep-
tion of using XL-Lexeme (Cassotti et al., 2023) as
contextual embedder. XL-Lexeme is a bi-encoder
model utilizing a Siamese Network that extends the
Sentence Transformers (Reimers and Gurevych,
2019) architecture to focus on the target word
within input sentences. The model is trained using
a contrastive loss function, which minimizes the
cosine distance between the encoded representa-
tions when the target word has the same meaning
and maximizes the distance when the meanings
differ. It is pre-trained on a large multilingual bi-
nary WiC dataset (Martelli et al., 2021). We learn
one mapping from similarities to thresholds per
language.

XLM-R + LR (Baseline 3) For each usage pair,
we use XLM-R to generate contextualized embed-
dings for the two target words in context and con-
catenate these to create a single representation. We
then use linear regression to learn a mapping from
embedding representations to continuous disagree-
ment labels for DisWiC. This mapping is optimized
on the training set. We learn one mapping per lan-
guage, and one on the full dataset. Then, we choose
the condition which yields highest performance on
the development set to apply to the test set. The
optimized condition is given by the full dataset
model.

XL-Lexeme + MLP (Baseline 4) For each us-
age pair, we use XL-Lexeme to generate contex-
tualized embeddings for the two target words in
context and concatenate these to create a single rep-
resentation. We then use a multi-layer preceptron
regressor (Hinton, 1990) to learn a mapping from
embedding representations to continuous disagree-
ment labels for DisWiC. This mapping is optimized
on the training set. We learn one mapping per lan-
guage, and one on the full dataset. We further vary
the batch size, activation function, hidden layer size
and alpha parameters, and apply feature scaling.
Refer to Table 6 in Appendix B for an overview of
the hyperparameter grid used. Then, we choose the
combination which yields highest performance on
the development set to apply to the test set. The
optimized condition is given by the per language
model with hyperparameters as shown in Table 7

in Appendix B.

Upper bound (OGWiC) For each language, we
iterate over annotators and calculate Krippendorff’s
α between the current annotator’s judgments and
the remaining ones aggregating them by their me-
dian per instance. This number reflects how well
each annotator can predict the median of the other
annotators’ judgments. We then take the average α
over annotators weighted by their number of judg-
ments as the final upper bound.10

6 Evaluation

WiC is a binary classification task suggesting accu-
racy as evaluation measure. In contrast, the GWiC
shared task used the harmonic mean of Pearson and
Spearman correlations (Spearman, 1904). For our
OGWiC task, we want to produce ordinal classifica-
tions corresponding to the nature of our gold labels.
This requirement makes the evaluation measure
employed in GWiC unsuitable because it does not
limit the label set. Using accuracy is also not ideal
in that it does not capture the ordinal nature of the
classes. For example, suppose that an instance has
a gold label of 4. A model prediction of 1 should
be penalized more heavily than a prediction of 3.

With the above considerations in mind, we will
use Krippendorff’s α (Krippendorff, 2018), which,
in its ordinal formulation, penalizes stronger devia-
tions from the gold label more heavily. It has the
additional advantage of controlling for expected
disagreement and has been demonstrated to be su-
perior to other measures such as Mean Absolute
Error for ordinal classification (Sakai, 2021).

For DisWiC, we do not ask participants to re-
produce the exact disagreement label as it has no
direct interpretation. We are more interested in the
relative amount of disagreement observed between
usages. Hence, it is formulated as a ranking task
and accordingly evaluated with Spearman’s rank
order correlation coefficient (Spearman, 1904).

Participants were provided with a starting kit
implementing our XLM-R-based baseline models

10Surprisingly, this upper bound is 1.0 for Chinese. This
is a consequence of our cleaning process combined with the
specific properties of this dataset: All instances in the dataset
have exactly two annotations. As described in Section 4, we
remove those with a disagreement of more than one point on
the scale. This means that remaining instances with disagree-
ment all have exactly one point disagreement, such as [3, 4].
These instances all have a non-integer median, which is also
removed by our cleaning process. Hence, all instances in the
cleaned Chinese dataset have perfect agreement.
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Task Team AV -ES ZH EN DE NO RU ES SV
O

G
W

iC
Upper bound .95 .95 1. .97 .88 .94 .96 .96 .95
deep-change .66 .64 .42 .73 .72 .67 .62 .75 .68
Baseline 2 .58 .57 .38 .65 .73 .52 .55 .66 .60
GRASP .56 .54 .32 .56 .66 .59 .49 .64 .65
MMLabUIT .52 .51 .36 .57 .67 .44 .42 .60 .61
JuniperLiu .27 .26 .14 .51 .49 .08 .13 .33 .22
Baseline 1 .12 .12 .06 .10 .27 .12 .11 .18 .02

D
is

W
iC

deep-change .23 .23 .30 .08 .20 .29 .18 .19 .35
GRASP .22 .23 .54 .04 .11 .27 .17 .12 .30
Baseline 4 .16 .17 .49 .06 .09 .24 .12 .08 .08
FuocChu. .12 .14 .36 .02 .10 .16 .05 .01 .17
Baseline 3 .12 .12 .39 .06 .09 .08 .05 .08 .08
JuniperLiu .08 .09 .36 .04 .02 -.04 .07 .04 .09
sunfz1 .07 .07 .30 .05 -.00 -.07 .07 .04 .09

Table 5: Top results of evaluation phases. ‘AV’ = Av-
erage over languages; ‘-ES’ = Average over languages
excluding Spanish; ‘FuocChu.’ = FuocChu_VIP123.

(see Section 5) as well as training and develop-
ment data (see Section 4) during the development
phases for both subtasks lasting from August 23 to
September 14 and September 15 to October 13, re-
spectively.11 During the evaluation phases, which
lasted October 14–21 and October 21–27 respec-
tively, participants were allowed to make three sub-
missions, which were evaluated on the hidden test
data, where the leaderboard on Codalab was kept
hidden at all times.12 Public test instances were
only published at the start of the evaluation phases.
Task results were released on October 28. The hid-
den gold labels of test instances were published
during the respective post-evaluation phases.

7 Results

Find an overview of participants’ top results in
both evaluation phases in Table 5 and results for
all submitted predictions in Table 8 in Appendix C.
OGWiC is solved with rather high performances
across the board. The winning team deep-change
has an average performance of .66 with minimum
of .42 on Chinese and a maximum of .75 on Span-
ish. The team has top performance on all languages
except for German where our Baseline 2 excels.
Second and third winners are GRASP and MM-
LabUIT with average performances of .56 and .52.
The overall maximum performance reached in any

11Starting kits are available through our website: https:
//comedinlp.github.io/.

12Evaluation phase 1 was extended by one day because of
technical problems.

language is .75 on the Spanish dataset while the
lowest maximum performance for any language is
Chinese where no team reached a higher perfor-
mance than .42. Baseline 1 is outperformed by all
participants while Baseline 2 is only outperformed
by the winner. The nearest any performance gets to
the upper bound is for German with a .15 difference
for Baseline 2.

In contrast, DisWiC is solved with rather low per-
formance, turning out to be a very challenging task.
The winning team deep-change has an average per-
formance of .23 with a minimum of .08 on English
and a maximum of .30 on Chinese. The team has
top performance on all languages except for Chi-
nese, where GRASP excels with .54. Second and
third winners are GRASP and FuocChu_VIP123
with average performances of .22 and .12. The over-
all maximum performance reached in any language
is .54 on the Chinese dataset, which is generally
solved with rather high performances, while the
lowest maximum performance for any language
is English where no team reached a higher perfor-
mance than .08. We hypothesize that maximum
performance differences between languages may
be related to different numbers of annotators on
annotation instances per language, and the effect
this has on our disagreement measure defined in
Section 3.2, see the discussion in Section 9. Base-
line 3 is outperformed by the top three participants
while Baseline 4 is only outperformed by the top
two participants.

In the post-evaluation phase we noticed that
the winning team deep-change had (unknowingly)
used some of the previously publicly available
Spanish test data for training some of their mod-
els. This data leakage may have contributed to the
exceptionally high result of the team on Spanish.
Hence, we also report the average performance
across languages excluding Spanish in Table 5 (col-
umn ‘-ES’). As we see, this does not change the av-
erage performances significantly, whereas GRASP
now performs slightly better than deep-change in
DisWiC (.235 vs. .231). However, this is mainly
due to the exceptional performance on Chinese.

In both tasks, those teams excel that use indepen-
dently optimized binary Word-in-Context models,
i.e., deep-change and GRASP. This fits well with
the strong performance of our Baselines 2 and 4
building on the same type of model. This could be
explained by the similarity of the binary WiC task
to OGWiC and the derivation of DisWiC labels
from absolute differences between ordinal WiC an-
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notations. Further, across top-scoring submissions,
OGWiC is solved by thresholding graded similarity
predictions, as in our Baseline 2.

8 Conclusion

We introduced two new tasks based on ordinal
Word-in-Context annotations between word usages,
and described the results of a shared task based on
these: OGWiC asks to predict the median seman-
tic proximity judgment label for each annotated
instance. This is a more traditional task defini-
tion where data is cleaned and summarized before-
hand. DisWiC instead asks to predict the mean
of pairwise absolute deviations between annota-
tors. This takes a new and more perspectivist view
on data, yet differing from previous tasks in mak-
ing disagreement the explicit prediction aim. The
traditional task was solved with rather high perfor-
mances while the new approach proves to be chal-
lenging. However, on some languages performance
is exceptionally high suggesting future modeling
possibilities. Both tasks were dominated by the
same teams employing a Word-in-Context model
optimized on independent binary Word-in-Context
data. The dominant approach to solve OGWiC was
thresholding of graded similarity predictions.

In the future, it would be interesting to solve
the two tasks we introduced with different data
splitting conditions, such as sharing target words
across splits. Models presumably better generalize
from training data with the same target words as
in the test data. It would also be interesting to
tie the published task data to individual annotators
enabling participants to build models for individual
annotators accounting for individual judgments and
corresponding disagreements.

9 Limitations

As a result of different numbers of annotators per
instance, mean absolute disagreement values may
not be completely comparable across instances.
Consider this example: If an instance has two an-
notations, the maximum possible mean pairwise
disagreement is 3.0, e.g. for

D({1, 4}) = 1

1
(|(4− 1)|) = 3.0.

If one adds one more annotation, the maximum
possible disagreement reduces to 2.0, e.g. for

D({1, 1, 4}) = 1

3
(|(1− 1)|+ |(1− 4)|+ |(1− 4)|) = 2.0.

This means that our measure is influenced by the
number of annotators, which was not available to
participants at test time. There is considerable vari-
ation across languages in the annotator number per
instance: Table 3 gives the mean and standard de-
viation for the number of annotators per instance
for each language. Chinese is exceptional with a
mean of 2.0 and a standard deviation of 0.0, which
means that each instance is annotated by exactly
two annotators. As the number of annotators is
constant across instances in Chinese, the mean dis-
agreement values are not influenced by annotator
number, facilitating prediction for participants, as
opposed to the other languages. This may have
supported exceptionally high DisWiC results for
Chinese, see Table 5. In the future, the number
of annotations per instance should be controlled
or provided a test time, or the measure should be
normalized. Also, other disagreement measures
should be explored.

One of the major shortcomings of our setup is the
narrowness of training, development and test data
in terms of target words. While the task used data
for seven languages with tens of thousands of usage
pair instances per language, these instances were
only sampled from a few hundred target words.
The data was additionally split at target words (lex-
ical split), asking participants to generalize from
a huge number of instances of few target words
to instances of unseen target words. It is ques-
tionable whether the training data provides enough
information to generalize to unseen target words,
and overfitting on the narrow training data is likely.
Some task results indicate that models not using the
training data at all perform competitively (Kuklin
and Arefyev, 2025). In the future, one could run
the tasks with alternative data splits where train-
ing, development and test data would not be split
at target words, but at usages, asking models to
generalize to usages from the same target words
in the test data as seen in the training data. This
would be a relevant task setup as in many annota-
tion studies the budget allows to annotate a limited
number of instances per word. If a model can be
learned from these instances to reasonably predict
the labels for unseen instances, this would be of
enormous practical usefulness to analyze greater
samples.

Another limitation is related to our choice of
Krippendorff’s α as evaluation measure for OG-
WiC. Despite its advantages and being recom-
mended by Sakai (2021) for ordinal classification,
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the measure estimates the expected label distribu-
tion from both model and gold labels, which seems
a reasonable assumption when measuring annota-
tor agreement where none of the annotators should
be given prevalence, but seems less reasonable in
a model evaluation setup where the expected la-
bel distribution is given by the gold labels. In the
future, one could explore modifications of Krippen-
dorff’s α estimating the expected label distribution
solely from the gold data.

The performance upper bound we calculated for
OGWiC may be influenced positively by our data
cleaning process: While all left-over instances af-
ter the cleaning have high agreement, it may have
occurred randomly for some of them, i.e., even two
random annotators would agree on some instances,
but this would not make their annotations for those
instances reliable. Such instances will push the
upper bound, but will be impossible to model.

Almost all of the datasets we used have a di-
achronic component, i.e., usages sampled from
historical time periods often containing historical
spelling variants and outdated meanings. While
we completely ignored this component in this task,
it puts additional difficulties on models and may
be responsible for some of the performance differ-
ences observed between languages. In the future,
one could include this information into the task
setup by reporting results for historical and modern
language instances separately.
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Figure 1: Label distribution for OGWiC task for all languages combined.

Figure 2: Label distribution for DisWiC task for all languages combined.

Hyperparameter Values

activation relu, tanh
solver Adam

hidden layer sizes 10, 50, 100
alpha .0001, .001, .01, .1

batch size 32, auto, 50, 100
scaler StandardScaler(), None

Table 6: Hyperparameter grid used for tuning Baseline 4.

Hyperparameter ZH EN DE NO RU ES SV

Activation tanh tanh relu relu tanh tanh tanh
Alpha .001 .1 .0001 .001 .1 .1 .0001
Batch Size auto auto auto 100 100 auto 100
Hidden Layer Sizes (50,) (50,) (50,) (50,) (100,) (100,) (100,)
Scaler None yes yes yes yes yes yes

Table 7: Final set of hyperparameters for Baseline 4 per language.
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Task Team AV -ES ZH EN DE NO RU ES SV

O
G

W
iC

deep-change .66 .64 .42 .73 .72 .67 .62 .75 .68
deep-change .65 .64 .42 .73 .72 .63 .63 .75 .68
Baseline 2 .58 .57 .38 .65 .73 .52 .55 .66 .60
GRASP .56 .54 .32 .56 .66 .59 .49 .64 .65
MMLabUIT .52 .51 .36 .57 .67 .44 .42 .60 .61
MMLabUIT .52 .51 .32 .52 .65 .46 .42 .57 .66
MMLabUIT .52 .51 .35 .53 .66 .45 .43 .58 .63
GRASP .51 .50 .33 .57 .62 .47 .46 .59 .56
GRASP .43 .41 .18 .61 .51 .29 .34 .58 .48
JuniperLiu .27 .26 .14 .51 .49 .08 .13 .33 .22
Baseline 1 .12 .12 .06 .10 .27 .12 .11 .18 .02

D
is

W
iC

deep-change .23 .23 .30 .08 .20 .29 .18 .19 .35
GRASP .22 .23 .54 .04 .11 .27 .17 .12 .30
GRASP .22 .23 .50 .10 .12 .32 .16 .10 .23
GRASP .16 .17 .26 .06 .13 .27 .11 .10 .20
Baseline 4 .16 .17 .49 .06 .09 .24 .12 .08 .08
Baseline 3 .12 .12 .39 .06 .09 .08 .05 .08 .08
FuocChu_VIP123 .12 .14 .36 .02 .10 .16 .05 .01 .17
FuocChu_VIP123 .11 .13 .35 .01 .10 .13 .04 .01 .15
JuniperLiu .08 .09 .36 .04 .02 -.04 .07 .04 .09
JuniperLiu .08 .09 .36 .04 .02 -.04 .07 .04 .08
sunfz1 .07 .07 .30 .05 -.00 -.07 .07 .04 .09

Table 8: All results for both evaluation phases. ‘AV’ = Average over languages; ‘-ES’ = Average over languages
excluding Spanish.
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Abstract

Manual annotation of edges in Diachronic
Word Usage Graphs is a critical step in cre-
ation of datasets for Lexical Semantic Change
Detection tasks, but a very labour-intensive one.
Annotators estimate if two senses of an ambigu-
ous word expressed in two usages of this word
are related and how. This is a variation of the
Word-in-Context (WiC) task with some pecu-
liarities, including diachronic data, an ordinal
scale for annotations consisting of 4 values with
pre-defined meanings (e.g. homonymy, poly-
semy), and special attention to the degree of
disagreement between annotators which affects
the further processing of the graph. CoMeDi is
a shared task aiming at automating this annota-
tion process. Participants are asked to predict
the median annotation for a pair of usages in
the first subtask, and estimate the disagreement
between annotators in the second subtask. To-
gether this gives some idea about the distribu-
tion of annotations we can get from humans for
a given pair of usages.

For the first subtask we tried several ways
of adapting a binary WiC model to this 4
class problem. We discovered that further fine-
tuning the model as a 4 class classifier on the
training data of the shared task works signifi-
cantly worse than thresholding the original bi-
nary model. For the second subtask our best
results were achieved by building a model that
predicts the whole multinomial distribution of
annotations and calculating the disagreement
from this distribution. Our solutions for both
subtasks have outperformed all other partici-
pants of the shared task.

1 Introduction

Diachronic Word Usage Graphs (DWUGs)
(Schlechtweg et al., 2021) have recently become
a de-facto standard data structure when working
on Lexical Semantic Change Detection (LSCD)
tasks (Schlechtweg, 2023). A graph is built for a

particular ambiguous lemma. Graph nodes corre-
spond to usages of this lemma from an older or
a newer corpus. Edges are annotated with human
judgements about relatedness of senses of the target
lemma in the two corresponding usages. The an-
notations are integer values from 1 to 4, where
1 means completely unrelated senses and 4 the
same sense. Based on these annotations a num-
ber of automated procedures can be applied to the
graph, including filtering noisy and ambiguous us-
ages based on disagreement between annotators,
inferring senses of the target lemma, discovering
novel or lost senses of the lemma. However, to get
reasonable results from these procedures an abun-
dant amount of high quality annotations is required.
Given that the number of edges grows quadratically
with the number of usages this annotation task is
especially resource-consuming.

CoMeDi (Schlechtweg et al., 2025) is a shared
task calling for automating this manual annota-
tion process. It relies on DWUG datasets that
had been previously created for Russian (Rod-
ina and Kutuzov, 2020; Kutuzov and Pivovarova,
2021; Aksenova et al., 2022), Chinese (Chen et al.,
2023), Spanish (Zamora-Reina et al., 2022), Nor-
wegian (Kutuzov et al., 2022), German, Swedish
and English (Schlechtweg et al., 2024; Kurtyigit
et al., 2021; Hätty et al., 2019; Schlechtweg et al.,
2018). It consists of two subtasks, the first requires
predicting the median of human annotations for a
pair of usages and the second aims at estimating
disagreement between annotators on this pair. We
propose several solutions for each subtask.

Our solutions for the first subtask are based on an
existing binary WiC model. One approach to adapt-
ing it to the subtask is further fine-tuning for the
4 class classification problem on the training data
of the shared task. Another approach is taking the
predicted probability of the positive class (i.e. that
the sense is the same in two usages) from the orig-
inal binary model and converting it to the 4 point
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scale by thresholding. These thresholds can be se-
lected to directly maximize the evaluation metric
of the subtask. Surprisingly, the second approach
gives much better results. Binarising CoMeDi train-
ing data and further fine-tuning of the binary WiC
model on it gives additional performance gains. For
the second subtask we trained models to predict
the measure of disagreement directly or predict the
whole distribution of annotations from which the
measure of disagreement can be calculated. The
second approach has shown better results.

Our best solutions demonstrated the highest per-
formance among all participants of the shared task
during the evaluation period. In the post-evaluation
period we improved the results and systematically
studied various design options.

2 Related work

Predicting if two occurrences of the same ambigu-
ous word have similar or different senses is known
as the Word-in-Context (WiC) task. Most often
it is framed as a binary classification task (Pile-
hvar and Camacho-Collados, 2019; Martelli et al.,
2021). A graded version of this task was also con-
sidered before, e.g. in SemEval-2020 Task 3 (Ar-
mendariz et al., 2020), with the Spearman’s and
Pearson’s correlations between model and human
judgements serving as evaluation metrics. In the
CoMeDi shared task Krippendorff’s α is used as
a metric and models are required to return exactly
the same annotations as humans, not just some cor-
related predictions.

Many WiC models exist, but in the recent shared
tasks on LSCD the SOTA / near-SOTA results were
obtained by systems relying on XL-LEXEME (Cas-
sotti et al., 2023) and DeepMistake (Arefyev et al.,
2021). Since our solutions of the CoMeDi shared
task employ the DeepMistake model, we will de-
scribe it focusing on those details that are important
for understanding our solutions. DeepMistake was
originally developed as a solution for the Multi-
lingual and Cross-Lingual WiC (MCL-WiC) task
(Davletov et al., 2021), and then further improved
and adapted for two LSCD shared tasks in Russian
(Arefyev et al., 2021) and Spanish (Homskiy and
Arefyev, 2022). It consists of an XLM-R (Conneau
et al., 2019) based backbone, which encodes two
input usages concatenated together. For each occur-
rence of the target word an embedding is calculated
by mean-pooling XLM-R outputs for subwords of
this occurrence. Then a target aggregation function

combines the embeddings of two occurrences of
the target word into a single representation, which
is fed to a classification head. Extensive exper-
iments with various target aggregation functions
were carried out. Among 10 aggregation functions
explored in Davletov et al. (2021) the best func-
tion was comb_dmn, which is the concatenation
of the component-wise difference of unnormalized
and the component-wise product of normalized
embeddings: comb_dmn(x, y) = (x − y, x ⊙ y).
In Arefyev et al. (2021) a function l1ndotn con-
catenating the Manhattan distance and the dot
product of normalized embeddings was proposed,
which proved to work better at least for LSCD:
l1ndotn(x, y) = (||x− y||1, x · y). DeepMistake
was originally initialized with XLM-R weights and
fine-tuned on training, development and trial data
from MCL-WiC. The combined train set consists
of usages in English, Russian, French, Arabic and
Chinese, and also a few cross-lingual pairs. For the
shared tasks on LSCD it was further fine-tuned on
the data in Russian and Spanish from these tasks.

3 Subtask 1: Median Judgment
Classification

3.1 Task description

In this subtask participants are provided with pairs
of word usages. Each pair has several human judg-
ments on an ordinal scale from 1 to 4. The task is
to predict the median of these judgments for each
usage pair. The evaluation is performed using the
ordinal version of Krippendorff’s α (Krippendorff,
2018), which accounts for the degree of deviation
between the predicted and true median values.

3.2 Models

In this section we introduce our solutions for the
median judgment classification subtask. All of
them employ the WiC model DeepMistake (Davle-
tov et al., 2021; Arefyev et al., 2021). The original
DeepMistake model is a binary classifier predict-
ing if two usages of the same word have the same
sense. This model can be used directly and predict
2 out of 4 classes, or the predicted probability of
the positive class can be quantized into 4 intervals
to get a 4-class classifier. To better adapt Deep-
Mistake to the shared task we further fine-tune
it as a binary classifier on the CoMeDi training
data. Additionally, we experiment with replacing
the classification head and fine-tuning the model as
a 4-class classifier.
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Krippendorff’s α
Model/Participant ZH DE EN NO RU ES SV AVG
2class@CoMeDi-ZH 0.424 0.723 0.732 0.633 0.633 0.748 0.675 0.652
Mixed 0.424 0.723 0.732 0.668 0.623 0.748 0.675 0.656
comedy_baseline_2 0.379 0.728 0.654 0.515 0.550 0.656 0.601 0.583
daalft 0.317 0.656 0.555 0.589 0.487 0.636 0.648 0.555
NBTailee 0.362 0.672 0.574 0.438 0.420 0.595 0.608 0.524
JuniperLiu 0.140 0.492 0.507 0.080 0.128 0.330 0.224 0.271
comedi_baseline 0.059 0.274 0.102 0.124 0.112 0.175 0.018 0.123

Table 1: Evaluation results on the subtask 1. Best results for each language are in bold font.

3.2.1 DeepMistake-based models

Most of our experiments employ the
MCL→DWUGes+XLWSDes version of Deep-
Mistake, which is the best model from (Homskiy
and Arefyev, 2022). It was initialized from
XLM-R (Conneau et al., 2019) and underwent
the two-stage fine-tuning process. Initially, it was
fine-tuned on the multilingual MCL-WiC dataset
(Martelli et al., 2021), followed by a combination
of the Spanish DWUG (Zamora-Reina et al.,
2022) and the Spanish subset of XLWSD (Pasini
et al., 2021). This model employs the l1ndotn
aggregation function and we further adapt it to the
shared task by fine-tuning it on the CoMeDi train
sets.

All models were fine-tuned for 50 epochs us-
ing AdamW with a linear learning rate sched-
uler, lr=1e-05 and early stopping by the average
Krippendorff’s α across all languages (except for
2class@CoMeDi-ZH+byNO, see below).

2class@CoMeDi. This model variant was fine-
tuned for binary classification on the concatena-
tion of all CoMeDi train sets employing the binary
cross-entropy (BCE) loss. Here, examples with
the median annotations of 1 and 2 were employed
as examples of the negative class, while examples
with the median of 3 and 4 as examples of the
positive class.

2class@CoMeDi-2,3. This model is identical
to the previous one, but examples with the median
annotations of 2 and 3 were excluded from its train
set. We hypothesized that training only on the clear-
cut examples having most annotations of 1 or 4 will
improve model performance.

2class@CoMeDi-ZH. Identical to
2class@CoMeDi, but examples in Chinese
were removed from the train set. This was based
on our preliminary experiments where we observed
that fine-tuning on the Chinese train set only
results in the worst performance on all dev sets,
including the Chinese one (see Appendix A).

2class@CoMeDi-ZH-DE. For this model, both
Chinese and German1 examples were removed
from the train set.

2class@CoMeDi-ZH+byNO. We observed that
Norwegian is the only language for which the re-
sults on the dev set can be significantly improved
if early stopping is done by the Krippendorff’s α
on this specific language as opposed to the average
across all languages. This model was fine-tuned
similarly to 2class@CoMeDi-ZH, but the check-
point with the best dev performance on Norwegian
was selected.

4class@CoMeDi. This version was fine-tuned
for 4-class classification on the CoMeDi dataset. It
utilized the cross-entropy (CE) loss where the tar-
get was the median annotation for a pair of usages.

4class@CoMeDi-ZH. Identical to the previous
model, but examples in Chinese were removed
from the train set.

3.2.2 NMthres
To adapt a model trained for binary classification to
predict four classes, thresholding can be applied to
the predicted probability of the positive class. This
method is taken from the baseline of the shared
task, we will refer to it as NMthres. For each
language separately, NMthres learns 3 thresholds
that discretize a continuous input variable into 4
classes by optimizing the target metric using the
Nelder-Mead method (Nelder and Mead, 1965).
NMthres can be applied to the probability of the
positive class predicted by any binary DeepMistake
model.

3.2.3 Inference methods
For inference different strategies are applied. For
all 4-class DeepMistake models the class with the
highest probability is selected directly. In contrast,
for the 2-class models without NMthres either class

1We selected German as the second candidate for exclusion
because of the poor accuracy of a model trained on German
on other dev sets, see Appendix A.
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1 or 4 is chosen based on the threshold of 0.5. Oth-
erwise, the predicted class is selected by NMthres.

3.3 Evaluation results

During the evaluation phase we submitted two sets
of predictions. The first submission consists of pre-
dictions from the 2class@CoMeDi-ZH model as it
achieved the highest Krippendorff’s α on the devel-
opment set. The second submission titled Mixed
was constructed using predictions from multiple
models: for Norwegian we used predictions from
the 2class@CoMeDi-ZH+byNO model, for Rus-
sian we employed 2class@CoMeDi, and for other
languages we utilized 2class@CoMeDi-ZH. For
both submissions NMthres was optimized on the
CoMeDi dev set and applied to the predicted prob-
abilities of the positive class from the DeepMistake
models. The results on the test set are presented in
Table 1.

During the evaluation phase, both submissions
proved to outperform all other participants on av-
erage across languages. We also have achieved
the best results on all individual languages except
for German where comedy_baseline_2 secured the
top position. Our second submission was a bit bet-
ter than the first one on Norwegian, but worse on
Russian.

3.4 Post-evaluation experiments

3.4.1 Train-test overlap
After the evaluation phase it was revealed that the
Spanish portion of the CoMeDi test set is derived
from the Spanish DWUG dataset (Zamora-Reina
et al., 2022) which was partially used to fine-tune
the MCL→DWUGes+XLWSDes model. Table 2
shows the overlap between the training data for this
model and the Spanish test set.

Due to the significant overlap, we aimed to
assess its impact on the final Krippendorff’s α
on the test set. We compared four DeepMis-
take models from Homskiy and Arefyev (2022):
(1) MCL→DWUGes+XLWSDes, (2) MCL trained
solely on the MCL dataset with no overlap with
the CoMeDi test set, (3) MCL→RSS fine-tuned
on the RuSemShift (RSS) (Rodina and Kutuzov,
2020), and (4) MCL+RSS+DWUGes+XLWSDes

fine-tuned on all datasets simultaneously. Although
the models trained on RuSemShift also show some
overlap with the training set, the MCL model ex-
hibits no overlap at the usage level, as indicated in
Table 2.

0.3
0.4
0.5
0.6
0.7
0.8

al
ph

a

 w/o NMthres|RU  w/o NMthres|ES  w/o NMthres|AVG

dev test
part

0.3
0.4
0.5
0.6
0.7
0.8

al
ph

a

 w/ NMthres|RU

dev test
part

 w/ NMthres|ES

dev test
part

 w/ NMthres|AVG

DM model
MCL
WIC RSS

MCL DWUG+XLWSD
MCL+RSS+DWUG+XLWSD

Figure 1: Krippendorff’s α of DeepMistake models w/
and w/o NMthres. Results are on Russian and Spanish
sets, and on average across all languages. See extended
plot in Figure 7.

The results of this comparison are shown in Fig-
ure 1. DeepMistake models fine-tuned on RSS
are clearly better for Russian. For Spanish the re-
sults are mixed, on the test set all models are on
par when using NMThres. On average across lan-
guages, among models that are not fine-tuned on
CoMeDi the best test result of 0.660 are achieved
by the MCL model (no overlap), this model out-
performs both of our submissions and other partici-
pants as well.

Inspired by improvements of the
2class@CoMeDi-ZH model over the non-
fine-tuned version, we similarity fine-tuned the
MCL model on CoMeDi data. We found that
with fine-tuning on CoMeDi the results of the
MCL model are worse, but still better than other
participants, see table 3.

3.4.2 Optimizing CoMeDi Training Data for
Fine-Tuning DeepMistake Models

In this subsection, we explore which subsets of
CoMeDi training data should be utilized for fine-
tuning the DeepMistake models to enhance Krip-
pendorff’s α. We conducted experiments by remov-
ing examples with the median annotation equal to
2 or 3, excluding Chinese examples, and exclud-
ing both Chinese and German language examples.
The outcomes of these experiments are depicted in
Figure 2.

Our findings indicate that for improved perfor-
mance on the Chinese development and test sets of
CoMeDi, it is beneficial to exclude Chinese data
during training (see appendix C for a more in-depth
analysis). Furthermore, removing the German ex-
amples from the training data does not significantly
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Language Part MCL DWUGes + XLWSDes RSS

Spanish dev - 3/112/175 (30/31/28 %) -
test - 4/112/155 (20/15/10 %) -

Russian dev 3/0/0 (10/0/0 %) - 8/363/180 (29/16/16 %)
test 3/0/0 (5/0/0 %) - 11/487/244 (20/11/11 %)

Table 2: Overlap between the CoMeDi evaluation data and training data of DeepMistake models. Both the
absolute counts of lemmas / usages / usage pairs in common and the proportions of test items present in the
training set (in brackets) are reported. During the evaluation phase we employed the model trained on MCL and
DWUDes+XLWSDes. Its training data overlaps with the CoMeDi test data for Spanish (in bold). It also has 3
common lemmas but no common usages with the test data for Russian. In the post-evaluation experiments we
additionally experimented with a model trained on MCL only to avoid overlaps on the level of usages and usage
pairs, as well as models trained on RSS which overlaps with the test data for Russian. MCL also contains examples
in English and Chinese, but we found no overlaps with the corresponding evaluation sets.
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Figure 2: Krippendorff’s α of 2-class DeepMistake
models fine-tuned on different subsets of CoMeDi train
data. The results on the Chinese and the German dev
sets, and on average across all dev sets are shown. See
extended plot in Figure 8.

affect performance on the German test set or the
overall Krippendorff’s α, but it does lead to better
results on the Chinese subset. Conversely, remov-
ing examples with median annotations of 2 and 3
results in poorer performance on the Chinese set
and reduces the average performance on the devel-
opment set, although there is a slight improvement
on the test set.

3.4.3 Evaluating Fine-Tuning Strategies on
CoMeDi Training Sets

In this analysis, we evaluated various training
strategies for fine-tuning DeepMistake models, as
depicted in Figure 3.

Our investigation suggests that training with a
4-class cross-entropy (CE) approach (DM-ft4) is
suboptimal. While the Krippendorff’s α on the
development set shows a slight improvement, the
performance on the test set declines compared to
the over original DeepMistake which was not fine-
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Figure 3: Average Krippendorff’s α across all
languages for models fine-tuned on CoMeDi and
CoMeDi-ZH. DM stands for DeepMistake with the
MCL→DWUGes+XLWSDes weights. ft-2 and ft-4
stand for 2-class and 4-class fine-tuning respectively.
See extended plot in Figure 9.

tuned on CoMeDi data (DM). In contrast, fine-
tuning the 2-class DeepMistake model (DM-ft2)
yields noticeable improvements over the DM on
the development set, albeit with only modest gains
on the test set. These test set improvements do
not surpass the results obtained by simply apply-
ing the initial DeepMistake model with NMthres
(DM+NMthres).

Overall, fine-tuning DeepMistake as a binary
classifier on CoMeDi training data and then apply-
ing NMthres to obtain a 4-class classifier delivers
the best results. Comprehensive post-evaluation
results are provided in Table 3, and a more detailed
comparison is provided in Appendix B.

4 Subtask 2: Mean Disagreement
Ranking

4.1 Task description

Similarly to subtask 1, participants are given pairs
of word usages. The objective is to predict the
mean absolute difference between judgments of

52



Krippendorff’s α
Model ZH DE EN NO RU ES SV AVG
DM w/o NMthres
MCL 0.453 0.675 0.624 0.660 0.603 0.679 0.669 0.623
MCL→DWUGes+XLWSDes 0.408 0.689 0.520 0.575 0.585 0.653 0.628 0.580
DM w/ NMthresdev
MCL 0.465 0.741 0.727 0.688 0.645 0.737 0.617 0.660
MCL→DWUGes+XLWSDes 0.423 0.738 0.710 0.680 0.609 0.736 0.604 0.643
2class w/o NMthres
2class@CoMeDi 0.427 0.605 0.640 0.642 0.555 0.658 0.604 0.590
2class@CoMeDi-2,3 0.337 0.636 0.637 0.631 0.578 0.683 0.686 0.598
2class@CoMeDi-ZH 0.426 0.642 0.626 0.609 0.599 0.669 0.680 0.607
2class@CoMeDi-ZH+byNO 0.340 0.524 0.589 0.649 0.442 0.536 0.548 0.527
2class@CoMeDi-ZH-DE 0.461 0.635 0.644 0.631 0.554 0.677 0.671 0.610
MCL,2class@CoMeDi-ZH 0.417 0.592 0.626 0.639 0.543 0.605 0.544 0.567
2class w/ NMthresdev
2class@CoMeDi 0.393 0.698 0.712 0.649 0.6232 0.735 0.633 0.634
2class@CoMeDi-2,3 0.364 0.718 0.748 0.664 0.630 0.719 0.699 0.649
2class@CoMeDi-ZH 0.4241,2 0.7231,2 0.7321,2 0.6331 0.6331 0.7481,2 0.6751,2 0.652
2class@CoMeDi-ZH+byNO 0.436 0.620 0.637 0.6682 0.547 0.591 0.597 0.585
2class@CoMeDi-ZH-DE 0.467 0.728 0.758 0.662 0.629 0.773 0.679 0.671
MCL,2class@CoMeDi-ZH 0.392 0.692 0.733 0.642 0.619 0.728 0.637 0.635
4class
4class@CoMeDi 0.517 0.665 0.514 0.609 0.532 0.583 0.602 0.575
4class@CoMeDi-ZH 0.393 0.643 0.516 0.559 0.526 0.627 0.592 0.551

Table 3: Post-evaluation results on the test set of subtask 1. Best results for each language are in bold font.
Superscripts refer to our two submissions during the evaluation phase. By default, fine-tuned models are based on
MCL→DWUGes+XLWSDes, unless specified otherwise. Models based on MCL (no overlap with CoMeDi test
data) and their results are in italic.

different annotators for a given pair of usages:

D(J) =
1

|J |
∑

(j1,j2)∈J
|j1 − j2| (1)

J in Equation 1 is the set of pairs of judgments for
the same usage pair.

The evaluation metric is Spearman’s ρ (Spear-
man, 1904) between the predicted and the real
mean disagreements between annotators for a set
of usage pairs.

4.2 Models

In this section, we describe various approaches for
modelling annotator disagreement using the Deep-
Mistake model. Our initial strategy focused on a
regression model designed to directly predict the
mean disagreement between annotators, leveraging
the mean squared error (MSE) loss function. To ad-
dress difficulties in learning from noisy regression
target values, we introduced a binary classification
variant, which aims to identify usage pairs where
all annotators provided the same answer, applying
the binary cross-entropy (BCE) loss for learning.
Furthermore, we experimented with a model that
predicts the entire distribution of annotations and
calculates disagreement from this distribution. It is

trained on individual annotations as separate train-
ing examples. To improve the predicted distribu-
tion we also implemented a Power selector method.
This method transforms the predicted probabilities
by raising them to the language-specific powers
that are selected to maximize the target metric.

4.2.1 DeepMistake-based models
Similarly to subtask 1, our models for subtask 2
are based on MCL→DWUGes+XLWSDes. To
predict the level of disagreement between anno-
tators, we employed the comb_dmn aggregation
function during the fine-tuning process. In con-
trast to l1ndotn returning a two-dimensional vector
of distances which should represent sense proxim-
ity but not ambiguity or difficulty leading to dis-
agreements, comb_dmn returns a high-dimensional
representation potentially preserving more informa-
tion relevant to the subtask. To test this hypothesis,
we also trained a model using the l1ndotn function
for comparison.

All models were fine-tuned using the same opti-
mizer hyperparameters as in Subtask 1. Early stop-
ping was performed based on the average Spear-
man’s ρ across all languages.

comb_dmn,mse@CoMeDi-#less4: Our initial
approach was a regression model that directly pre-
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Spearman’s ρ
Model/Participant ZH DE EN NO RU ES SV AVG
comb_dmn,ce@CoMeDi-#less4 0.301 0.204 0.078 0.286 0.175 0.187 0.350 0.226
daalft 0.539 0.108 0.042 0.272 0.167 0.115 0.296 0.220
comedy_baseline_2 0.485 0.085 0.060 0.235 0.116 0.078 0.079 0.163
chuphuocvip123 0.362 0.099 0.018 0.156 0.050 0.012 0.172 0.124
comedi_baseline 0.387 0.093 0.064 0.076 0.049 0.077 0.081 0.118
JuniperLiu 0.358 0.022 0.038 -0.042 0.067 0.040 0.090 0.082
sunfz1 0.302 -0.001 0.045 -0.071 0.069 0.038 0.089 0.067

Table 4: Evaluation results on the subtask 2. Best results for each language are in bold font.

dicts the quantity of interest. This model was fine-
tuned to predict the mean of pairwise absolute judg-
ment differences between annotators, employing
the mean squared error (MSE) loss function. Exam-
ples containing fewer than four annotations were
excluded to ensure robustness of the training data,
as such examples might not provide sufficient in-
formation about the distribution2. In particular, this
filtration removes all examples from the Chinese
and Norwegian train sets.

comb_dmn,bce@CoMeDi-#less4: Since the
mean disagreement is estimated from as few as 4-5
annotations for most usage pairs, learning a good
regression model from such noisy targets may be
impossible. Thus, we experimented with less noisy
targets even though they are indirectly related to
the mean disagreement we are interested in. This
model was trained with the binary cross-entropy
(BCE) loss to determine if all annotators provided
the same answer for a pair of usages. All examples
with less than 4 annotations were excluded from
the train set.

comb_dmn,ce@CoMeDi-#less4: Instead of di-
rectly predicting the mean disagreement, we can
try training a model that predicts the whole distri-
bution of annotations for a given pair of usages,
and then estimate the mean disagreement from that
distribution. Technically, 4 class models trained for
subtask 1 return the probability distribution over
possible annotations, but since they are trained to
predict the median annotation only they have no
chance to learn anything about disagreements be-
tween annotators. Thus, for subtask 2 we do not ag-
gregate annotations of each usage pair but instead
fine-tune the model on each individual annotation
as a separate training example.

2In the preliminary experiments we tried fine-tuning mod-
els directly predicting mean disagreement with both mse and
bce losses on all examples, but they achieved near zero per-
formance. This is probably due to very noisy estimates of the
mean disagreement when less than 4 annotations are available.
Thus, for the second subtask we mostly experimented with
models trained on examples with 4 or more annotations.

comb_dmn,ce@CoMeDi: To verify if remov-
ing usage pairs with less than four annotations is
really helpful when training on individual anno-
tations, we trained this model on annotations of
all pairs. This increased the number of training
examples by 5x.

l1ndotn,ce@CoMeDi-#less4: In order to check
if our initial decision to use DeepMistake with the
comb_dmn aggregation function for subtask 2 was
optimal, we trained this model which is similar to
the previous one but employs the l1dotn aggrega-
tion function instead of comb_dmn.

4.2.2 Power selector
For models trained on individual annotations and
schemed to predict the probability distribution
across annotators, we designed an approach to opti-
mize their predictions for the target metric. Specifi-
cally, for each language, we fit four powers αi to
which the class probabilities pi are raised:

p̂i =
pαi
i∑4

j=1 p
αj

j

(2)

This method is inspired by the temperature soft-
max3 often used to undersample / oversample fre-
quent / rare classes, e.g. in word2vec (Mikolov
et al., 2013). This method is also related to com-
mon calibrating techniques (Guo et al., 2017). The
selection of these powers is performed similarly
to the NMthres process, utilizing the Nelder-Mead
optimization method to maximize Spearman’s ρ.

4.2.3 Inference methods
In case of the model fine-tuned with the MSE loss
between the predicted and gold mean disagree-
ments, we directly return its predictions. For the
model trained with the BCE loss function we re-
turn the predicted probability that there are some

3The Power Selector can be viewed as a more generalized
approach compared to temperature scaling in softmax function.
While the temperature softmax technique uniformly raises all
probabilities to the same power, our approach assigns a distinct
power to each probability individually.

54



Spearman’s ρ
Model ZH DE EN NO RU ES SV AVG
aggregated annotations
comb_dmn,mse@CoMeDi-#less4 0.462 0.241 0.110 0.215 0.192 0.136 0.238 0.228
comb_dmn,bce@CoMeDi-#less4 0.497 0.237 0.089 0.300 0.212 0.120 0.245 0.243
separate annotations w/o pows
comb_dmn,ce@CoMeDi 0.484 0.206 0.130 0.276 0.237 0.232 0.262 0.261
comb_dmn,ce@CoMeDi-#less4 0.426 0.197 0.148 0.298 0.183 0.123 0.297 0.239
l1ndotn,ce@CoMeDi-#less4 0.605 0.148 0.084 0.448 0.162 0.108 0.282 0.262
separate annotations w/ powsdev
comb_dmn,ce@CoMeDi 0.571 0.218 0.128 0.421 0.256 0.159 0.302 0.293
comb_dmn,ce@CoMeDi-#less4 0.3011 0.2041 0.0781 0.2861 0.1751 0.1871 0.3501 0.226
l1ndotn,ce@CoMeDi-#less4 0.616 0.148 0.084 0.454 0.162 0.108 0.282 0.265
separate annotations w/ powstrain
comb_dmn,ce@CoMeDi 0.616 0.236 0.129 0.424 0.253 0.236 0.297 0.313
comb_dmn,ce@CoMeDi-#less4 0.574 0.241 0.143 0.294 0.194 0.161 0.360 0.281
l1ndotn,ce@CoMeDi-#less4 0.616 0.227 0.080 0.456 0.234 0.109 0.266 0.284

Table 5: Post-evaluation results on the test set of subtask 2. Best results for each language are in bold font.
Superscripts refer to our submission during the evaluation phase.

disagreements between annotators assuming that
higher probability corresponds to larger disagree-
ments. For models trained on individual annota-
tions we take the whole predicted probability dis-
tribution over 4 classes and calculate its standard
deviation. Additionally, the power selector can be
applied.

4.3 Evaluation results

During the evaluation phase, our sole submis-
sion was from the comb_dmn,ce@CoMeDi-#less4
model, which incorporated a power selection model
optimized on the development set. This model
achieved the best performance across all languages
except for Chinese, where it recorded the poor-
est results among all participants. Comprehensive
results of the evaluation phase are presented in Ta-
ble 4.

4.4 Post-evaluation experiments

Upon completion of the evaluation phase, we pro-
ceeded to evaluate all models using the test set. For
models that were trained on individual annotations,
we explored several strategies: not employing the
power selection model, fitting it on the CoMeDi
train sets, and fitting it on the CoMeDi development
sets. The results of these evaluations are detailed
in Table 5. It is clear that the power selector helps
significantly, and it is better to fit it on the train sets.
Removing examples with less than 4 annotations
hurts the performance on average across languages,
at least when training on individual annotations,
though the results vary from language to language.
Comparing l1ndotn with comb_dmn, the results are
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Figure 4: Best achieved Spearman’s ρ and #UMD per
language on the test set.

not consistent across languages as well requiring
more experiments to draw reliable conclusions.

Comparing the results for different languages,
Chinese and Norwegian have higher metrics while
there are only two annotations per example for
this languages which should result in quite noisy
ground truth mean disagreement. We hypothesised
that the good results may be related to fewer unique
values of the mean disagreement when there are
fewer annotators. We investigated the impact of
the number of unique values of the mean pairwise
absolute judgment (#UMD) on the Spearman’s cor-
relation across different languages. For each lan-
guage, we selected the best result achieved during
the post-evaluation phase and #UMD, as depicted
in Figure 4.

Our analysis indicates that languages with the
best results – Chinese and Norwegian, exhibit rel-
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atively low #UMD, characterized by less than 7
unique values for mean disagreement. Conversely,
English and German, which have some of the low-
est ρ, are associated with the highest #UMD.

5 Conclusion

We have proposed the winning solutions for the
CoMeDi shared task and experimented with differ-
ent design choices. To our surprise fine-tuning a
4 class WiC model on the training data from the
shared task has shown worse results than threshold-
ing the original binary WiC model. Whether it is
due to the insufficient or noisy training data, or bad
correlation between the cross-entropy loss and the
target metric Krippendorff’s alpha remains to be
investigated. A promising direction for the future
experiments is designing surrogate losses that are
better correlated with Krippendorff’s alpha. We
also observed that removing CoMeDi training data
in Chinese significantly improves results, including
the results for Chinese. A reasonable next step may
be selecting an optimal combination of training sets
for each test language separately.

For the second subtask our best solution was
learning to predict the whole distribution of anno-
tations for a given usage pair. In the future work
it is reasonable to try alternative loss functions as
well, e.g. minimizing the KL-divergence between
the predicted and the real probability distributions.
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A Cross-lingual transfer

In our preliminary experiments we fine-tuned seven
DeepMistake models as 4-class classifiers on each
train set from CoMeDi separately and evaluated
each of them on each dev set separately. While
fine-tuning on individual train sets and using 4-
class fine-tuning objective proved to be suboptimal
in the end, this preliminary experiment gives some
ideas about usefulness of each train set for the per-
formance on each language. Figure 5 shows how
Krippendorff’s alpha change while training these
seven models. While we didn’t have enough re-
sources to optimize them all to the point of full
convergence, some trends can clearly be observed
from these curves. The Chinese train set is always
one of the worst train sets for the Krippendorff’s
alpha on all dev sets, including the Chinese one.
The Norwegian train set is the best when evaluating
on Norwegian and one of the best for Chinese, but
among the worst for all other languages. The Ger-
man train set is among the best for all languages
except for Chinese and Spanish where it is in the
middle. Fine-tuning DeepMistake on a train set for
the same language the evaluation is made on works
best for German, Norwegian, Russian and Spanish,
but not Chinese, English or Swedish. Based on bad
model performance for all languages when fine-
tuning on the train set in Chinese, when fine-tuning
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the binary DeepMistake model used in our sub-
missions on all CoMeDi training data we excluded
training examples in Chinese. It seems potentially
beneficial to construct an optimal subset of training
data for each language separately, e.g. excluding
Norwegian from the training data of a model that is
not targeted at Norwegian, but we leave systematic
experiments in this direction for the future work.

For comparison, figure 6 shows the learning
curves for the same models but taking accuracy
as an evaluation metric instead of Krippendorff’s
alpha. Surprisingly, the observations drastically
differ when changing the evaluation metric. The
best accuracy on the Chinese dev set is achieved
when training on English or Chinese train sets. The
model trained on Norwegian is now among the
best models for all dev sets. And the one trained
on German is among the worst models for all dev
sets except German and English. This shows that a
model achieving the best accuracy may be among
the worst for Krippendorff’s alpha and vice versa.
See appendix C for a more in-depth analysis of this
discrepancy.

B Detailed model comparison

In Figure 7, we compare different DeepMistake
models. Training data of these models has no over-
lap with following CoMeDi dev/test sets: German,
English, Norwegian, Chinese, and Swedish. For
German and English, all models with NMthres
exhibit similar performance across both sets. In
contrast, for Norwegian and Chinese, the mod-
els MCL and MCL→DWUGes+XLWSDes

perform better than others. Meanwhile,
in Swedish, the models MCL→RSS and
MCL+RSS+DWUGes+XLWSDes emerge as
superior.

Our analysis, depicted in Figure 8, which com-
pares different training sets, reveals that fine-tuning
models with NMthres on CoMeDi-2,3 significantly
improves performance for Swedish subsets. For
other languages, using the complete CoMeDi train-
ing data is equally effective, and sometimes even
more beneficial. While CoMeDi-ZH and CoMeDi-
ZH-DE do not show much difference from CoMeDi
in most cases, with the exception of Chinese, they
generally perform better overall.

As shown in Figure 9, the DeepMistake model
with NMthres consistently outperforms variant
without it across all languages, except for Swedish.
This trend is also observed in the 2-class fine-tuned

models. Additionally, when comparing the 4-class
fine-tuned model trained on CoMeDi-ZH with the
DeepMistake model without NMthres, the fine-
tuned model shows better performance on all devel-
opment sets, except Russian. However, on the test
set, the situation reverses, with the non-fine-tuned
model performing better.

C Chinese mystery

Removing the Chinese train set when fine-tuning
DeepMistake as a binary classifier on the CoMeDi
training data strikingly improves the Krippen-
dorff’s alpha on the Chinese development set in
subtask 1 (from 0.48 to 0.71) while giving only a
small improvement in accuracy (from 0.88 to 0.90).
Here we investigate why this happens. Krippen-
dorff’s α is defined as:

α = 1− Do

De
, (3)

where Do is the observed disagreement and De the
disagreement expected by chance. The observed
disagreement in general case is defined as:

Do =
1

n

∑

i∈R

∑

j∈R
δij

∑

u

mu ∗ niju
P (mu, 2)

, (4)

where n is the total number of labels (in our case
both predicted labels and ground truth labels), R is
the set of possible labels, u is a usage pair, mu is
the number of labels assigned to the usage pair u.
Finally, niju is the number of pairs (i, j) consisting
of labels assigned to u.

For the ordinal version of Krippendorff’s α:

δij = (

j∑

k=i

nk −
ni + nj

2
)2, (5)

where nx is the number of labels equal to x among
both the predicted and the ground truth labels of all
usage pairs.

In our case mu = 2 because for each example
there is a ground truth label and a predicted label.
After substituting this into formula 4 we get Do =
1
n

∑4
i=1

∑4
j=1 δij ∗ 2

∑
u I[yu = i, ŷu = j] =

1
n

∑4
i=1

∑4
j=1 2δijcij , where cij is the number of

usage pairs with the ground truth label of i and the
predicted label of j. Thus, the final formula for
Krippendorff’s α in our case can be written as:

α = 1−
4∑

i=1

4∑

j=1

2δijcij
n ∗De

(6)
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Figure 10 plots confusion matrices where a cell
(i, j) shows the contribution 2δijcij

n∗De
of the corre-

sponding type of errors (when class i is misclassi-
fied as class j) to Krippendorff’s α, and also stan-
dard confusion matrices showing proportions of
examples with different predicted and ground truth
labels. We can observe proportions of different
types of errors (i, j) and how they contribute to the
final value of Krippendorff’s α in 6.

While the error rates of two models on the Chi-
nese dev set are comparable, the proportions of
different types of errors differ drastically. For the
model trained on all training sets including the
Chinese one all errors are related to predicting 4
instead of some other class. Such types of errors
strongly reduce Krippendorff’s alpha because of
the dominating frequency of label 4 resulting in
large values of δi4 (see formula 5) and thus large
contribution of ci4 in formula 6. On the other hand,
the model trained without the Chinese train set
produces fewer errors of such types and more er-
rors related to predicting 1 instead of some other
class. However, the latter types of errors make
much smaller contribution to Krippendorff’s alpha
(unless the correct label is 4).

For the development sets in languages other than
Chinese such a large difference in error types and
thus Krippendorff’s alpha is not observed, as shown
in Figures 11, 12. We believe that this is related to
the proportions of negative examples (classes 1 and
2) in the training sets for different languages, see
Figure 13. In the Chinese train set this proportion
is negligible, thus, the model learns to predict the
positive class for inputs in Chinese unless there are
very strong evidences in favour of negative class. In
the Chinese dev set the proportion of classes 1 and 2
is significantly larger, so this learnt strategy leads to
some errors for examples of these classes which are
fatal for Krippendorff’s alpha. When the Chinese
train set is excluded the model cannot learn any
specific strategy for inputs in Chinese. For other
languages the proportions of negative examples in
the corresponding train sets are reasonable and for
them we don’t observe significant changes in the
proportions of errors of different types between two
models.
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Figure 5: Cross-lingual transfer evaluation. Krippendorff’s alpha on the dev sets for the DeepMistake models being
fine-tuned as a 4-class classifiers on the train sets for each language separately.
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Figure 6: Cross-lingual transfer evaluation. Accuracy on the dev sets for the DeepMistake models being fine-tuned
as a 4-class classifiers on the train sets for each language separately. The horizontal dashed lines show the proportion
of the most frequent class.
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Figure 11: Confusion matrixes on CoMeDi dev sets of 2class@CoMeDi and 2class@CoMeDi-ZH.
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Figure 12: Confusion matrices built on the CoMeDi dev sets for the 2class@CoMeDi and 2class@CoMeDi-ZH
models, (i, j)-th cell quantifies the contribution 2δijcij
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of the corresponding type of errors to Krippendorff’s α.

These contributions sum up to 1 - α.

63



0

20

40

60

80

Pe
rc

en
t

lang = english lang = norwegian lang = chinese lang = spanish

1 2 3 4
annotation

lang = russian

1 2 3 4
annotation

0

20

40

60

80

Pe
rc

en
t

lang = swedish

1 2 3 4
annotation

lang = german

1 2 3 4
annotation

lang = all

1 2 3 4
annotation

lang = all-chinese
part

train
dev

Figure 13: Class proportions in the train and dev sets for different languages and in combined train and dev sets.

64



Proceedings of Context and Meaning: Navigating Disagreements in NLP Annotation, pages 65–77
January 19, 2025.

Predicting Median, Disagreement and Noise Label in Ordinal
Word-in-Context Data

Tejaswi Choppa1 Michael Roth2 Dominik Schlechtweg1

1University of Stuttgart 2University of Technology Nuremberg
st180670@stud.uni-stuttgart.de michael.roth@utn.de

schlecdk@ims.uni-stuttgart.de

Abstract

The quality of annotated data is crucial for Ma-
chine Learning models, particularly in word
sense annotation in context (Word-in-Context,
WiC). WiC datasets often show significant an-
notator disagreement, and information is lost
when creating gold labels through majority
or median aggregation. Recent work has ad-
dressed this by incorporating disagreement
data through new label aggregation methods.
Modeling disagreement is important since real-
world scenarios often lack clean data and re-
quire predictions on inherently difficult sam-
ples. Disagreement prediction can help detect
complex cases or to reflect inherent data am-
biguity. We aim to model different aspects of
ordinal Word-in-Context annotations necessary
to build a more human-like model: (i) the ag-
gregated label, which has traditionally been the
modeling aim, (ii) the disagreement between
annotators, and (iii) the aggregated noise la-
bel which annotators can choose to exclude
data points from annotation. We find that dis-
agreement and noise are impacted by various
properties of data like ambiguity, which in turn
points to data uncertainty.

1 Introduction

Machine Learning (ML) research frequently gath-
ers data from human annotators for training and
testing of models. It is highly desirable to have
good quality data (Sun et al., 2017), because with
a low quality of data, the model tends to also learn
biases and errors, thereby depreciating model per-
formance. In the process of annotation, usually ev-
ery instance in the dataset is annotated by multiple
annotators in order to reduce the bias of any individ-
ual annotator (Uma et al., 2021b). These multiple
annotations are subsequently adjudicated to estab-
lish a single gold label using several descriptive
statistical methods. However, using these methods
means also discarding the disagreements between
annotators, resulting in a loss of information. Re-

cent works propose to include these disagreements
into the label aggregation process, treating disagree-
ments as part of the signal rather than noise (Plank
et al., 2014). We take these ideas to the extreme by
focusing only on the disagreements and completely
ignoring the labels in the aggregation process. The
final aim being to construct ML models able to
predict the human disagreement on an annotated
text instance. Practically, our model may be used
to predict instances with high disagreement allow-
ing further modeling components to abstain from
predicting the label in order to reduce the error rate
(Xin et al., 2021).

For our experiments, we choose the task of se-
mantic proximity annotation involving to quantify
how much the meanings of two uses "have in com-
mon" (Schlechtweg, 2023). Each of the usage pairs
is judged by multiple annotators based on a graded
annotation schema. Word senses do not have clear
boundaries and often do not fall into disjoint cate-
gories (Hanks, 2000; Kilgarriff, 1977) leading to
inherent ambiguity. Another often overlooked as-
pect of data is the data noise. While it is a related
phenomenon to disagreement, data noise represents
cases where annotators cannot confidently assign
labels or instances don’t fit predefined categories.
Some guidelines address this by offering special
exclusion labels (Schlechtweg et al., 2023; Hätty
et al., 2019).

Disagreement and noise have a common source:
ambiguity. That is, although disagreement and
noise are not completely determined by ambigu-
ity, we hypothesize that ambiguity strongly in-
fluences these two variables (Uma et al., 2021b;
Schlechtweg, 2023). Additionally, we construct
more traditional models to predict the aggregated
label enabling a comparison with noise and dis-
agreement predictions. Finally, all three model-
ing approaches can be combined together into one
model predicting different important aspects: the
aggregated label, the expected disagreement, and
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the noisiness of the data point.

2 Related work

In this section, we offer an overview of the previous
research on semantic proximity, disagreements and
noise in annotation tasks and discuss the methods to
include this disagreement into the label aggregation
process.

2.1 Tasks on Disagreement detection
NLP tasks often handle disagreements by dis-
carding them or using label aggregation methods.
Dawid and Skene (1979) proposed a probablis-
tic label aggregation method calculating posterior
probability of labels based on annotator reliability.
Sheng et al. (2008) extended this by introducing an
uncertainty-preserving labeling scheme that retains
disagreement information as probability distribu-
tions. Uma et al. creates soft labels from annotator
distributions through methods such as standard nor-
malization, the softmax function, and probabilistic
label aggregation techniques like MACE, enabling
the model to learn from the distribution of annota-
tions.

Although these approaches capture the distribu-
tion of disagreeing annotations, there is no signifi-
cant research on directly predicting the amount of
disagreement in a supervised way.

2.2 Research on disagreement for word
meaning annotation tasks

Natural Language Processing (NLP) text-based
meaning annotation tasks involve assigning seman-
tic (meaning-related) labels to text sequences. Of-
ten, this sequence is restricted to a particular word
in a context (word usage).

2.2.1 Word Sense Disambiguation
Word Sense Disambiguation (WSD) asks to assign
sense glosses to word usages. Glosses are usually
taken from a lexical resource like a dictionary or
WordNet (Navigli, 2009, p. 2). Erk et al. (2013,
p. 3) compare the traditional annotation schema
with the possibility of employing graded sense as-
signments for Word Sense Disambiguation (WSD).
The traditional WSD assigns the single most appli-
cable sense from a predefined inventory. On the
contrary, the proposed graded schema asks to rate
the applicability of each sense on a scale. They dis-
cuss theories stating that word senses have “fuzzy
boundaries”, leading to inherent ambiguity and an-
notator disagreements. Erk et al.[p. 6] state that

people have differences in how concepts and word
meanings are mentally represented, causing anno-
tators to assign word senses differently. Erk et al.
present graded scales for meaning annotation, mov-
ing from the traditional binary annotation scheme.
They propose WSsim, where annotators rate the
applicability of each WordNet sense for the target
lemma on a scale of 1 (sense does not apply) to 5
(sense applies fully).

2.2.2 Semantic proximity
Semantic proximity asks to measure how much
meanings of word uses have in common (cf.
Schlechtweg, 2023, p. 22). Various human an-
notation studies incorporate semantic proximity
by formulating the task as usage similarity (Erk
et al., 2013, p. 9) or the semantic relatedness
(Schlechtweg et al., 2023, p. 33). Semantic proxim-
ity is usually annotated on scales such as the DURel
(Schlechtweg et al., 2018) and the USim (Erk et al.,
2013, p.9) scales. For the USim task, annotators
compare pairs of usages on a five-point similarity
scale where 1 means the usages are completely dif-
ferent in meaning and 5 means they are identical in
meaning, additionally they permitted the response
“cannot decide”. For the study of diachronic usage
relatedness (DURel), Schlechtweg et al. adopt a re-
latedness scale similar to that of Brown (2008). For
this task, the annotators are asked to choose seman-
tic relatedness between word usage pairs. Refer
to Table 1 for the semantic relatedness scale. The
label 0 is used when the annotators are unable to
make a decision as to the degree of relatedness
in meaning between the two word usages e.g. if
the sentence is too flawed to understand it, or the
meaning of the target word is ambiguous.

x

4: Identical
3: Closely Related
2: Distantly Related
1: Unrelated

Table 1: The DURel relatedness scale (Schlechtweg
et al., 2018).

Tasks and Models of Semantic Proximity The
Word in Context (WiC) task introduced by Pile-
hvar and Camacho-Collados asks to predict the
label as TRUE or FALSE based on the similarity
of the word usage meanings. On the contrary, the
graded WiC task introduced by Armendariz et al.
asks to predict the change in the similarity ratings
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of a pair of words when the human annotators are
presented with an identical pair of words in two dis-
tinct contexts and assign a similarity rating for each
pair of usages. Leveraging the above two tasks,
Zhang (2023) introduces an Ordinal Graded WiC
task (OGWiC), which asks to provide labels on an
ordinal scale from 1 to 4 following the relatedness
scale from the DURel framework (Schlechtweg
et al., 2018). For the WiC, GWiC and the OGWiC
tasks, the main methodology employed by models
is similar and it involves feeding an input string
to the contextual embedder, creating one or more
vector representations. Then, the vector processor
post-processes the embeddings e.g. by concate-
nation or using cosine similarity. The resulting
embedding is then passed to a classification head
for WiC or a ranker for GWiC or through an ordinal
classifier for OGWiC (Zhang, 2023). Pilehvar and
Camacho-Collados use the contextualized word
embedding models like Context2Vec, ELMo (Pe-
ters et al., 2018) and BERT (Devlin et al., 2019) to
compute dynamic word representations based on
the context, on top of which classifiers like a sim-
ple Multi-layer perceptron (MLP) and a threshold-
based classifier using vector cosine similarity are
used. As GWiC has a multi-lingual dataset, most
submissions utilise Cross-Lingual Model XLM-
R (Conneau et al., 2019), a multi-lingual version
of RoBERTa for the embedder part. Additionally,
Zhang (2023) employs DistilBert and XL-Lexeme
(Cassotti et al., 2023) embedders and these embed-
dings are processed as vectors by concatenating
the embeddings, getting the cosine similarity of
word embeddings and Hadamard product of word
embeddings. Zhang (2023) employs a nominal clas-
sification head that treats the ordinal regression task
as a standard multi-class classification problem.

3 Tasks

Given a pair of word usages, we aim to predict three
data properties: (i) median semantic proximity, (ii)
the level of disagreement, and (iii) the presence
of noise in Word-in-Context annotations. We will
treat each of these aspects in a separate task. The
first two tasks have been included into the recently
organized CoMeDi task (Schlechtweg et al., 2025).
Each instance consists of a target word w, two
usage contexts c1 and c2 expressing specific mean-
ings of w, and multiple semantic proximity ratings
by annotators on a scale of 1 (completely unrelated
meanings) to 4 (identical meanings), following the

DURel annotation framework. As an example, con-
sider the word usages below (Schlechtweg, 2023,
pp. 22–23), from which we build annotation in-
stances by combining them into usage pairs.

(1) ... and taking a knife from her pocket, she
opened a vein in her little arm, and dipping a
feather in the blood, wrote something on a
piece of white cloth, which was spread before
her...

(2) ... and though he saw her within reach of his
arm, yet the light of her eyes seemed as far
off...

(3) It stood behind a high brick wall, its back
windows overlooking an arm of the sea
which, at low tide, was a black and stinking
mud-flat...

(4) ...the company decided to create a new arm

The use pair (1,2) with sample judgments [4, 4]
would likely receive semantic proximity label 4.0
(identical) as both refer to a physical human arm.
The use pair (1,3) with sample judgments [2,3,2]
would be classified as polysemy as the two ref-
erents of arm belong to different extensional cat-
egories (human arm vs. arm of the sea), but the
corresponding concepts still hold a semantic re-
lation (in this case a similarity relation regarding
physical form). This pair would rather receive a
lower label such as 2.0 (distantly related). In con-
trast, the arm in the homonymic pair (1,4) with
sample judgments [1, 0, 0], belong to different ex-
tensional categories and it’s relatively harder to
determine if the corresponding concepts hold a se-
mantic relation, especially in the context 4 (could
mean weapon or branch of company). This pair
would receive a noise label of 1.0 with semantic
proximity and disagreement labels being NaN.

Ordinal Graded Word-in-Context (OGWiC)
requires predicting the median of annotator judg-
ments for each use pair, formulated as an ordinal
classification task and evaluated using Krippen-
dorff’s α (Krippendorff, 2018). Treating graded
WiC as an ordinal classification task instead of a
ranking task constrains model predictions to ex-
actly reproduce instance labels instead of just infer-
ring their relative order (Schlechtweg et al., 2025).
This is advantageous if ordinal labels have an in-
terpretation because predictions then inherit this
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interpretation. Such an interpretation can be as-
signed to the DURel scale as explained above, like
for the example pair (1,2) with sample judgments
[4,4], the median semantic proximity label 4 can be
interpreted as identity which means the meanings
of the word in both the contexts are identical.

Disagreements in Word-in-Context (DisWiC)
asks to predict the mean of pairwise absolute judg-
ment differences between annotators:

D(J) =
1

|J |
∑

(j1,j2)∈J
|j1 − j2|,

where J is the set of unique pairwise combinations
of judgments. For pair 1, 3 it amounts to

D(J) =
1

3
(|(2− 3)|+ |(2− 2)|+ |(3− 2)|) = 0.67

DisWiC can be formulated as a ranking task based
on the magnitude of disagreement and evaluated
using Spearman’s ρ (Spearman, 1904).

Noise Word in Context (NoiseWiC) asks to pre-
dict the noise in the data annotations. It is formu-
lated as a binary classification task, which is eval-
uated with the nominal version of Krippendorff’s
α and Accuracy. The noise label is calculated as
follows:

N(J) =





1, if (# non-zero < # zero)
NaN, if (# non-zero ≥ # zero)

& (# zero > 0)

0, otherwise

For pair (1,4) from above, N(J) = 1 since there are
more ‘0’ annotations than the non-zero annotations.

3.1 Evaluation
OGWiC involves the classification task of detect-
ing the semantic proximity label. Since the labels
are of ordinal nature, we will use Krippendorff’s α
(Krippendorff, 2018), which, in its ordinal formu-
lation, penalizes stronger deviations from the gold
label more heavily. It has the additional advantage
of controlling for expected disagreement and has
been demonstrated to be superior to other measures
such as Mean Absolute Error for ordinal regression
(Sakib et al., 2023). For the DisWiC task, since
the output has continuous disagreement labels, we
will use Spearman’s correlation (Spearman, 1904)
as our evaluation measure because it helps cap-
ture non-linear relationships better. NoiseWiC is
a binary classification task, so we mainly rely on

accuracy as the classification metric but we also
report the Krippendorff’s α for nominal data (Krip-
pendorff, 2018).

4 Data

For all our tasks, we make use of publicly available
ordinal WiC datasets from the CoMeDi shared task
(Schlechtweg et al., 2025), as summarized in Table
7 in Appendix A. These provide a large number
of judgments for use pairs from different datasets
across different languages annotated on the DURel
scale and have so far not been used primarily for
WiC-like tasks, but only for semantic change detec-
tion purposes.

4.1 Data aggregation and cleaning
For cleaning and aggregation, the Shared Task
organizers initially exclude annotation instances
with less than two annotations (Schlechtweg et al.,
2025). For OGWiC, then instances with any 0-
judgments (“Cannot decide”) and instances with
any pair of annotators disagreeing more than one
point on the annotation scale are discarded. The or-
ganizers then calculate the median of all judgments,
for each instance. Instances with a non-integer me-
dian (e.g. 3.5) are discarded. For all remaining
instances, gold labels are given by the median of
judgments. For DisWiC, the organizers derive in-
stance labels by aggregating over judgments with
the average of pairwise absolute annotator devia-
tions, as discussed in section 3. 0-judgments ig-
nored in this process. For NoiseWiC, we assign a
noise label of 1 (indicating the presence of noise) if
the number of 0-judgments by annotators exceeds
the number of non-zero judgments. Otherwise, a
label of 0 is assigned to indicate that noise is not
present.

For each of the tasks, the organizers then ran-
domly split the target words per language into
train/test/dev with sizes of 70/20/10%. In con-
trast to previous tasks, the organizers intentionally
do not balance out the label distribution in order
to keep more realistic data conditions. Find an
overview of the final splits per language in Table 2.

5 Models

For all our tasks, we follow a similar model archi-
tecture, except for the classification head. For this,
we aim to utilize the best-performing models from
WiC, GWiC, and ordinal GWiC, as discussed in
Section 2.2.2, particularly with embedders, since
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Task # Instances # Uses Split

48K 55K Train
OGWiC 8K 8K Dev

15K 16K Test

82K 55K Train
DisWiC 13K 8K Dev

26K 16K Test

204K 55K Train
NoiseWiC 32K 8K Dev

64K 16K Test

Table 2: Data statistics after cleaning and aggregation
per split and and over all languages combined.

all tasks share a common focus on pairwise in-
context meaning annotation. We use them as fol-
lows:

Contextual Embedder Given the input word
usages, we employ XL-Lexeme, as it was opti-
mized on binary WiC datasets and is one of the
top-performing models for the OGWiC task, as
noted by Zhang. XL-Lexeme (Cassotti et al., 2023)
is a bi-encoder model utilizing a Siamese Network
that extends the Sentence-BERT (SBERT) archi-
tecture to focus on the target word within input
sentences. The model is trained using a contrastive
loss function, which minimizes the cosine distance
between the encoded representations when the tar-
get word has the same meaning and maximizes
the distance when the meanings differ. It is pre-
trained on WiC datasets like MCL-WiC (Martelli
et al., 2021), AM2ICO (Liu et al., 2021), and XL-
WiC (Raganato et al., 2020), enabling it to function
similarly to sentence-level encoders, while specifi-
cally focusing on target words marked using spe-
cial tokens (<t> and </t>) to emphasize their con-
text. This approach allows the model to better iden-
tify whether the target word maintains the same
meaning across different contexts. Given an input
sentence and the position of the target word (start
and end character indices of the word within the
sentence), XL-Lexeme generates a contextualized
embedding for the target lemma in context.

Vector Processor We use the word embeddings
as input to different models in different ways. For
the CosTH model (see below), we use the embed-
ding vectors of the words in two contexts and take
their cosine similarity, based on which the thresh-
olds are optimized. For all other models, we con-

catenate the embeddings of both words in context to
create a single representation. This approach is use-
ful when employing a classifier that takes the full
feature set into account, such as a Multi-layer Per-
ceptron (MLP). (Pilehvar and Camacho-Collados,
2019).

Classification Head Based on the nature of the
task, we use different classification or regression
approaches. For the OGWiC task, we use the fol-
lowing classification heads:

• Cosine + threshold (CosTH): Given two
vector representations of different contexts,
we use a threshold-based classifier that uti-
lizes the cosine similarity between the vectors.
For these cosine similarity values, the clas-
sifier optimizes thresholds per language by
minimizing a custom loss function, Krippen-
dorff’s α in our case, to determine the labels
as follows:

minimize L(y, ŷ|θ) = 1− α(y, ŷθ),

where y, ŷ are gold labels and predicted co-
sine similarities respectively, α is Krippen-
dorff’s α and ŷθ is a mapping of cosine simi-
larities to thr ordinal labels based onthresholds
θ. We optimize thresholds per language.

• Linear Regression (LR): The Linear Re-
gression (Pedregosa et al., 2012) predicts con-
tinuous distribution of values by optimizing
the Mean Square Error between a linear com-
bination of the features and the ground truth.
In our case, given the concatenated vector as
input, Linear Regression predicts continuous
values. The semantic proximity labels on a
scale of 1 to 4 are then mapped from these pre-
dicted continuous values based on pre-defined
thresholds based on rounding to the next inte-
ger, see Equation 5.

threshold(ypred) =





1, if ypred < 1.5

2, if 1.5 ≤ ypred < 2.5

3, if 2.5 ≤ ypred < 3.5

4, else
(5)

• Multilayer Perceptron (MLP): A Multi-
layer Perceptron (MLP) (Rosenblatt, 1958) is
a feedforward artificial neural network that
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learns complex patterns and perform tasks
like classification and regression. It consists
of input layers, hidden layers and a output
layer. In the WiC task (Pilehvar and Camacho-
Collados, 2019), this approach has been used
as a baseline. Given the concatenated vector
as input, we use the MLP classifier to pre-
dict the semantic proximity label. We try to
optimize the batch size, activation function,
hidden layer size and alpha parameters, see
Table 8 in appendix A.

For the DisWiC task, we use the following classifi-
cation heads:

• Multilayer Perceptron (MLP): Given the
concatenated vectors as input, we use the
MLP regressor which unlike the MLP Classi-
fier model use MSE loss function and linear
activation function to predict the the contin-
uous disagreement labels. We optimize the
batch size, activation function, hidden layer
size and alpha parameters as well along with
early stopping to prevent the model from over-
fitting.

• Linear Regression: Given the concate-
nated vector as input features, we use Linear
Regression to predict the continuous disagree-
ment values.

For the NoiseWiC task, we use logistic regression
as a classification head. Logistic regression is a
model used for binary classification tasks (Cox,
2018), predicting the probability that a given input
belongs to either of the classes. It uses a sigmoid
function to map predictions to a 0-1 probability
range. Logistic regression generally uses 0.5 as
a threshold value to map the probabilities to the
binary labels. The probabilities greater than or
equal to 0.5 are mapped to the label 1 and vise
versa. In our case, given the concatenated vector as
input, the logistic regression model is used detect
the “noise” label.

5.1 Upperbound Metric
We explore an upperbound metric, which refers to
the maximum performance a model can achieve on
a given task. The main aim of an Upperbound is to
set the model performance into context and to un-
derstand what we can expect from the model’s per-
formance and provide context to that performance.
Model performance is typically expected to fall be-
tween the baseline and the Upperbound. For the

OGWiC task, we compute the Upperbound metric
by iteratively calculating Krippendorff’s α between
a single, excluded annotation and the median la-
bel built from the remaining annotations, weighted
by their share of total annotations. For the Dis-
WiC task, we compute the Upperbound metric by
iteratively calculating Spearman’s rank correlation
between the mean disagreement of an excluded
annotator pair and the mean disagreement label de-
rived from the remaining annotations. Instances
must have at least four annotators, as the definition
of the disagreement measure requires at least two
annotators for its calculation.

5.2 Baseline Models
5.2.1 Baseline XLM-R embedder
XLM-R : XLM-R (eXtreme Language Model
Roberta) is an extension of RoBERTa that uses
self-supervised training techniques to achieve state-
of-the-art performance in cross-lingual understand-
ing. It has been used as the underlying language
model for fine-tuning XL-Lexeme (Cassotti et al.,
2023). It was trained to learn robust representations
from large-scale multilingual data (Conneau et al.,
2019).We use the boolean mask to identify and ex-
tract subwords corresponding to the target token,
extract the corresponding embeddings for the target
subwords, and aggregate them using mean pooling
to obtain the target token embedding. It is paired
with CosTH model and Linear Regression model
as classification heads for the OGWiC and DisWiC
tasks respectively.

5.2.2 Majority Baseline
For the NoiseWic task, we employ a majority class
baseline that assigns the most frequently occurring
class in the train dataset to every instance in the
test dataset, which, in our case, was the ‘0’ label.
This baseline provides a minimum performance
threshold that a model should exceed.

5.2.3 Feature Baseline
The model architecture employs embedding fea-
tures from pre-trained language models, as is
common in many semantic NLP tasks (Pilehvar
and Camacho-Collados, 2019; Schlechtweg et al.,
2020). We engineer a set of simple linguistic fea-
tures that correlate with noise or disagreement, in-
cluding lexical complexity, grammatical complex-
ity, and context richness.For the DisWiC task, we
engineer features such as character length and the
presence of non-alphabetic characters in the con-

70



text to evaluate their impact on performance, using
an MLP to predict disagreement labels.

6 Experiments

Our experiments aim to predict a median semantic
proximity, mean disagreement or noise label based
on the input usages. We experiment with differ-
ent components of our model and compare their
performances for this task. Also, we explore the
factors influencing the disagreements through our
experiments. The code for these experiments is
available online.1

For generating the contextualized word embed-
dings, we primarily use XL-Lexeme, with XLM-R
serving as the baseline model. For each of the sub-
tasks, the models are fit on the training data in two
ways: (i) per language, i.e., hyperparameters or
thresholds are learned per language, and (ii) on the
entire training data available. We experiment with
various hyperparameter values for different classi-
fication heads across different tasks, see Appendix
A. For OGWiC task, we used the default parame-
ters for the scikit-learn linear regression model, as
there were very few tunable parameters n_jobs,
fit_intercept, and copy_X. Similarly, for the
Cosine+Threshold model (CosTH), we implement
it without hyperparameter tuning due to the lack of
tunable parameters. In case of the DisWiC task, for
the Linear Regression classification head, we again
use the default parameters. For the MLP model in
both OGWiC and DisWic tasks, we perform grid
search over the specified hyperparameter grid, see
Table 8 in Appendix A, fitting the model with each
combination on the training data and evaluating
its performance on the development data using the
Spearman correlation as scoring metric. It keeps
track of the best-performing combination and out-
puts the best score and hyperparameters at the end.
We choose the hyperparameters for our grid by re-
lying on Pilehvar and Camacho-Collados (2019),
who use a solver ‘Adam’, batch size of 32 and
hidden layer size 100. We take these values and
expand our grid. We also take default parameters
of the scikit-learn MLP in the parameter grid.

Apart from that, we also included some param-
eters like the hidden layer size and learning rate
from Chai et al. (2021, p. 6). We also give stan-
dard scaler as an option in the parameter grid to
improve the overall performance of the MLP. The

1https://github.com/choppa98/
Supervised-semantic-proximity-detection

Figure 1: Label distribution for NoiseWiC task per lan-
guage.

NoiseWiC dataset, refer Figure 1 is highly skewed
with the majority label being 0. Especially, in lan-
guages like chinese and russian there is little to no
presence of the noise label 1.0, as you can see in the
Figure 4. In order to address this class imbalance
and to avoid any bias associated with it, we omit
instances of these languages while carrying out our
experiments. Also, we employ a sampling strategy
to downsample the majority class to match the size
of the minority class. After downsampling, each
language group is a balanced dataset with equal
number of instances from both classes, see Figure
5 in Appendix A.

Apart from this, we also conduct an error analy-
sis on the disagreed instances. We went through an-
notator comments for various patterns of disagree-
ments and manually inspect the corresponding con-
texts to understand reasons for ‘0’ annotations and
annotator disagreements.

7 Results and Analysis

For the OGWiC task, as shown in Table 3, the
Cosine+Threshold model achieves the best perfor-
mance among classification heads, with an average
Krippendorff’s α of 0.67 on the development data
and 0.58 on the test data. While XL-Lexeme +
MLP shows relatively high performance in the “All
data’ setting (α of 0.55 on development, 0.42 on
test), it performs lower in the “Per Lang” setting
(α of 0.37 on development, 0.28 on test). The
baseline model, XLM-R with Cosine+Threshold,
underperforms (α of 0.25 on development, 0.12
on test). XL-Lexeme+Linear Regression performs
poorest across all languages and settings. For
ZH (Chinese), models generally performed bet-
ter on development data but poorly on test data.
NO (Norwegian) shows consistently low perfor-
mance across models. For EN (English), both XL-
Lexeme+CosTH and XL-Lexeme+MLP achieve
moderately high results, while for DE (German)
and SV (Swedish), XL-Lexeme+CosTH performs
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particularly well.
For the DisWiC task, the XL-Lexeme+MLP

model shows best performance with average Spear-
man’s ρ of 0.16 on development and 0.15 on test
data in the “All Data” setting. In the “Per Lang”
setting, it achieves 0.16 on test data but only 0.11
on development data. The MLP model shows
high variability across languages, with ZH and
NO achieving higher Spearman’s ρ on test data.
ES (Spanish) and EN exhibited consistently low
values across settings and splits. The Linear Re-
gression model yielded lower results (Spearman’s
ρ of 0.11 on development, 0.10 on test in “All data”
setting). The baseline XLM-R+Linear regression
model gives similar average Spearman’s ρ as XL-
Lexeme under “All data” setting, with ZH showing
relatively higher ρ on both development and test
data. The Upperbound metric for DisWiC provides
inaccurate comparison results due to insufficient
data for Chinese and Norwegian i.e, each instance
in these languages has been annotatated by less
than four annotators. For the NoiseWiC task, XLM-
R+Logistic Regression achieves best results with
average accuracy of 0.62 on development and 0.59
on test data (Krippendorff’s α of 0.24 and 0.14
respectively). XL-Lexeme+Logistic Regression
achieves 0.58 on both sets, performing particularly
well for EN and SV. ES consistently shows lower
scores, similar to the DisWiC task.

8 Analysis

As we observe in Section 7, for the OGWiC task,
the models show promising results with highest α
being 0.67 on development data and 0.58 on test
data. But the models performed rather poorly on
the DisWiC and the NoiseWic tasks. In case of
the DisWiC task, the number of annotators signif-
icantly impacted performance, with Chinese and
Norwegian having few annotators (most instances
annotated by less than four). For analyzing annota-
tor disagreement levels (0.66, 1.33, 3.0), instances
from the English dataset reveal that fewer annota-
tors can lead to more consistent labeling as their
variation becomes more predictable.

For the instances with the disagreement label 3.0,
among the annotators, it was observed that most
of the disagreements, see example in Appendix
A, occurred in the presence of a “0” label which
corresponds to the “cannot decide” label. Another
common pattern observed was that the highly dis-
agreed instances had mostly two annotators whose

Model Setting Split AVG ZH EN DE NO RU ES SV

XLM-R
+ CosTH Lang Dev .25 .51 .17 .3 .03 .27 .44 .05

Test .12 .06 .10 .27 .12 .11 .17 .02

XL-Lexeme
+ CosTH Lang Dev .67 .77 .66 .75 .52 .62 .62 .75

Test .58 .38 .65 .72 .51 .55 .65 .60

XL-Lexeme
+ LR

All Dev .20 .37 .09 .33 .20 .05 .24 .15
Test .16 .04 .26 .15 .06 .15 .26 .18

Lang Dev .10 .11 .19 .31 -.08 .13 -.13 .19
Test .09 .06 .04 .15 .03 .22 .22 -.07

XL-Lexeme
+ MLP

All Dev .55 .63 .49 .65 .48 .47 .48 .68
Test .42 .35 .49 .39 .37 .44 .51 .40

Lang Dev .37 .17 .17 .60 .24 .32 .50 .59
Test .28 .20 .36 .36 .23 .32 .34 .13

Upperbound All Dev .96 1. .97 .92 .97 .95 .96 .96
Test .95 1. .97 .88 .94 .96 .96 .95

Table 3: Krippendorff’s α for OGWiC task. All = ‘All
Data’, Lang = ‘Per Lang’.

judgments were [1, 4], which means either annota-
tor agrees that the meaning of the target lemma is
identical in both the contexts or completely unre-
lated. This pattern originates from the task defini-
tion: Only in the case of two annotators the max-
imum disagreement score of 3.0 can be reached.
Generally, more annotators lead to a decrease in
the score. This is because, with more annotators,
the pairwise distances between some individual la-
bels must be either small or zero, resulting in lesser
maximal possible disagreement.

For example, refer to Appendix A, that had a
mean disagreement of 1.33, the annotator judg-
ments varied with all the annotators mostly having
unique judgment per instance. In the cases, see Ex-
ample 10 in Appendix A, where a mean disagree-
ment of 0.66 was observed, the judgments mostly
corresponding to a pattern of only one annotator
disagreeing with the rest of the group. Key factors
affecting these disagreement levels include gram-
matical errors, misspelled words, lack of context,
and complex language misinterpretation. Likewise,
annotator uncertainty in many cases raises ques-
tions about annotator reliability in meaning annota-
tion tasks. Additionally, on analyzing various noise
patterns, the background knowledge about various
domains also determined the annotator’s assign-
ment of the ‘0’ label. All these factors indicate the
influence of the underlying data properties, such as
ambiguity, which in turn point to data uncertainty.
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Model Setting Split AVG ZH EN DE NO RU ES SV

XLM-R
+ LR

All Dev .11 .31 .07 .16 .12 .05 .02 .07
Test .11 .38 .06 .09 .07 .04 .07 .08

Lang Dev .02 .01 -.05 .09 .07 -.01 -.01 .04
Test .05 .10 .01 .13 .04 .11 .05 -.11

Feature
Baseline All Dev -.00 .03 -.04 .01 -.05 .02 .00 .02

Test -.00 -.00 -.00 .00 -.03 -.01 -.01 .02

XL-Lexeme
+ LR

All Dev .11 .16 .01 .06 .26 .002 .03 .21
Test .10 .30 .02 .03 .06 .07 .05 .18

Lang Dev .10 .11 .19 .31 -.08 .13 -.13 .19
Test .09 .06 .04 .15 .03 .22 .22 -.07

XL-Lexeme
+ MLP

All Dev .16 .36 .03 .11 .33 .06 .05 .15
Test .15 .45 .07 .07 .10 .13 .08 .16

Lang Dev .11 .06 .04 .11 .35 .04 -.02 .23
Test .16 .48 .04 .11 .25 .04 .06 .16

Upperbound All Dev .16 -.09 .16 .32 .21 .20
Test .18 .07 .04 .22 .08 .48

Table 4: Spearman’s ρ for DisWiC task.All = ‘All Data’,
Lang = ‘Per Lang’.

Model Split AVG EN DE NO ES SV

Majority
Baseline

Dev .5 .5 .5 .5 .5 .5
Test .5 .5 .5 .5 .5 .5

XLM-R
+Logistic Reg

Dev .62 .57 .67 .70 .55 .65
Test .59 .59 .65 .47 .60 .63

XL-Lexeme
+Logistic Reg

Dev .58 .61 .59 .55 .48 .68
Test .58 .59 .63 .58 .48 .63

Table 5: Accuracy for NoiseWiC task.

9 Conclusion

In this study, we have formulated the OGWiC task,
the DisWiC and the NoiseWiC task. We focus
on predicting semantic proximity, disagreement,
and noise labels using contextualized word em-
beddings across multiple languages. For OGWiC,
the combination of XL-Lexeme with a Cosine +
Threshold approach achieved the highest Krippen-
dorff’s α scores of 0.67 on the development data
and 0.58 on the test data. In DisWiC, the MLP
classification head significantly outperformed Lin-
ear Regression, particularly when trained per lan-
guage, with hyperparameter tuning enhancing per-
formance in languages like Chinese and Norwe-
gian. NoiseWiC had challenges due to class im-
balance, especially in languages with sparse noise
labels, which we addressed through downsampling;
however, model performance remained low, as in-
dicated by the Krippendorff’s α scores. Across
tasks, XL-Lexeme consistently outperformed the
baseline XLM-R, especially in language-specific
setups. Training strategies: whether using all data
or per language, played a crucial role, with per-

Model Split AVG EN DE NO ES SV

XLM-R
+Logistic Reg

Dev .24 .09 .33 .39 .10 .29
Test .14 .17 .30 -.21 .20 .25

XL-Lexeme
+Logistic Reg

Dev .13 .21 .16 .06 -.11 .36
Test .15 .19 .27 .15 -.08 .26

Table 6: Krippendorff’s α for NoiseWiC task.

language tuning improving performance. Further,
our analysis of results lays a stepstone for future
work especially for the DisWiC task.

Limitations

When instances are annotated by different numbers
of people, it becomes tricky to make direct com-
parisons of disagreement levels between those in-
stances. Take two cases: when an instance has two
annotators versus three annotators, the maximum
possible disagreement between them will be inher-
ently different. This variation in annotator numbers
may help explain why we see different performance
patterns across languages. For instance, the Chi-
nese dataset stands out because every instance in
this language has been annotated by two annota-
tors. Going forward, we should do two things: first,
explore alternative ways to measure disagreement,
and second, ensure that all instances receive the
same number of annotations to make comparisons
more meaningful. Also, for the noise detection, the
high imbalance in labels especially for Russian and
Chinese pose a challenge.
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A Appendix

(6) Context 1: The public, gene- /z/ rally,
remained indifferent, notwithstanding the
marvellous things which were related of the
terri tory which had been ceded to the
company.

(7) Context 2: Once or twice I have known him
touch nerves that go close to the heart; but
gene rally, he is no master of the feelings.

Observation: misspelled, grammatically
incorrect

Judgments : [1, 0, 0, 4]

Mean Disagreement Label : 3.0

Comments available : ”, ’same word, but
incomplete’, ’generally?’, ’UNK; I think the
intended meaning of the target word might be
generally in both sentences’]

(8) Context 1: Willoughby’s as the family
possess and will submit for examination,
carefully searched, in the hope that some

Figure 2: Label Distribution for OGWiC task.

record may be found in his hand-writing,
sufficiently clear to establish the fact that my
mother was the wife of the elder Captain
Allen.

(9) Context 2: For the record, your information
is inaccurate on Governor Rockefeller’s visit
on Sept. 21.

Judgments : [3, 4, 2]

Mean Disagreement Label : 1.333

Comments available : [”, ’If “for the
record” is used metaphorically and not
literally in sentence 2, then a rating of 3
would be more appropriate.’, ”] On other
front,

Observation: Context 1 talks about a
physical record like a book or document
whereas Context 2 refers to stating a fact or
information.

(10) Context 1: Ari arrived at Kibbutz Revivim
Tuesday afternoon, at the peak of the sun’s
arc across

Context 2: Old shopping lists and ticket
stubs and wads of listed newsprint come
falling around Pafko in the faded afternoon.

Judgments : [3, 4, 4]

Mean Disagreement Label : 0.66

Observation : Both refer to the mid day
time frame, also referring to how the
afternoon looks like

Comments available : [’daylight versus
actual day’, ”, ”]
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Figure 3: Label distribution for DisWiC task.

Figure 4: Label distribution for NoiseWiC task.

Figure 5: Label distribution for NoiseWiC task per lan-
guage after downsampling.

Dataset LG Reference JUD VER KRI SPR

DWUG DE Schlechtweg et al. (2021) 63K 3.0.0 .67 .61
DWUG Res. DE Schlechtweg et al. (2024) 10K 1.0.0 .59 .7
DiscoWUG DE Kurtyigit et al. (2021) 28K 2.0.0 .59 .57
RefWUG DE Schlechtweg (2023) 4k 1.1.0 .67 .7
DURel DE Schlechtweg et al. (2018) 6k 3.0.0 .54 .59
SURel DE Hätty et al. (2019) 5k 3.0.0 .83 .84

DWUG EN Schlechtweg et al. (2021) 69K 3.0.0 .63 .55
DWUG Res. EN Schlechtweg et al. (2024) 7K 1.0.0 .56 .59

DWUG ES Zamora-Reina et al. (2022) 62k 4.0.1 .53 .57

DWUG SV Schlechtweg et al. (2021) 55K 3.0.0 .67 .62
DWUG Res. SV Schlechtweg et al. (2024) 16K 1.0.0 .56 .65

ChiWUG CH Chen et al. (2023) 61k 1.0.0 .60 .69

RuSemShift RU Rodina and Kutuzov (2020) 8k 1.0.0 .52 .53
RuShiftEval RU Kutuzov and Pivovarova (2021) 30k 1.0.0 .56 .55
RuDSI RU Aksenova et al. (2022) 6k 1.0.0 .41 .56

NorDiaChange NO Kutuzov et al. (2022) 19k 1.0.0 .71 .74

Table 7: Datasets used for our task. All are annotated
under DURel scale. Spearman and Krippendorff values
for RuShiftEval are calculated as average across all
time bins. LG: Language; JUD: Number of judgments;
VER: Dataset version; KRI: Krippendorff’s α; SPR:
Weighted mean of pairwise Spearman correlations; Res.:
Resampled.

Parameter Values

activation relu, tanh
solver Adam

hidden layer sizes 10, 50, 100
alpha 0.0001, 0.001, 0.01, 0.1

batch size 32, auto, 50, 100
scaler StandardScaler(), None

Table 8: Parameter grid used for tuning MLP.

Hyperparameter Model Task ZH EN DE NO RU ES SV

Activation

M
L

P

O
G

W
iC

relu relu relu relu relu relu relu
Alpha .0001 .0001 .0001 .0001 .0001 .0001 .0001
Batch Size 10 10 10 10 10 10 10
Hidden Layers (10,) (10,) (10,) (10,) (10,) (10,) (10,)
Scaler yes yes yes None yes yes yes
Solver adam adam adam adam adam adam adam

Activation
M

L
P

O
G

W
iC

tanh tanh relu relu tanh tanh tanh
Alpha .001 .1 .0001 .001 .1 .1 .0001
Batch Size auto auto auto 100 100 auto 100
Hidden Layers (50,) (50,) (50,) (50,) (100,) (100,) (100,)
Scaler None yes yes yes yes yes yes
Solver adam adam adam adam adam adam adam

Table 9: Final set of hyperparameters for MLP per task
in ‘Per Lang’ setting.

Hyperparameter Model Task Value

Activation

M
L

P

O
G

W
iC

relu
Alpha .0001
Batch Size auto
Hidden Layers (100,)
Scaler None
Solver adam

Activation

M
L

P

D
is

W
iC

relu
Alpha .001
Batch Size auto
Hidden Layers (50,)
Scaler yes
Solver adam

Table 10: Final set of hyperparameters for MLP in ‘All
Data’ setting
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Abstract

This paper presents the GRASP team’s sys-
tems for the CoMeDi 2025 shared task on dis-
agreement prediction in semantic annotation.
The task comprises two subtasks: predicting
median similarity scores and mean disagree-
ment scores for word usage across multiple lan-
guages including Chinese, English, German,
Norwegian, Russian, Spanish, and Swedish.
For subtask 1, we implement three approaches:
Prochain, a probabilistic chain model predict-
ing sequential judgments; FARM, an ensem-
ble of five fine-tuned XLM-RoBERTa models;
and THAT, a task-specific model using XL-
Lexeme with adaptive thresholds. For subtask
2, we develop three systems: LAMP, combin-
ing language-agnostic and monolingual mod-
els; BUMBLE, using optimal language com-
binations; and DRAMA, leveraging disagree-
ment patterns from FARM’s outputs. Our re-
sults show strong performance across both sub-
tasks, ranking second overall among participat-
ing teams. The probabilistic Prochain model
demonstrates surprisingly robust performance
when given accurate initial judgments, while
our task-specific approaches show varying ef-
fectiveness across languages.

1 Introduction

The growing importance of modeling annotator
disagreement in NLP has emerged as a crucial chal-
lenge for developing more robust and nuanced lan-
guage understanding systems. While traditional ap-
proaches often treat divergent annotations as noise
to be filtered out, recent work suggests that system-
atic patterns in annotator disagreement can provide
valuable insights into linguistic ambiguity, contex-
tual interpretation, and the inherent complexity of
language understanding tasks (Uma et al., 2021;
Leonardelli et al., 2023).

The 2025 Workshop on Context and Meaning
- Navigating Disagreements in NLP Annotations

(CoMeDi)1 addresses this challenge through a
shared task focused on predicting patterns of anno-
tator disagreement across multiple languages. The
task encompasses seven languages (Chinese, En-
glish, German, Norwegian, Russian, Spanish, and
Swedish), drawing from various semantic change
datasets as shown in Table 1. This multilingual
scope provides a unique opportunity to explore how
annotator disagreement patterns manifest across
different linguistic and cultural contexts.

In this paper, we present a range of approaches
for modeling annotator behavior and predicting
disagreement patterns. Our methods span from
probabilistic modeling of sequential judgments to
neural architectures specifically designed to capture
the nuanced nature of semantic annotation tasks.
Through these diverse approaches, we aim to con-
tribute to the broader understanding of how to ef-
fectively model and utilize annotator disagreement
in NLP systems.

2 Related Work

Prior work on modeling annotator disagreement
falls into several key areas. Early approaches
treated disagreement primarily as noise to be fil-
tered out through measures like inter-annotator
agreement (Artstein and Poesio, 2008) or adjudi-
cation (Passonneau, 2004). However, recent work
has shown that systematic patterns in annotator
disagreement can provide valuable linguistic in-
sights (Plank et al., 2014; Pavlick and Kwiatkowski,
2019).

In the context of semantic annotation, several
studies have specifically examined disagreement
patterns in word sense annotation. Erk et al. (2013)
introduced a graded approach to word sense, show-
ing that annotators often perceive multiple valid
interpretations rather than discrete senses. This
finding was further supported by Jurgens (2014),

1https://comedinlp.github.io/
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Language Datasets (version) [citation]

Chinese ChiWUG (1.0.0) [Chen et al. (2023)]
English DWUG_EN (3.0.0), DWUG_EN_resampled (1.0.0) [Schlechtweg et al. (2024)]
German DWUG_DE (3.0.0), DWUG_DE_resampled (1.0.0), DiscoWUG (2.0.0), RefWUG

(1.1.0) [Schlechtweg et al. (2024), Kurtyigit et al. (2021)]
DURel (3.0.0) [Schlechtweg et al. (2018)]
SURel (3.0.0) [Hätty et al. (2019)]

Norwegian NorDiaChange1, NorDiaChange2 [Kutuzov et al. (2022)]
Russian RuSemShift_1, RuSemShift_2 [Rodina and Kutuzov (2020)]

RuShiftEval1, RuShiftEval2, RuShiftEval3 [Kutuzov and Pivovarova (2021)]
RuDSI [Aksenova et al. (2022)]

Spanish DWUG_ES (4.0.1) [Schlechtweg et al. (2024)]
Swedish DWUG_SV (3.0.0), DWUG_SV_resampled (1.0.0) [Schlechtweg et al. (2024)]

Table 1: Overview of Semantic Change Datasets by Language

who demonstrated that disagreements often reflect
genuine semantic ambiguity rather than annotator
error.

Cross-lingual aspects of semantic annotation
have been explored in various contexts. Bender
and Friedman (2018) highlighted how linguistic
and cultural differences can lead to systematic vari-
ations in annotation patterns across languages. This
work was extended by Chang et al. (2014), who
showed that annotation disagreements often reflect
genuine cross-linguistic differences in semantic cat-
egorization.

Recent work has increasingly focused on compu-
tational approaches to modeling annotator behavior.
Uma et al. (2021) demonstrated the effectiveness
of learning annotator-specific patterns for improv-
ing overall annotation quality. Similarly, Davani
et al. (2022) showed how multi-task learning can
help capture individual annotator preferences while
maintaining consistent predictions.

3 Approaches

The shared task consists of two sub-tasks. For sub-
task 1, participants are asked to predict the median
similarity score of a word in two sentences based
on multiple human annotations (between 2 and 7).
For sub-task 2, participants are asked to predict the
mean disagreement of human annotators given a
target word and two example contexts.

3.1 Sub-task 1

We approach sub-task 1 in two different ways: first,
we use a simple method that relies on probabil-
ities between human judgments. We predict the

probability of each judgment given the previous
judgment(s). Second, we model annotators using
two different architectures: XLM-RoBERTa (Con-
neau et al., 2020) and XL-Lexeme (Cassotti et al.,
2023). XL-Lexeme is a WordEncoder model that
has been fine-tuned on Word-in-Context tasks and
thus should be an apt choice to model the semantic
closeness of target words given two sentences.

3.1.1 Prochain
Our first system, Prochain (probabilistic chain), is a
non-parametric probabilistic model. While the hu-
man judgments are made independently, our model
exploits potential underlying patterns in these inde-
pendent assessments to create a probabilistic frame-
work for prediction. This approach assumes that
even though judges make decisions independently,
there exist statistical relationships between differ-
ent judgment aspects that can be leveraged for pre-
diction.

For training, given a tuple of three judgments
(j1, j2, j3), we calculate the frequency distribution
of j2 given j1, and of j3 given (j1, j2). We then
normalize these frequency distributions to obtain
probability distributions, as shown in Equations 1
and 2.

P (j2|j1) =
count(j1, j2)

count(j1)
(1)

P (j3|j1, j2) =
count(j1, j2, j3)

count(j1, j2)
(2)

For prediction, given a first judgment j1, we predict
j2 as a probability distribution based on the nor-
malized frequencies observed during training. Sim-
ilarly, given (j1, j2), we predict j3 as a probability
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distribution based on the observed frequencies of
j3 for each combination of (j1, j2) in the training
data.

Since this method requires the first judgment to
be calculated by other means, we use the training
data and XL-Lexeme to calculate the cosine simi-
larity between the target word in the two sentences
for each item in the training data, then map this
continuous value to a discrete value j0 as shown
in Equation 3, then learn mappings between the
predicted value j0 and j1 in the training data, as we
did for j2 and j3.

j0 =





1 if sim < 0.4

2 if 0.4 ≤ sim < 0.6

3 if 0.6 ≤ sim < 0.8

4 if sim ≥ 0.8

(3)

At prediction time, for the prediction of the first
judgment, we calculate the cosine similarity be-
tween the target word in the two sentences, map
this value to a discrete value, then use the Prochain
method to predict 11 values, of which we take the
most frequently predicted value as j1.

3.1.2 FARM
Our second system, FARM (Five Adapted Roberta
Models), is an XLM-Roberta-base model which is
fine-tuned for sentence classification, in the stan-
dard way, i.e. a classification head is placed on the
special first token, 〈s〉. To model the disagreement
between judgments we create 5 separate “datasets”
and train a model on each of these sets. The
datasets vary simply in which label we select as the
target. If J is the set of judgments for a particular
pair of sentences then dataset di labels the pair with
jimod|J |.

For prediction we simply have each of the five
models predict their output and then take the me-
dian of the 5 predictions.

Each of the Roberta models is trained for 3
epochs using learning rate 2e−5 and 200 warmup
steps. A batch size of 8, a linear learning rate
scheduler, the ADAM optimizer, optimized against
cross-entropy loss. We use the hugging face trainer
interface with any unmentioned arguments left as
the default.

3.1.3 THAT
Our third system, THAT (Task-specific Human-like
Adaptive Thresholds), is a fine-tuned XL-Lexeme
model (Cassotti et al., 2023). The model is trained

to embed two sentences such that the cosine simi-
larity between the sentences is inverse proportional
to to the label between them, i.e., sentences which
are scored as 4 are closer together while sentences
which are labeled 1 are further apart. The model
is trained to minimize the contrastive loss (Hadsell
et al., 2006) as described in in Cassotti et al. (2023).

At prediction time we calculate the cosine simi-
larity between the sentences and we then set three
thresholds, t1, t2, t3. We label a sentence pair as 1
if cosine(s1, s2) < t1, 2 if its less than t2, 3 if its
less than t3 and 4 otherwise. We tune the thresholds
on the dev-set using the following algorithm.

We begin the thresholds regularly spaced: t1 =
0.4, t2 = 0.6, t3 = 0.8 we then vary the thresholds
between −0.05, 0, or +0.05 from the base thresh-
old. This creates 33 different possible threshold
combinations. We evaluate each against the dev-
set, selecting the threshold which gives the highest
score. We then repeat the process until we converge
on stable threshold values.

We found that the method converged such that
t1 = t2 = t3 which means in practice that the best
results were gained when we simply predicted 1 or
4.

However, for the purpose of this task we wanted
to actually model disagreement between annotators.
One way in which annotators may be different is
that they have different thresholds for what they
think is for example a 3 vs 4. We model this by
creating 5 different threshold functions. The thresh-
olds are random perturbations around the optimal
threshold. These are not validated directly on the
dev set. We then select the median value as the
actual label. Given that they all rely on the same
underlying similarity function the main benefit of
this method is to find examples which are close to
the decision boundary and perhaps changing their
label from for example 1 to 2.

3.2 Subtask 2
We approach sub-task 2 in two different ways: first,
we use feature-engineering to extract features from
the sentences and target words. The features were
specifically developed for the shared task. We then
train regression models on the features, with the
target mean disagreement as label. Second, we
use the output from our FARM model to calculate
disagreement.

Systems 1 and 2 are feature-based systems using
a common set of features described in the next sec-
tion and XGBoost as regressor (Chen and Guestrin,
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2016). We performed a hyper-parameter search to
fix the best parameters using the dev set. For tag-
ging, we use spacy (Honnibal et al., 2020), and for
WordNet features, we use nltk (Bird et al., 2009).
For preprocessing, we use pymorphy2 (Korobov,
2015) to lemmatize Russian and jieba2 to tokenize
Chinese. All other languages are transformed to
lowercase.

3.2.1 Feature extraction
NLP features We use various NLP features to rep-
resent the example contexts. The features are: co-
sine similarities between context 1 and 2 based
on XLM-RoBERTa embeddings of the target to-
ken, and between each context (CLS token) and
the target word (target token embedding), as well
as cosine similarities based on XL-Lexeme, the
length of each context, and the length difference in
characters between the two contexts, and between
each context and the target word, as well as the
ratio of lengths between the two contexts, word
overlap between the two contexts, fuzzy ratios be-
tween the two contexts, and each context and the
target word, NER overlap between the two con-
texts, n-gram overlap (n = 2 and n = 3) between
the two contexts, the position of the target word in
each context, whether the target word has the same
(1) part-of-speech, (2) NER tag, (3) dependency
relation in the two contexts, and WordNet features
for supported languages (all except Russian and
German): the number of lemmas in the first synset,
the depth of the first synset, and the number of
hypernyms and hyponyms.
Psycholinguistic features We use concreteness,
imageability, familiarity and age-of-acquisition
from the MRC database (Wilson, 1988). Since
this database only contains data for English, we
fine-tuned XLM-RoBERTa models on each of the
features for 3 epochs, then use these models to
predict the features for all languages.
Prototype features We calculate sense prototypes
for each target word using a custom algorithm.3

The algorithm is an iterative, non-parametric ap-
proach to inducing word sense prototypes from
contextual representations using the XL-Lexeme
transformer model. The core induction process
performs multiple iterations (default: 51) where
each iteration processes contexts in random order,
maintaining a set of induced sense prototypes while

2https://github.com/fxsjy/jieba
3https://github.com/daalft/

senseprototypeinduction

comparing new contextualized embeddings with
existing prototypes using cosine similarity, either
merging similar senses or creating new prototypes
based on a similarity threshold. The prototype
merging strategy computes pairwise similarities
between sense representations, identifies the most
similar pairs across different iteration results, and
creates aggregate prototypes by averaging the vec-
tor representations, using a similarity threshold to
control the granularity of sense distinctions. The
algorithm builds consensus across iterations by
identifying the most frequent number of induced
senses (mode), filtering iteration results to retain
only those matching the modal number of senses,
aligning similar senses across different iterations
through similarity-based matching, and creating
final sense prototypes by merging aligned sense
representations. In the final stage, the algorithm as-
signs sense labels to the induced prototypes, maps
each context back to its most similar prototype,
and creates a mapping between context IDs and
sense labels. This approach allows for dynamic
sense discovery without pre-specifying the number
of senses, while maintaining consistency through
multiple iterations and consensus building.

After running the algorithm, we assign each
word its closest prototype vector. For a target word
t and two contexts, we then use the cosine similar-
ity between the prototypes p1 and p2, and between
each prototype and each target word embedding (t1
to p1, t1 to p2, t2 to p1 and t2 to p2).
On length differences Two of the less straight-
forward features might be differences in context
length and between contexts and target words. Let
us imagine two contexts for the target word bark:

• The bark was rough
• The bark was rough and dark brown, typical of

old oak trees in this forest that had weathered
many storms

A longer context provides more specific infor-
mation and constraints about what the target word
means (tree bark), while the shorter context leaves
more room for ambiguity (it could be dog bark or
tree bark). This difference in specificity could lead
annotators to have more disagreement with shorter
contexts due to lack of disambiguating information,
and show more agreement with longer contexts that
provide clear contextual clues.

For the difference in length between the words
and the contexts, it can be said that a short target
word in a long context usually has clear situational
grounding, while a longer target phrase in a short
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context might lack sufficient contextual support for
judgment. This could lead to systematic patterns
in annotator disagreement based on these length
relationships.
Feature importance Given the large number of
features, we use CorrelationAttributeEval from
WEKA (Frank et al., 2016) with ten-fold cross-
validation to calculate feature importance, and find
that all features are important to the task, with the
most predictive features being character overlap
of trigrams, word overlap between sentences, and
familiarity. See Appendix A for the full list of fea-
tures. Table 9 in the Appendix lists the average
merit and rank of each feature.

3.2.2 LAMP
Our first submission, LAMP (Language Agnos-
tic, Monolingual, Prochain), uses a combination of
models to produce a result. We train one language-
agnostic model on all languages, as well as one
model per language. We also include Prochain
with an iteration count of 3, based on which we
calculate disagreement. We then average all predic-
tions to arrive at the final prediction.

3.2.3 BUMBLE
Our second submission, BUMBLE (Best Univer-
sal Model By Language Ensemble), uses a single
model to predict the disagreement. We train dif-
ferent models on all possible combinations of lan-
guages (single-language models, two languages,
. . . up to all languages), then select the best model
for each language based on its score on the dev
set. Results show that the best models are two- or
three-language models, but that these models do
not always include the language they are predict-
ing.

3.2.4 DRAMA
Our third submission, Disagreement Rating Across
Multiple Answers (DRAMA), uses the five judg-
ments generated from FARM and calculates the dif-
ference scores from those judgments. I.e. FARM,
being 5 different fine-tuned Roberta models output
five different judgments J and while FARM calcu-
lates the median value over these five judgments,
DRAMA calculates the mean difference score as
described in the task:

D(J) =
1

|J |
∑

(j1,j2)∈J
(|j1 − j2|) (4)

Due to the fact that we use 5 judgments while
the actual data uses a varying number of judgments

which is usually lower than 5 (e.g. 2 for Chinese)
the scores are likely to be higher on average than
the true data. However, if the models have success-
fully modeled the variation in the data, i.e., that
more ambiguous utterances have more variance,
then the correlation score would still reflect this.

4 Results and Analysis

Tables 2 and 3 summarize our results on the test
set for Tasks 1 and 2 respectively. All of our sub-
mitted systems demonstrate strengths in specific
languages and scenarios, suggesting that different
approaches capture different aspects of annotator
behavior.

Language Prochain FARM THAT

Chinese 0.332 0.177 0.317
German 0.619 0.515 0.656
English 0.565 0.608 0.555
Norwegian 0.469 0.285 0.589
Russian 0.464 0.344 0.487
Spanish 0.593 0.582 0.636
Swedish 0.556 0.481 0.648

Overall 0.514 0.428 0.555

Table 2: Results for task 1 according to Krippendorff’s
α. The best results per language are indicated in bold.

Language LAMP DRAMA BUMBLE

Chinese 0.265 0.498 0.539
German 0.135 0.123 0.108
English 0.062 0.097 0.041
Norwegian 0.269 0.317 0.272
Russian 0.110 0.159 0.167
Spanish 0.102 0.101 0.115
Swedish 0.204 0.233 0.296

Overall 0.164 0.218 0.220

Table 3: Results for task 2 calculated according to equa-
tion 4. The best results per language are indicated in
bold.

4.1 Task 1

For predicting median similarity scores, our task-
specific model THAT achieved the best overall per-
formance (α = 0.555), followed by Prochain (α =
0.514) and FARM (α = 0.428). Several interesting
patterns emerge from these results:

82



1. The systems consistently performed better on
Germanic languages, with particularly strong
results for German (THAT: 0.656), Swedish
(THAT: 0.648), and English (FARM: 0.608).
This pattern holds across all three systems,
suggesting that either these languages share
helpful structural similarities, or their anno-
tators demonstrate more consistent judgment
patterns.

2. Despite its simplicity, Prochain performed
surprisingly well, even outperforming FARM
overall. This suggests that sequential depen-
dencies between judgments might be more
important than previously thought. When pro-
vided with correct initial judgments on devel-
opment data, Prochain achieves remarkably
high performance (see Section 5.2), indicating
strong predictability in how annotators influ-
ence each other’s subsequent judgments.

3. All systems struggled most with Chinese data,
with the best performance being Prochain’s α
= 0.332. This might be attributed to several
factors:

• The extremely skewed label distribution
(83% label 4)

• The fundamental differences in how
word meanings are constructed in Chi-
nese

• The smaller number of annotators per
item in the Chinese dataset

4.2 Task 2
The disagreement prediction task proved more chal-
lenging overall, with markedly different patterns
from Task 1: BUMBLE (0.220) and DRAMA
(0.218) performed similarly overall but showed dis-
tinct strengths across languages. Notably, the best
performance was achieved on Chinese (0.539 with
BUMBLE) - a striking contrast to Task 1 where
Chinese was the most challenging language.

BUMBLE’s language combination strategy re-
vealed that optimal performance often came from
models trained on two or three languages, but sur-
prisingly, these optimal combinations didn’t always
include the target language. This suggests the
existence of cross-linguistic patterns in annotator
disagreement that transcend individual language
boundaries.

4.3 Overall
In the context of other participating teams, our sys-
tems achieved competitive results: Second place

overall in both tasks, first place for Chinese, En-
glish, and Norwegian in Task 2, and second place
for Russian, Spanish, and Swedish in both tasks.

These results suggest that our multi-strategy ap-
proach, combining probabilistic modeling, neural
architectures, and feature engineering, successfully
captures different aspects of annotator behavior
across languages.

5 Discussion

5.1 Label distribution

Overall, we notice that the data labels are strongly
skewed towards label 4, as illustrated in Table 4.
For all languages, most of the labels are 4, and
on average, label 1 comes second. This might ex-
plain why THAT was gravitating towards a binary
threshold, i.e., dividing the data into labels 1 and 4.

1 2 3 4

Overall 0.150 0.094 0.130 0.630
Chinese 0.009 0.043 0.120 0.830
German 0.130 0.210 0.170 0.500
Russian 0.230 0.032 0.170 0.650
Norwegian 0.140 0.032 0.088 0.770
Spanish 0.210 0.088 0.210 0.500
English 0.230 0.170 0.140 0.460
Swedish 0.200 0.089 0.090 0.620

Table 4: Label distribution for median judgments task
1. Percentage of samples given a particular label in the
train-set.

5.2 Prochain

The Prochain method is surprisingly strong in sub-
task 1, despite its simplicity, if the first judgment is
given and correct. This is confirmed by the results
on the development data for subtask 1: when taking
the first judgment from the development data label
file, and predicting a second and third judgment us-
ing PROCHAIN, then calculating the median value,
we reach results of 0.938 on average,as illustrated
in Table 5.

5.3 THAT – DRAMA

Table 6 shows the results of DRAMA and THAT2
(calculating disagreement on the output of THAT;
we did not submit THAT2 run) on the dev data of
the second task. The NaN numbers for Chinese
come from the fact that in the dev-set there is no
disagreement which means that the Spearman rank
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Language Krippendorff’s α

Average 0.938
Chinese 1.000
English 0.950
German 0.902
Norwegian 0.948
Russian 0.862
Spanish 0.962
Swedish 0.939

Table 5: Results of Prochain if the first judgment is
taken from the gold labels

cannot calculate a difference. A surprising fact is
how poorly XL-Lexeme with 5 different thresholds
performs. It was our best model in the first subtask,
however, it seems that the thresholding technique
does not align with the difference observed in the
human judges. This would suggest that the judges
do not have an equivalent difference space to XL-
Lexeme in their heads but different thresholds for
judging something a 2 or a 3. Our choice of thresh-
olds may also have been suboptimal.

DRAMA THAT2

German 0.158 0.049
Russian 0.028 0.043
Swedish 0.125 0.083
Spanish 0.014 -0.051
English 0.084 0.051
Chinese NAN NAN
Norwegian 0.275 0.0551

All 0.114 0.0383

Table 6: Results for DRAMA and THAT2 on the dev
set

5.4 The lack of disagreement in Chinese data

We noticed that in the Chinese data for task 1, no
disagreement was found between annotators. In
addition, only two annotations were present. While
puzzling at first, this may well be due to differences
in annotation procedure. It is conceivable that anno-
tations were consolidated to resolve disagreements
before the data was released. However, the data
paper states that they follow the same guidelines as
other data sets (Chen et al., 2023).

5.5 The case of English
An unexpected finding in our results is the partic-
ularly challenging nature of English data for dis-
agreement prediction, despite the language’s exten-
sive resources and representation in training data.
While English achieves moderate performance in
median prediction (Task 1) with α = 0.565, it shows
strikingly low correlation scores in disagreement
prediction (Task 2), with even our best system
DRAMA achieving only 0.097. Several factors
may contribute to this counterintuitive result. First,
the English dataset demonstrates more balanced la-
bel distribution (46% label 4 compared to the over-
all average of 63%), suggesting annotators may
be making more nuanced distinctions rather than
defaulting to high similarity judgments. Second,
English’s rich polysemy and extensive metaphori-
cal usage may lead to more genuine cases of ambi-
guity, making annotator disagreement patterns less
systematic and therefore harder to predict. This hy-
pothesis is supported by the fact that even our more
sophisticated neural approaches failed to capture
these patterns effectively.

6 Conclusion

The GRASP team’s participation in the CoMeDi
shared task has led to several important insights
into modeling annotator disagreement across mul-
tiple languages. Our diverse approach, implement-
ing both probabilistic and neural methods, proved
effective across both subtasks, securing second
place overall.

The strong performance of our simple Prochain
model highlights the value of probabilistic ap-
proaches in capturing annotator behavior, while
the varying success of our more complex models
across languages suggests that language-specific
factors play a crucial role in disagreement predic-
tion.

The skewed label distribution toward label 4 sig-
nificantly influenced model behavior, particularly
affecting our threshold-based approaches. Future
work could focus on better handling this class im-
balance and developing more robust cross-lingual
disagreement modeling techniques.
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A Feature list

Feature Name Description

cosine_sim_sent1_sent2 BERT embedding cosine similarity between the two sentences
cosine_sim_sent1_target BERT embedding cosine similarity between first sentence and target

word
cosine_sim_sent2_target BERT embedding cosine similarity between second sentence and target

word
len_diff_sent1_sent2 Absolute character length difference between sentences
len_ratio_sent1_sent2 Ratio of first sentence length to second sentence length
len_diff_sent1_target Character length difference between first sentence and target
len_diff_sent2_target Character length difference between second sentence and target
word_overlap_sent1_sent2 Jaccard similarity of word sets between sentences
word_overlap_sent1_target Jaccard similarity between first sentence words and target word
word_overlap_sent2_target Jaccard similarity between second sentence words and target word
fuzz_ratio_sent1_sent2 Levenshtein ratio between the two sentences
fuzz_ratio_sent1_target Levenshtein ratio between first sentence and target
fuzz_ratio_sent2_target Levenshtein ratio between second sentence and target
ner_count_sent1 Number of named entities in first sentence
ner_count_sent2 Number of named entities in second sentence
ner_overlap Number of shared named entities between sentences
char_ngram_overlap_2 Overlap of character bigrams between sentences
char_ngram_overlap_3 Overlap of character trigrams between sentences
target_position_sent1 Relative position of target word in first sentence
target_position_sent2 Relative position of target word in second sentence
sent1_length Word count of first sentence
sent2_length Word count of second sentence
length_diff Absolute difference in sentence word counts
word_overlap Jaccard similarity of lowercased words
same_pos Binary indicator if target words have same POS tag
same_ner Binary indicator if target words have same NER tag
same_dep Binary indicator if target words have same dependency relation
corpus_frequency Brown corpus frequency (English only)
avg_word_vec_similarity Cosine similarity of averaged spaCy word vectors
num_synsets Number of WordNet synsets for target word
num_lemmas Number of lemmas in target word’s synsets
first_synset_depth Depth of first synset in WordNet hierarchy
num_hypernyms Number of hypernyms for first synset
num_hyponyms Number of hyponyms for first synset
xl_similarity XL-Lexeme embedding cosine similarity between the two sentences

Table 7: Features Extracted for Disagreement Prediction (NLP features)
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Feature Name Description

conc Concreteness
imag Imageability
fam Familiarity
aoa Age-of-acquisition
proto_sim Cosine similarity between the prototypes (p1, p2) of the target word in both

sentences
proto_sim_sent1 Cosine similarity between the target word embedding in sentence 1 (t1) and its

prototype (p1)
proto_sim_sent2 Cosine similarity between the target word embedding in sentence 2 (t2) and its

prototype (p2)
cross_proto_sim1 Cross-prototype similarity: target word embedding from sentence 1 (t1) to proto-

type from sentence 2 (p2)
cross_proto_sim2 Cross-prototype similarity: target word embedding from sentence 2 (t2) to proto-

type from sentence 1 (p1)

Table 8: Features Extracted for Disagreement Prediction (Psycholinguistic and prototype features)
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Average Merit Average Rank Attribute

0.119 ± 0.003 1.0 ± 0.00 char_ngram_overlap_3
0.107 ± 0.003 2.0 ± 0.00 word_overlap_sent1_sent2
0.093 ± 0.003 3.3 ± 0.46 char_ngram_overlap_2
0.089 ± 0.003 3.8 ± 0.60 len_diff_sent1_target
0.085 ± 0.002 4.9 ± 0.30 len_diff_sent2_target
0.079 ± 0.002 6.0 ± 0.00 same_pos
0.067 ± 0.002 8.1 ± 0.94 num_lemmas
0.067 ± 0.002 8.1 ± 0.94 num_synsets
0.066 ± 0.002 8.5 ± 1.12 word_overlap
0.064 ± 0.002 9.3 ± 1.00 sent2_length
0.054 ± 0.003 11.0 ± 0.00 sent1_length
0.044 ± 0.002 12.0 ± 0.00 len_diff_sent1_sent2
0.035 ± 0.002 13.1 ± 0.30 same_ner
0.032 ± 0.004 14.1 ± 0.70 word_overlap_sent2_target
0.026 ± 0.002 15.7 ± 0.64 cosine_sim_sent1_sent2
0.027 ± 0.002 16.0 ± 1.48 conc
0.024 ± 0.003 16.8 ± 1.17 avg_word_vec_similarity
0.022 ± 0.003 17.7 ± 0.90 x1_p1
0.018 ± 0.004 19.7 ± 1.42 aoa
0.018 ± 0.001 19.9 ± 0.83 corpus_frequency
0.016 ± 0.003 21.1 ± 1.45 x1_p2
0.015 ± 0.002 21.9 ± 1.04 length_diff
0.014 ± 0.002 22.2 ± 1.40 word_overlap_sent1_target
0.010 ± 0.002 24.4 ± 1.20 same_dep
0.010 ± 0.002 25.0 ± 0.63 cosine_sim_sent2_target
0.007 ± 0.003 26.1 ± 0.94 imag
0.004 ± 0.004 27.6 ± 1.96 fuzz_ratio_sent1_sent2
0.003 ± 0.002 27.8 ± 1.08 len_ratio_sent1_sent2
0.001 ± 0.003 29.2 ± 1.25 x2_p2

-0.002 ± 0.002 30.9 ± 1.37 cosine_sim_sent1_target
-0.004 ± 0.003 31.6 ± 1.28 p1_p2
-0.008 ± 0.003 33.8 ± 0.98 x2_p1
-0.008 ± 0.002 34.1 ± 0.94 xl_sim
-0.010 ± 0.004 34.6 ± 1.56 fuzz_ratio_sent2_target
-0.012 ± 0.002 35.5 ± 1.02 fuzz_ratio_sent1_target
-0.017 ± 0.003 37.5 ± 1.12 target_position_sent1
-0.018 ± 0.003 38.0 ± 0.77 target_position_sent2
-0.019 ± 0.003 38.2 ± 0.98 first_synset_depth
-0.051 ± 0.005 40.4 ± 0.49 num_hyponyms
-0.051 ± 0.002 40.6 ± 0.49 num_hypernyms
-0.101 ± 0.003 42.0 ± 0.00 fam

Table 9: Feature ranking by average merit (correlation with target variable). Positive values indicate features
positively correlated with annotator agreement, while negative values indicate features correlated with disagreement.
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Abstract

In this work, we evaluate annotator disagree-
ment in Word-in-Context (WiC) tasks explor-
ing the relationship between contextual mean-
ing and disagreement as part of the CoMeDi
shared task competition. While prior studies
have modeled disagreement by analyzing an-
notator attributes with single-sentence inputs,
this shared task incorporates WiC to bridge the
gap between sentence-level semantic represen-
tation and annotator judgment variability. We
describe three different methods that we devel-
oped for the shared task, including a feature
enrichment approach that combines concatena-
tion, element-wise differences, products, and
cosine similarity, Euclidean and Manhattan dis-
tances to extend contextual embedding repre-
sentations, a transformation by Adapter blocks
to obtain task-specific representations of con-
textual embeddings, and classifiers of varying
complexities, including ensembles. The com-
parison of our methods demonstrates improved
performance for methods that include enriched
and task-specfic features. While the perfor-
mance of our method falls short in comparison
to the best system in subtask 1 (OGWiC), it is
competitive to the official evaluation results in
subtask 2 (DisWiC).

1 Introduction

Disagreement in annotation tasks has been widely
studied, with various methods proposed to address
it (Leonardelli et al., 2023). One of the most com-
mon approaches is majority voting (Nguyen et al.,
2017), where the most frequently chosen annota-
tion is treated as the correct label. Recent research
explores alternatives to this traditional majority vot-
ing paradigm, modeling individual annotators and
their labels to predict perspectives, aiming to ac-
count for individual differences in judgment (Plepi
et al., 2022; Mostafazadeh Davani et al., 2022;
Oluyemi et al., 2024) and exploring the use of de-
mographic information to cluster annotators, using

these clusters to model disagreement (Deng et al.,
2023). However, fewer authors considered the role
of contextual information in pairwise sentences,
which can shed light on the root causes of disagree-
ment (Pilehvar and Camacho-Collados, 2019; Ar-
mendariz et al., 2020). Understanding these causes
may reveal ambiguities in data and help to gain
insights into why annotators diverge in their judg-
ments.

While not explicitly posed as such, we view the
CoMeDi shared task (Schlechtweg et al., 2025)
in light of these recent trends, offering potential
avenues for a better understanding of contextual
ambiguities and their consequences on annotator
disagreement. This shared task involves model-
ing disagreement in word sense annotation for the
Word-in-Context (WiC) task, where annotators pro-
vide judgments on the relatedness of two word uses
in a sentence pair, rated on an ordinal scale from
1 (homonymy) to 4 (identity). It includes two sub-
tasks: Median Judgment Classification, which pre-
dicts the median of annotator ratings as an ordinal
classification task evaluated with Krippendorff’s α,
and Mean Disagreement Ranking, which quantifies
the magnitude of disagreement between annotators
by ranking instances based on pairwise absolute
differences evaluated with Spearman’s ρ. From
the methods we developed, the inclusion of task-
specific representations obtained by transforma-
tions of contextual embeddings via Adapter blocks
outperformed our other methods in predicting the
median in the OGWiC task, In the DisWiC task, the
best performance among our approaches alternated
between this method and an ensemble of XGBoost
and CatBoost on enriched feature combinations of
contextual embeddings.

We made submissions to the shared task at the
post evaluation phase and make our implementa-
tion publicly available.1

1https://github.com/funzac/comedi
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2 Shared Task

The shared task is subdivided into two sub-
tasks, Median Judgment Classification with Or-
dinal Word-in-Context Judgments (OGWiC) and
Mean Disagreement Ranking with Ordinal Word-
in-Context Judgments (DisWiC). In both tasks, a
training instance consists of (i) a pair of two con-
texts (each context is a sentence or paragraph), (ii)
a target word (lemma) that appears in both contexts,
(iii) ordinal ratings by multiple annotators of how
related the meanings of the lemma are in the two
contexts on a scale from 1 (completely unrelated)
to 4 (identical). Each instance contains additional
information on the language of contexts, lemmas,
and indices of the target word. The two tasks differ
in their prediction targets:

OGWiC Predict the median rating. Predictions
are evaluated by the ordinal version of Krip-
pendorf’s α against the ground truth median
ratings.

DisWiC Predict the mean disagreement, i.e., the
mean of average pairwise differences in re-
latedness ratings and rank by magnitude of
disagreement. Predictions are evaluated by
Spearman’s ρ against ground truth disagree-
ment ranking.

3 System Description

Following the setup of the baseline method pro-
vided by the task organizers, our system builds
upon contextual embeddings of the lemma in
both contexts, obtained from the XLM-RoBERTa
(XLM-R2) transformer model (Conneau et al.,
2020). We investigated three methods (XLM-R,
XLMR + Ensemble, XLM-R + Adapter), featur-
ing different classifiers in the ordinal classification
task OGWiC and different regressors in the Dis-
WiC task. We additionally enriched the input to
XLMR + Ensemble and XLM-R + Adapter by pair-
wise comparisons of the contextual embeddings,
such as element-wise difference. The XLM-R +
Adapter method further includes the transforma-
tion of the contextual embeddings in the input to a
task-specific representation.

3.1 CoMeDi Baselines
The baseline methods provided by the task organiz-
ers start from contextual embeddings e1 and e2 of

2https://huggingface.co/FacebookAI/
xlm-roberta-base
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Figure 1: Densities of cosine similarity (x-axis) of con-
text embeddings e1 and e2 vs median similarity rating
(y-axis). Note that the x-axis does not start at 0.

the lemma in context 1 and context 2 respectively.
These contextual embeddings are obtained from a
pre-trained XLM-RoBERTa model. Specifically,
e1 and e2 are the mean of the last hidden states
of the hidden states corresponding to the subword
tokens of the lemma in each respective context.

In the DisWiC task, the contextual embeddings
are concatenated to obtain an input representation
f = [e1|e2] (where | denotes concatenation) for a
Linear Regression model. The dependent variable
in the linear regression is the average disagreement
of annotators.

In the OGWiC task, the organizers first calculate
the cosine similarity between e1 and e2 and place
them into four bins, corresponding to the median
judgement values. The bin boundaries are directly
optimized with respect to the target measure of the
task, Krippendorf’s α.

3.2 XLM-R

Our XLM-R method uses the concatenation of con-
textual embeddings f = [e1|e2] as input in both,
the OGWiC classification and the DisWiC regres-
sion task.

Analyzing the cosine similarities between pairs
of contextual embeddings (e1 and e2) in the OG-
WiC task, we discovered that these are hardly sep-
arable into distinct bins (see Figure 1). Therefore,
we decided to cast the task as multi-class classi-
fication, aiming to predict the median similarity
judgement per instance. On the concatenation of
contextual embeddings f = [e1|e2], we train a sim-
ple linear classification head with dropout.

This method for the DisWiC task is almost iden-
tical to the baseline, only adding dropout to the
linear regression head.
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3.3 Feature Enrichment

Inspired by Reimers and Gurevych (2019), we
enrich the original input f = [e1|e2], i.e., the
concatenation of contextual embeddings, by pair-
wise comparisons and similarity measures of the
two embeddings. Specifically, we extend f to
fe = [e1|e2|e1 − e2|e1 ∗ e2|C|E|M ] where "−"
and "∗" indicate element-wise difference and mul-
tiplication, and C, E, and M indicate cosine simi-
larity, Euclidean and Manhattan distance. We use
this extended feature representation fe as input in
both, XLM-R + Adapter and XLM-R + ensemble
for both tasks (OGWiC and DisWiC).

3.4 XLM-R + Adapter

In this method, we first transform the original
contextual embeddings e1 and e2 in the input
fe = [e1|e2|e1 − e2|e1 ∗ e2|C|E|M ] (cf. sec-
tion 3.3) to task-specific representations e′1 and e′2,
followed by a classification/regression network on
the adapted representations fa = [e′1|e′2|e1|e2|e1 −
e2|e1 ∗ e2|C|E|M ]. For the transformation, we
use the architecture of adapter blocks (Houlsby
et al., 2019), which is a bottleneck architecture
with down-projection, GELU activation, dropout
for regularization, up-projection, and a residual
connection. We use a separate adapter block for
each transformation e1 → e′1 and e2 → e′2.

The classification/regression network consists of
two hidden layers of size 512 and 256 with GELU
activation, each preceded by layer normalization
and followed by dropout, and a final linear classifi-
cation (OGWiC) or regression (DisWic) head.

The adapter blocks are jointly trained with the
classification/regression network, turning the con-
textual embeddings into a task-specific representa-
tion: While the contextual embeddings are obtained
from a frozen XLM-RoBERTa model optimized
for language modeling, their transformation is opti-
mized for the classification/regression task.

3.5 XLM-R + Ensemble

We train the two ensemble methods, CatBoost
(Prokhorenkova et al., 2018) and XGBoost (Chen
and Guestrin, 2016), independently on the enriched
input fe = [e1|e2|e1 − e2|e1 ∗ e2|C|E|M ] (cf. sec-
tion 3.3). We then combine their predictions, ef-
fectively forming an ensemble of ensembles. In
the OGWiC task, we weigh the predictions of the
CatBoost and XGBoost classifiers with 0.4 and 0.3
in the combined prediction (linear combination).

In the DisWiC task we weigh the CatBoost and
XGBoost regressors with 0.4 and 0.6 (weighted
average).

3.6 Hyper-parameters

We train all our networks (including adapter blocks)
for 10 epochs with a learing rate of 1e-4, AdamW
optimizer, batch size of 32 and dropout rate of 0.2.

We train both ensemble models (XGBoost and
CatBoost) with a learning rate of 0.05, a maximum
depth of 6, and 500 iterations/estimators. Addi-
tionally, we set the column sub-sampling rate in
XGBoost to 0.8.

We keep all other hyper-parameters at the default
values provided by their respective libraries.

4 Dataset

Separate datasets were provided for OGWiC and
DisWiC task. However, the uses of a word, i.e.,
a lemma in one particular context are identical
for both tasks. That is, both tasks have the same
set of available contexts and lemmas. Yet, the
instances per task differ in the extent that they
make use of the combinatorial options to com-
bine different contexts for the same lemma and
do not necessarily make use of all combinatorial
options (probably due to the unavailability of rat-
ings). From what we observed, instances in the
OGWiC task are a subset of the instances in Dis-
WiC, discarding instances where no meaningful
median of the ratings can be obtained. For both
tasks (OGWiC and DisWiC), the datasets were di-
vided into pre-defined train, dev and test splits.
The OGWiC task data includes 47.8K training,
8.3K dev and 15.3K test instances in different lan-
guages from prior work, specifically Chinese (Chen
et al., 2023), German (Schlechtweg et al., 2024),
Russian (Kutuzov and Pivovarova, 2021; Aksen-
ova et al., 2022), English (Schlechtweg et al.,
2018), Swedish (Schlechtweg et al., 2024), Span-
ish (Zamora-Reina et al., 2022), and Norwe-
gian (Kutuzov et al., 2022). The DisWiC task data
includes 82.2K training, 13.1K dev and 26.7K test
instances from the same languages. Table 1 details
the training set statistics per language.

5 Results

In Table 2, we compare our three models (XLM-R,
XML-R + Adapter, XML-R + Ensemble) to each
other, to the baselines provided by the task organiz-
ers, and to the best performing submission in the
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AVG ZH DE EN NO RU ES SV

Available Set of Contexts and Lemmas

Unique Contexts 7,844 1,119 12,141 6,565 1,222 24,848 2,757 6,256
Unique lemmas 74 28 117 31 56 189 70 30
Context length 218 58 3,369 1,167 352 4,278 1,410 1,397

OGWiC

Instances 6,833 10,833 8,279 5,910 4,504 8,029 4,821 5,457

DisWiC

Instances 11,740 20,461 13,690 10,831 6,041 12,698 9,339 9,117

Table 1: Training set statistics of both tasks (OGWiC and DisWiC) per language (ISO codes in column headings)
and on average (AVG, rounded to the nearest integer). The set of available contexts and lemmas is identical in both
tasks (top part), but the use of possible combinations differs in the two tasks, yielding varying amounts of training
instances across tasks (bottom part). Unique contexts is the amount of unique contexts, unique lemmas the amount
of unique words in consideration and context length is the average number of words per context (rounded to the
nearest integer).

AVG ZH DE EN NO RU ES SV

OGWiC (Krippendorff’s α)

Baseline 0.123 0.059 0.274 0.102 0.124 0.112 0.175 0.018
XLM-R 0.174 0.068 0.185 0.280 0.025 0.192 0.375 0.091
XLM-R + Adapter 0.340 0.187 0.396 0.394 0.283 0.341 0.435 0.347
XLM-R + Ensemble 0.242 -0.052 0.199 0.347 0.217 0.316 0.330 0.337
Top Submission 0.656 0.424 0.723 0.723 0.668 0.623 0.748 0.675

DisWiC (Spearman’s ρ)

Baseline 0.118 0.387 0.093 0.064 0.076 0.049 0.077 0.081
XLM-R 0.083 0.398 0.067 0.016 -0.118 0.045 0.052 0.119
XLM-R + Adapter 0.146 0.402 0.127 0.092 0.113 0.091 0.103 0.097
XLM-R + Ensemble 0.170 0.433 0.167 0.056 0.178 0.076 0.088 0.194
Top Submission 0.226 0.301 0.204 0.078 0.286 0.175 0.187 0.350

Table 2: Results on the test sets of both subtasks (OGWiC and DisWiC, evaluation metric in parentheses) per
language (ISO codes in column headings) and on average (AVG). We compare our methods against the baselines
provided by the task organizers (cf. section 3.1 and the best performing system (Deep Change) at the time of
evaluation of the competition (indicated by “Top Submission” in the table). Best scores of our methods in bold and
best overall underlined.

shared task. Since the shared task is still open for
participation, post-evaluation results are subject to
change. Therefore, we compare against the official
evaluation results from within the competition and
report corresponding scores for the best submission.
By average scores, our XLM-R + Adapter method
would have ranked 5th in the OGWiC task and the
XLM-R + Ensemble method 3rd in DisWiC.

In the OGWiC task, XLM-R + Adapter consis-
tently performs best across all languages among our
methods, but falls short in comparison to the best
submission. On average, also the simple XLM-R
method performs better than the baseline.

In the DisWiC task, best performance among
our models varies between XLM-R + Adapter and
XLM-R + Ensemble. While XLM-R + Ensem-
ble outperforms the best submission on Chinese

language and XLM-R + Adapter performs better
than the best submission on English, scores of the
best submission are highest on the remaining five
languages and on average. In comparison to the
Linear Regression baseline as provided by the or-
ganizers, the addition of dropout in XLM-R seems
to be harmful rather than helpful.

6 Discussion

Expectably, our methods with enriched features
and more complex classifiers/regressor (XLM-R +
Adapter and XLM-R) outperform our baseline of
a simple classification/regression head directly on
top of the concatenation of contextual embeddings
(XLM-R). This behavior is consistent across lan-
guages, except for Chinese, where the XLM-R +
Ensemble performs worst among all methods (in-
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cluding the CoMeDi baseline) in the OGWiC task.
Generally, the subset of Chinese instances reveals
interesting patterns. Despite that Chinese has the
highest number of training instances in both tasks,
performance is almost opposite between the two
tasks: Chinese has the lowest score among almost
all methods in OGWiC (and in particular the lowest
score in the best submission), whereas it has the
highest score among almost all methods in DisWiC
(second-highest in best submission). We hypothe-
size that this gap may be rooted in the set of avail-
able contexts, which is smallest for Chinese, de-
spite Chinese having the highest amount of training
instances in both tasks. That means, several con-
texts must appear in multiple instance whereas for
example the Russian instances could be constructed
almost exclusively from unique contexts (each in-
stance is a pair of two contexts, i.e., 12698*2 =
25396 unique contexts would be required for every
context to appear only once, whereas 24848 unique
contexts are available). Since our methods build on
contextual embeddings, for contexts that appear a
lot of times, they might learn to rely on patterns in
the corresponding contextual embeddings that are
determined by context only and try to use these as
shortcuts. This behavior might work in DisWiC, if
the disagreement of annotators is governed by con-
text rather than the lemma, but fail in the prediction
of the relatedness of the actual lemma. However,
that is only one potential explanation, while other
components in the pipeline of our methods or dif-
ferences in the task/data configuration may offer
equally valid explanations. We also do not know
details about the best performing submission and
hence cannot judge whether that explanation would
hold for it.

In the initial submission, we related the perfor-
mance of individual methods to properties of the
data for different languages, such as duplicated
contexts. However, we noticed a mistake in the def-
inition/calculation of duplicated contexts and that
these conclusions were drawn erroneously. There-
fore, we dropped this part of the discussion in the
final submission.

7 Conclusion

In this shared task paper, we introduced multi-
ple methods that incorporate extensions of con-
textual embeddings by pairwise comparison, such
as element-wise difference and similarity measures,
and additonal transformations of these embeddings

by Adapter blocks to task-specific representations.
We use the contextual embeddings (and their ex-
tensions) with classifiers and regressors of varying
complexity.

While the performance of our methods falls short
in comparison to the best submission in the OGWiC
task, it is competitive in terms of official evaluation
results in the DisWiC task.

We are curiously looking forward to the descrip-
tions of the other systems and plan to investigate
potential options to combine approaches and ideas
to advance future research on disagreement model-
ing in multilingual and multi-contextual settings.

Limitations

This study focuses exclusively on WiC tasks involv-
ing seven specific languages, leaving the general-
ization of the models to other languages outside the
scope of this shared task uncertain. Additionally,
our approach is limited to the methods described
in this work. Future research could explore the per-
formance of these models across a wider range of
languages and investigate the impact of alternative
fine-tuning strategies on their overall effectiveness.
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Abstract

This paper presents results of our system for
CoMeDi Shared Task, focusing on Subtask
2: Disagreement Ranking. Our system lever-
ages sentence embeddings generated by the
paraphrase-xlm-r-multilingual-v1 model, com-
bined with a deep neural regression model in-
corporating batch normalization and dropout
for improved generalization. By predicting
the mean of pairwise judgment differences be-
tween annotators, our method explicitly tar-
gets disagreement ranking, diverging from tra-
ditional "gold label" aggregation approaches.
We optimized our system with a customized
architecture and training procedure, achieving
competitive performance in Spearman correla-
tion against mean disagreement labels. Our re-
sults highlight the importance of robust embed-
dings, effective model architecture, and careful
handling of judgment differences for ranking
disagreement in multilingual contexts. These
findings provide insights into the use of contex-
tualized representations for ordinal judgment
tasks and open avenues for further refinement
of disagreement prediction models.

1 Introduction

The CoMeDi Shared Task Subtask 2: Mean Dis-
agreement Ranking with Ordinal Word-in-Context
Judgments (DisWiC) (Schlechtweg et al., 2025)
focuses on predicting annotator disagreement in
semantic similarity judgments. Participants were
tasked to rank word-use pairs based on the mean of
pairwise absolute differences in annotations, high-
lighting disagreement rather than consensus. This
task builds on recent research emphasizing the im-
portance of capturing variability in linguistic judg-
ments for complex, ambiguous datasets. Evalua-
tions were using Spearman’s correlation.

In this paper, we present an embedding-based ap-
proach that uses SentenceTransformer (paraphrase-
xlm-r-multilingual-v1) with base model is XLM-
RoBERTa (Conneau et al., 2020) to generate con-

textual embeddings for word-use pairs. These
embeddings were combined in a deep regression
model with Batch Normalization, Dropout, and an
optimized learning rate scheduler to enhance per-
formance. The model was fine-tuned to predict
disagreement scores efficiently, demonstrating the
potential of leveraging advanced multilingual em-
beddings and robust neural architectures for captur-
ing semantic complexities in multilingual datasets.

2 Related Work

Annotation disagreements in NLP, particularly in
tasks involving meaning in context, pose challenges
to data quality and model reliability. Early stud-
ies, such as (Artstein and Poesio, 2008) and (Hovy
et al., 2013), explored inter-annotator agreement
and aggregation methods to address inconsisten-
cies. Recent works have shifted toward leverag-
ing disagreements as valuable signals. For in-
stance, (Basile et al., 2021) introduced perspec-
tivism to embrace diverse annotator viewpoints,
while (Mostafazadeh Davani et al., 2022) and
(Mostafazadeh Davani et al., 2022) utilized dis-
agreements to train models better suited for sub-
jective tasks. In Word-in-Context (WiC) tasks,
(Schlechtweg et al., 2018) proposed the DURel
framework to capture semantic relatedness using
ordinal scales, with subsequent studies, such as
(Uma et al., 2021), focusing on preserving dis-
agreement information through alternative label
aggregation methods. This Subtask 2 builds on
this foundation by explicitly modeling disagree-
ment using mean pairwise judgment differences,
evaluated via Spearman’s correlation (Zar, 2005),
offering a novel perspective on handling annotation
variability.

3 Task Description

The CoMeDi shared task, part of the COLING
2025 workshop (Schlechtweg et al., 2025), consists
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of two subtasks focusing on predicting disagree-
ments in word sense annotation in context (WiC).
The first subtask (OGWiC) involves predicting the
median of annotator judgments on an ordinal scale
(1-4) for word usage pairs, treating this as an or-
dinal classification task. The second subtask (Dis-
WiC) aims to rank instances based on the mean
disagreement between annotators, measured by
pairwise absolute differences in judgments. Both
subtasks rely on datasets such as the DWUG EN
dataset (Schlechtweg et al., 2024) and will be eval-
uated using Krippendorff’s α (Krippendorff, 2018)
for OGWiC and Spearman’s ρ for DisWiC.

3.1 Dataset
We conducted our experiments using the dataset
provided by the organizers for training and eval-
uation. The dataset includes samples from seven
languages: Chinese (Chen et al., 2023), English
(Schlechtweg et al., 2024), German (Schlechtweg
et al., 2024), Norwegian (Kutuzov et al., 2022),
Russian (Rodina and Kutuzov, 2020); (Kurtyigit
et al., 2021), Spanish (Zamora-Reina et al., 2022),
and Swedish (Schlechtweg et al., 2024). Tables 1
and 2 summarize its key characteristics.

The training dataset contains more samples than
the development set, ranging from 1,222 for Nor-
wegian to 24,891 for Russian. On average, con-
text length varies widely, with Spanish having the
longest at 84.72 tokens and Chinese the shortest at
1.00 token. German has the largest maximum con-
text length of 1,643 tokens, while Chinese remains
the smallest at 1 token. This diversity in sample
sizes and context lengths across languages poses
challenges for model generalization but provides a
strong foundation for evaluating multilingual meth-
ods.

Languages # Samples Avg. Len. Max Len.
Chinese 20.46 1.00 1.00
English 10.83 31.91 176.00
German 13.69 39.39 1643.00
Norwegian 6.04 47.49 346.00
Russian 12.69 24.88 356.00
Spanish 9.33 84.72 480.00
Swedish 9.11 34.89 376.00

Table 1: Training dataset statistics.

4 System Overview

Our system tackles the shared task by combining
neural sentence embeddings and a deep regression

Languages # Samples Avg. Len. Max Len.
Chinese 3.09 1.00 1.00
English 1.90 32.01 169.00
German 2.59 33.52 376.00
Norwegian 871 52.89 452.00
Russian 1,932 23.98 352.00
Spanish 1,269 82.19 493.00
Swedish 1.41 33.66 305.00

Table 2: Development dataset statistics.

model to predict mean disagreement rankings for
the DWUGs dataset (Schlechtweg et al., 2024).
The primary steps include: (i) generating seman-
tic representations using multilingual pre-trained
models, (ii) concatenating embeddings for context
pairs, (iii) training a regression model to predict
mean disagreement values.

4.1 Semantic Representations
We employ the SentenceTransformer paraphrase-
xlm-r-multilingual-v1 model to generate semantic
embeddings for sentence pairs. This model is based
on XLM-RoBERTa (Conneau et al., 2020), a trans-
former architecture fine-tuned for multilingual sen-
tence representation tasks. Given a context sen-
tence, C, the embedding function E(C) produces
a 768-dimensional vector:

E(C) ∈ R768

For each data sample, two contexts C1 and C2 are
processed, and their embeddings are concatenated:

X = [E(C1), E(C2)] ∈ R1536

4.2 Deep Regression Model
We propose a deep feedforward neural network to
map concatenated embeddings to mean disagree-
ment scores. The model architecture consists of:
Input Layer: 1536-dimensional concatenated em-
beddings. Hidden Layers: Four fully connected
layers with dimensions [512, 256, 128, 64], each
followed by BatchNorm and dropout (p = 0.3).
Output Layer: A single neuron for regression out-
put. Each hidden layer uses ReLU activation, and
the loss function is Mean Squared Error (MSE):

L =
1

N

N∑

i=1

(yi − ŷi)
2

where yi and ŷi are the ground truth and predicted
scores.
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Input Layer Linear (768*2 → 512) BatchNorm DropoutReLu

Linear (512 → 256) BatchNorm DropoutReLu

Linear (256 → 128) BatchNorm DropoutReLu

Linear (128 → 64) BatchNorm ReLu

Linear (64 → 1) Output

Figure 1: The structure of Deep Regression model.

4.3 XLM-RoBERTa
As illustrated in Figure 2, the structure of XLM-
RoBERTa (Conneau et al., 2020) consists of three
main components: Embedding Layers, Trans-
former Encoders, and a final layer for handling
specific tasks. During the model’s training pro-
cess, the input is a sequence of tokens, starting
with the [CLS] character. The representation of
the sequence is extracted from the vector C, corre-
sponding to the [CLS] token. This vector is passed
through a Fully Connected Layer and then pro-
cessed using the sigmoid activation function to con-
vert the output into a probability value. This value
is optimized through the cross-entropy loss func-
tion.

4.4 Training Strategy
The model is trained using the AdamW optimizer
with weight decay and an initial learning rate of
10−4. To prevent overfitting, we employ learning
rate scheduling via ReduceLROnPlateau, reducing
the learning rate by a factor of 0.5 if the valida-
tion loss does not improve for three consecutive
epochs. Gradients are clipped (Chen et al., 2020)
to a maximum norm for stability:

f(g) = min

(
1,

max_grad_norm
∥g∥2

)
· g

Figure 3: Training and validation loss while training.

4.5 Evaluation Metrics

The system’s performance is evaluated using Spear-
man’s Rank Correlation Coefficient (ρ) (Zar, 2005)
between the predicted and true mean disagreement
rankings. This metric is defined as:

ρ = 1− 6
∑N

i=1 d
2
i

N(N2 − 1)

where di is the difference between the ranks of
corresponding predicted and ground truth values,
and N is the total number of samples.
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Figure 2: Structure of BERT and XLM-RoBERTa.

Phase Team Subtask2 (spearman)

AVG ZH EN DE NO RU ES SV

Evaluation

deep-change 0.226 (1) 0.301 (7) 0.078 (1) 0.204 (1) 0.286 (1) 0.175 (1) 0.187 (1) 0.350 (1)

GRASP 0.220 (2) 0.539 (1) 0.042 (5) 0.108 (2) 0.272 (2) 0.167 (2) 0.115 (2) 0.296 (2)

FuocChuVIP123 (ours) 0.124 (4) 0.362 (4) 0.018 (7) 0.099 (3) 0.156 (4) 0.050 (6) 0.012 (7) 0.172 (3)

Post evaluation

deep-change 0.281 (1) 0.574 (1) 0.143 (1) 0.241 (1) 0.294 (1) 0.194 (1) 0.161 (1) 0.360 (1)

GRASP 0.220 (2) 0.539 (2) 0.042 (3) 0.108 (3) 0.272 (2) 0.167 (2) 0.115 (2) 0.296 (2)

funzac 0.170 (3) 0.433 (3) 0.056 (2) 0.167 (2) 0.178 (3) 0.076 (3) 0.088 (3) 0.194 (3)

Table 3: Top 3 results of Subtask 2.

5 Experimental setup

For the shared task, we used a custom deep re-
gression model built with a multi-layer percep-
tron (MLP) architecture, which was trained to pre-
dict mean disagreement scores from sentence em-
beddings. The embeddings were generated using
the Sentence-Transformer model paraphrase-xlm-
r-multilingual-v1, which was fine-tuned for multi-
lingual text. We trained the model for 17 epochs
with a batch size of 32 with PyTorch. The AdamW
optimizer was used with an initial learning rate of
0.0001, and we applied a learning rate scheduler
(ReduceLROnPlateau) with a patience of 3 epochs
and a factor of 0.5 to reduce the learning rate when
the validation loss plateaued. The model also uti-
lized batch normalization and dropout layers to
prevent overfitting.The training data was split into
training and validation sets with an 80-20% split.
For evaluation, we used the mean squared error
(MSE) loss for training and Spearman’s rank cor-
relation coefficient to assess the performance of
the model. Regarding data preprocessing, we used
the raw contexts from the dataset without extensive
cleaning. We merged the necessary information

from training and development sets to construct the
input for our model. No lemmatization or punc-
tuation removal was applied as the dataset was in
multilingual form, and we decided to focus on the
context and target token indices for each pair of
words. Our model was evaluated on the develop-
ment set, and we used Spearman’s rank correlation
as the primary evaluation metric.

6 Results

Table 3 lists the evaluation phase scores of the top
three contenders for subtask 2 as well as our sys-
tem. During this phase, submission scores and
leaderboards were hidden. For Subtask 2, our
team ranked 3rd out of 7 teams in the evaluation
phase. We focused solely on Subtask 2 and did
not participate in Subtask 1. The models of the
top-performing teams utilized a variety of strate-
gies. Our approach involved using embeddings
generated from a pre-trained multilingual trans-
former model (XLM-R) to capture context infor-
mation. These embeddings were then fed into a
deep neural network model with batch normaliza-
tion layers, which we trained to predict the "mean
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disagreement" score for each pair of contexts. We
conducted a series of experiments with different
hyperparameters and fine-tuned the model, which
allowed us to achieve notable improvements in per-
formance. In the evaluation phase, our team faced
challenges, particularly with the Latin languagues,
which proved to be more complex due to its size
and variability. This likely contributed to our lower
score of 0.124 on average during the evaluation.

7 Conclusion

In this paper, we presented our approach to Sub-
task 2 of the CoMeDi Shared Task, focusing on
predicting disagreement rankings in multilingual
word-in-context judgments. By leveraging sen-
tence embeddings from the pre-trained paraphrase-
xlm-r-multilingual-v1 model and a deep regres-
sion network with batch normalization, our method
achieved competitive performance, ranking 3rd
among 7 teams. Our results highlight the potential
of multilingual embeddings and robust neural ar-
chitectures for handling disagreement in semantic
similarity tasks. Future work could explore further
refinements to address language-specific complexi-
ties and improve overall model performance.

8 Limitations

Our system, while achieving competitive perfor-
mance, has several limitations. First, it struggled
with Latin-based languages like Spanish, highlight-
ing challenges with XLM-RoBERTa embeddings
for specific linguistic nuances. Second, the ap-
proach relied heavily on embedding quality, which
may not fully capture fine-grained word-use differ-
ences. Additionally, the system focused solely on
mean disagreement scores without modeling the
underlying causes of annotator disagreement, such
as cultural or subjective biases.
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Abstract

We present the results of our system for the
CoMeDi Shared Task, which predicts major-
ity votes (Subtask 1) and annotator disagree-
ments (Subtask 2). Our approach combines
model ensemble strategies with MLP-based
and threshold-based methods trained on pre-
trained language models. Treating individ-
ual models as virtual annotators, we simulate
the annotation process by designing aggrega-
tion measures that incorporate continuous re-
latedness scores and discrete classification la-
bels to capture both majority and disagree-
ment. Additionally, we employ anisotropy re-
moval techniques to enhance performance. Ex-
perimental results demonstrate the effective-
ness of our methods, particularly for Subtask
2. Notably, we find that standard deviation
on continuous relatedness scores among differ-
ent model manipulations correlates with hu-
man disagreement annotations compared to
metrics on aggregated discrete labels. The
code will be published at https://github.
com/RyanLiut/CoMeDi_Solution.

1 Introduction

Lexical semantic similarity is a classical task that
encompasses various forms, including multi-choice
sense selection (Navigli, 2009), binary classifi-
cation (Pilehvar and Camacho-Collados, 2019),
and contextual word similarity (Islam and Inkpen,
2008), among others. However, the potential dis-
agreements among annotators, arising from the in-
herent vagueness and continuous nature of mean-
ing, have received comparatively less attention. To
address these complexities, the CoMedi workshop
(Context and Meaning - Navigating Disagreements
in NLP Annotations1) introduced a Shared Task
with two subtasks (Schlechtweg et al., 2025). Sub-
task 1 involves predicting the median judgment

*These authors contributed equally.
1https://comedinlp.github.io/

classification across four candidate labels, which
represent the degree of similarity for a target word
in context. Subtask 2 focuses on predicting an-
notator disagreement, which can be interpreted as
a form of predictive uncertainty estimation (Gal,
2016).

In this paper, we first conceptualize the two sub-
tasks as corresponding to two fundamental statisti-
cal properties of a Gaussian distribution: the mean
and variance. Subsequently, we model each system,
parameterized by specific variables, as an individ-
ual human annotator. These variables encompass
both homogeneous factors, such as layers within
the same model, and heterogeneous factors across
different models. To address the tasks, we employ
MLP-based and threshold-based approaches to gen-
erate continuous relatedness 2 scores and discrete
classification labels, respectively. Additionally, we
incorporate techniques for anisotropy removal to
mitigate geometric biases inherent in embedding
spaces. Finally, we propose diverse strategies for
model ensembling to enhance performance. Our
results demonstrate the effectiveness of threshold-
based methods combined with anisotropy removal
and MLP-based approaches. For Subtask 2, the
findings further highlight the advantages of aggre-
gating relatedness scores over discrete labels in
capturing annotator disagreement.

2 Related Work

Probing for Contextual Word Meaning Tasks
capturing word meaning in context include word
sense disambiguation (WSD) (Navigli, 2009),
which selects the most appropriate sense, and
WiC (Pilehvar and Camacho-Collados, 2019),
which determines semantic equivalence across con-
texts. Extending these, relatedness scoring pro-
vides a continuous measure of semantic relatedness.

2We distinguish similarity from relatedness, with the task
focusing on annotating relatedness scores.
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The CoMeDi Shared Task reframes WiC as an ordi-
nal classification task with four labels indicating re-
latedness degrees. Probing methods include MLP-
based approaches (Tenney et al., 2019; Pilehvar
and Camacho-Collados, 2019), which train dense
networks, and threshold-based methods (Pilehvar
and Camacho-Collados, 2019; Vulić et al., 2020;
Liu et al., 2024), which optimize relatedness thresh-
olds for pretrained representations. Since embed-
dings are often anisotropic (Ethayarajh, 2019), tech-
niques like centering (Sahlgren et al., 2016) and
standardization (Timkey and van Schijndel, 2021)
are applied to improve representation quality.

Uncertainty Estimation Subtask 2 models an-
notator disagreement, aligning with the study of
uncertainty estimation (UE), widely explored in
computer vision (Gal, 2016) and robust AI (Stutz,
2022). UE arises from data uncertainty (aleatoric,
linked to inherent data ambiguity like annota-
tion disagreement) and model uncertainty (epis-
temic, due to biased learning on out-of-distribution
data) (Gal, 2016). Researchers (Liu and Liu, 2023)
combine these areas to model semantic uncertainty
in sense selection. While Bayesian (Vazhentsev
et al., 2022) and non-Bayesian (Szegedy et al.,
2016) methods often use label probabilities, our
threshold-based method lacks this feature. Instead,
we treat the process as model ensemble (Lakshmi-
narayanan et al., 2017) and propose aggregation
measures.

Annotator Disagreement Annotator disagree-
ment is common in lexical semantics tasks, such as
word sense disambiguation (WSD) (Navigli, 2009;
Chklovski and Mihalcea, 2003), due to the subjec-
tive and ambiguous nature of meaning (Navigli,
2008). While many studies resolve disagreement
through majority voting, others exploit it by re-
framing tasks as multi-label classification (Conia
and Navigli, 2021) or training on multiple judg-
ments (Uma et al., 2021).

In this paper, we model annotator disagreement
as uncertainty estimation, as both involve (1) out-
put variability, (2) data noise 3, and (3) similar
evaluation metrics.

3 System Overview

Most systems use MLP-based (Tenney et al.,
2019; Pilehvar and Camacho-Collados, 2019) and

3Annotator disagreement can be viewed as label noise, con-
tributing to data uncertainty—a key component of irreducible
uncertainty.

threshold-based (Pilehvar and Camacho-Collados,
2019; Vulić et al., 2020; Liu et al., 2024) methods.
They extract representations from pretrained lan-
guage models, then MLP-based methods train a
network to predict discrete labels (Subtask 1) or
continuous values (Subtask 2). Threshold-based
methods learn a threshold selector to map simi-
larity scores to labels. However, naive baselines
often fall short, as shown in Section 5. In our
system, we applied anisotropy removal to the base-
line code (Schlechtweg et al., 2025) and used a
classifier-based method for comparison. For Sub-
task 1, we apply techniques to make data points
more isotropic. For Subtask 2, we ensemble mod-
els, treating them as annotators, and use various
strategies to model disagreement.

3.1 Formulation as Parameter Estimation

For a target word w appearing in a pair of contexts
ci and cj , annotators from a hypothetical human
space H provide a judgment score s ∈ R, where
higher values indicate greater similarity in meaning
between ci and cj . These scores form a judgment
distribution p on R, which we assume follows a
Gaussian distribution, p ∼ N (µ, σ2), as it is a
natural statistical choice (Jaynes, 2003). Here, µ
represents the consensus similarity, while σ reflects
disagreement among annotators.

In practice, the continuous Gaussian distribution
is discretized due to the finite number of annotators
and graded annotations. Nonetheless, we adopt
the Gaussian framework to unify the two tasks:
Subtask 1 estimates µ, while Subtask 2 estimates
σ.

3.2 Subtask 1: Anisotropy Removal

Contextual representations are known to be
anisotropic (Ethayarajh, 2019), clustering in a nar-
row region of the space. This inflates similar-
ity scores, reducing their discriminative power in
meaning-related tasks. For example, even unrelated
words often exhibit high similarity. We adopt three
techniques to reduce anisotropy: (1) centering by
subtracting the mean vector (2) normal standardiza-
tion (3) All-but-the-top (Mu and Viswanath, 2018):
subtracting the projection on the component of the
largest variance.

3.3 Subtask 2: Model Ensembling

To model annotator disagreement, we treat each
model or its manipulation as an annotator and use
three measures to reflect uncertainty. We explore
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three ensembling strategies: (1) homogeneous ag-
gregation with model manipulations (e.g., layer and
anisotropy removal), (2) heterogeneous ensembling
across different models, and (3) a mixed approach
combining both. After each model forward pass,
we obtain a discrete label using the threshold-based
model 4 and a continuous relatedness score. We
apply three measures: standard deviation (STD)
for continuous scores, mean pairwise absolute judg-
ment differences (MPD) for discrete labels (as used
in Subtask 2), and variation ratio (VR), the ratio of
values not equal to the mode, commonly used in
uncertainty estimation (Gal, 2016).

4 Experiment Setup

4.1 Task Description

The Shared Task in the workshop of
CoMeDi (Schlechtweg et al., 2025) includes
two subtasks. The first aims to predict a discrete
label (from 1 to 4) to show the relatedness
of the target word in two contexts while the
second obtains a continuous value to indicate the
disagreement. The task data was sampled from
multilingual datasets, involving 7 languages, i.e.,
Chinese (Chen et al., 2023), English (Schlechtweg
et al., 2021, 2024), German (Schlechtweg et al.,
2018, 2021, 2024; Hätty et al., 2019; Kurtyigit
et al., 2021; Schlechtweg, 2023), Norwegian (Ku-
tuzov et al., 2022), Russian (Rodina and Kutuzov,
2020; Kutuzov and Pivovarova, 2021; Aksenova
et al., 2022), Spanish (Zamora-Reina et al., 2022),
Swedish (Schlechtweg et al., 2021, 2024).

4.2 Models

Our study focuses on threshold-based methods
using pre-trained models: XLM-RoBERTa-base,
XLM-RoBERTa-large (Conneau, 2019), BERT-
multi-base (Pires, 2019), and Llama-7B (Touvron
et al., 2023). For encoder-only models, we extract
target word representations directly, while for the
decoder-only Llama-7B, we use a prompt-based
method (Liu and Liu, 2023) to extract the final
colon representation. Inspired by in-context learn-
ing (Jiang et al., 2024), we apply layer-wise ma-
nipulations (centering, standardization, and all-but-
the-top) to reduce anisotropy.

We discretize the continuous similarity scores
into labels using a threshold selector based on the
shared task baseline. The selector employs the

4For Subtask 2, we use the majority of judgment scores as
the GT label, avoiding the median to handle decimals.

Nelder-Mead method (Nelder and Mead, 1965) to
optimize bin edges for Krippendorff’s α, starting
with evenly spaced bins and iteratively refining
them. For Subtask 2, we explore model ensem-
bling strategies (homo, hetero, mixed) and different
measures (STD, MPD, VR), and also evaluate an
MLP-based approach (details in Appendix 10.1).

4.3 Evaluation Phase Setting

During the evaluation phase, we selected models
based on the development set.

For Subtask 1, we employ a threshold-based
method using XLM-RoBERTa-base as the pre-
trained model, except for Chinese and Russian
(BERT-multi-base) and Norwegian (LERT-base-
chinese). Representations are extracted from the
10th layer for XLM-RoBERTa-base and the final
layer for other models. We apply normal standard-
ization except for Norwegian to address anisotropy
and utilized the threshold selection method from
the official baseline code (Schlechtweg et al., 2025).
Specifically,

For Subtask 2, we fine-tune an MLP regressor to
predict disagreement scores, following the baseline
methodology. It comprised of two linear layers and
a ReLU activation function. For Swiss, we train for
50 epochs with a batch size of 32, while for other
languages, we use 200 epochs with a batch size of
16. The learning rate is 1e-2 with a 0.1 dropout
rate. We utilize AdamW for optimization with a
warm-up ratio of 0.1.

4.4 Post Evaluation Phase Setting

For Subtask 1, we use the 25th layer of Llama
and the 11th layer of XLM-RoBERTa-Base for all
languages, with an MLP-based method fine-tuned
using training data. All model representations are
standardized to remove anisotropy. For the MLP-
based model, we train for 50 epochs with a batch
size of 128, an initial learning rate of 1e-2, and
apply a dropout rate of 0.1 to prevent overfitting.

For Subtask 2, we employ ensembling strategies
to significantly improve performance. We report
two results from our ensembling methods. The
first (ensembling) applies the same strategy across
all languages: standardization with layer 24, no
standardization with layer 16, centering with layer
24, and all-but-the-top with layer 16, all on Llama-
7B. The second (ensembling*) presents language-
specific ensembling strategies, as in Table 6.
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Participator Method AVG ZH EN DE NO RU ES SV

kuklinmike - 0.656 0.424 0.732 0.723 0.668 0.623 0.748 0.675
comedy_baseline_2 - 0.583 0.379 0.654 0.728 0.515 0.550 0.656 0.601

daalft - 0.555 0.317 0.555 0.656 0.589 0.487 0.636 0.648
ours Thr* (XLM-R-B) 0.271 0.140 0.507 0.492 0.080 0.128 0.330 0.224

ours Thr (LLM) 0.451 -0.090 0.474 0.696 0.445 0.444 0.623 0.566
ours Thr (XLM-R-B) 0.339 0.148 0.524 0.485 0.240 0.301 0.348 0.325
ours MLP 0.338 0.128 0.369 0.371 0.351 0.329 0.411 0.407

Table 1: Results for Subtask 1. The upper part shows the evaluation phase, and the lower part the post-evaluation
phase. “Thr” denotes threshold-based methods, and “Thr*” indicates language-specific model selections. The same
applies to other tables.

Participator Method AVG ZH EN DE NO RU ES SV

kuklinmike - 0.226 0.301 0.078 0.204 0.286 0.175 0.187 0.350
daalft - 0.220 0.539 0.042 0.108 0.272 0.167 0.115 0.296

comedy_baseline_2 - 0.163 0.485 0.060 0.085 0.235 0.116 0.078 0.079
ours MLP 0.082 0.358 0.038 0.022 -0.042 0.067 0.040 0.090

ours ensembling 0.205 0.274 0.117 0.236 0.279 0.101 0.073 0.353
ours ensembling* 0.220 0.347 0.118 0.242 0.283 0.108 0.078 0.364

Table 2: Evaluation results (upper part) and post-evaluation results (lower part) for Subtask 2. The method
ensembling* integrates language-specific ensembling strategies, while ensembling uses the strategy with the best
average score across all languages.

5 Results

We present the results in Table 1 and Table 2 on
the test set. The upper sections show evaluation
phase scores submitted to the leaderboard, while
the lower sections display post-evaluation results
using public answers. We then conduct abalation
studies on the development set in later sections.

In the evaluation phrase, for Subtask 1, our
threshold-based method achieved moderate results,
with LERT-base-chinese performing relatively bet-
ter for Norwegian, though with limitations. For
Subtask 2, we fine-tuned an MLP to predict
disagreement scores but observed limited perfor-
mance, prompting alternative methods in the post-
evaluation phase.

In the post-evaluation phase, for Subtask 1, the
threshold-based model performed comparably to
the MLP-based model, while large language mod-
els (LLMs) showed superior results, highlighting
their potential. For Subtask 2, our results matched
the evaluation phase’s top performances, confirm-
ing the effectiveness of the ensembling approach.

5.1 Abalation Study on Subtask 1

Figure 1 shows the average performance change
with different anisotropy removal methods across
layers. The large gap between removal and non-
removal emphasizes the importance of this tech-
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Figure 1: Performance of different types of anisotropy
removal with the increase of layer index. 0 indicates the
input embedding. “abtt” means all-but-the-top.

nique. Performance improves with higher layers,
except for a drop in the last one or two layers. Stan-
dardization consistently performs best across all
layers.

Figure 2 displays the performance of different
models. Since Llama-7B is a decoder-only model
with significantly more parameters and training
data, its optimal result (Layer 25) serves as an upper
bound 5. The results show that XLM-RoBERTa-
base outperforms all other models, including its
larger counterpart.

5We attempt representations of different layers from Llama-
7B, and the optimal layer index is 25.
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Figure 2: Performance of different models as the layer
index increases. The optimal result (Layer 25) for
Llama-7B and its standardized version are shown as
the upper bound.

5.2 Abalation Study on Subtask 2

In this section, we analyze various factors influenc-
ing ensembling performance, including the choice
of measure and model selection. We evaluate four
candidate models i.e., XLM-RoBERTa-base, XLM-
RoBERTa-large, BERT-multi-base, and Llama-7B,
with four types of anisotropy removal and four
layer levels. For layer levels, we extract layers 1,
4, 7, 10 for encoder-only models, and layers 8, 16,
24, 32 for the Llama model, yielding 64 possible
model configurations. We use a threshold-based
method for each model to obtain both a continuous
similarity score and a discrete classification label,
as we have done in Subtask 1. We randomly se-
lect a subset of 4 models from these possibilities,
referred to as "mixed". Additionally, we exper-
iment with homogeneous aggregation (using the
same model) and heterogeneous aggregation (using
different models). For homogeneous aggregation,
we choose Llama-7B due to its superior perfor-
mance. For each category, we sample 500 model
subsets, obtaining both their classification labels
using a threshold-based method and relatedness
scores based on pre-trained embeddings. We first
evaluate three measures (STD, MPD, and VR) in
the mixed setting, selecting the best one to compare
different category choices.

Measure Figure 3 presents the results for three
measures. In most cases, STD on a continuous
similarity score outperforms the others, while MDP
slightly exceeds VR on the discrete classification
labels . This suggests that similarity scores have an
advantage over discrete labels due to the robustness
of continuous values. Label prediction can be seen
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Figure 3: Performance of three types of measures across
500 random runs.

Type 1 2 3 4 5

homo 0.237 0.235 0.235 0.234 0.233
hete 0.217 0.216 0.215 0.209 0.201

mixed 0.228 0.222 0.219 0.213 0.203

Table 3: Top five groups for strategies of model selec-
tions

as a discretization of the continuous counterpart,
leading to a loss of precision. Thus, we select STD
as our final measure.

Model Selection Table 3 shows the top five re-
sults for three ensemble strategies. The specific
model groups are listed in Tabel 7. Homogeneous
model manipulations (homo) outperform mixed en-
sembles, while combining different models yields
the worst performance. This suggests that model
variance can still serve as an effective alternative,
aligning with the use of dropout in uncertainty esti-
mation (Gal, 2016).

6 Conclusion

We present our system for two subtasks released
on CoMeDi Shared Task. We first formalize these
tasks as parameter estimation where Subtask 1 esti-
mates a mean and Subtask 2 the variance for a hy-
pothetical Gaussian distribution. Then we mainly
adopt threshold-based method with different tech-
niques of anisotropy removal to classify the label
for Subtask 1. Inspired by the area of uncertainty
estimation, we utilize model ensembling with var-
ious strategies to select models and measures to
reflect disagreement for Subtask 2. Experiments
show the effectiveness of our method.
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7 Limitations

We acknowledge several limitations in our system.
First, the model training process utilizes data from
all languages without considering their unique lin-
guistic characteristics. For instance, Chinese ex-
hibits rich formation rules (Zheng et al., 2021),
yet lacks the morphological complexity found in
Western languages, potentially leading to distinct
patterns of disagreement. Second, our parameter
estimation for the Gaussian distribution does not ac-
count for the estimation of the mean, which could
be incorporated into Subtask 1 for a more compre-
hensive approach. Furthermore, in Subtask 2, we
employ the median of all annotations as an indepen-
dent label for the model instead of using individual
annotations. This approach may introduce incon-
sistencies with our formulation of models as anno-
tators. Lastly, while our experiments highlight the
potential of large language models (LLMs) com-
pared to pretrained language models, future work
will focus on exploring more effective strategies
for extracting lexical representations from LLMs.

8 Ethics Statement

We do not foresee any immediate negative ethical
consequences arising from our research.

9 Acknowledgements

The authors thank the anonymous reviewers for
their valuable comments and constructive feedback
on the manuscript. This work is supported by the
2018 National Major Program of Philosophy and
Social Science Fund “Analyses and Researches
of Classic Texts of Classical Literature Based on
Big Data Technology” (18ZDA238) and Research
on the Long-Term Goals and Development Plan
for National Language and Script Work by 2035
(ZDA145-6).

References
Anna Aksenova, Ekaterina Gavrishina, Elisei Rykov,

and Andrey Kutuzov. 2022. RuDSI: Graph-based
word sense induction dataset for Russian. In Pro-
ceedings of TextGraphs-16: Graph-based Methods
for Natural Language Processing, pages 77–88,
Gyeongju, Republic of Korea. Association for Com-
putational Linguistics.

Jing Chen, Emmanuele Chersoni, Dominik
Schlechtweg, Jelena Prokic, and Chu-Ren Huang.
2023. ChiWUG: A graph-based evaluation dataset
for Chinese lexical semantic change detection. In

Proceedings of the 4th International Workshop on
Computational Approaches to Historical Language
Change, Singapore. Association for Computational
Linguistics.

Timothy Chklovski and Rada Mihalcea. 2003. Exploit-
ing agreement and disagreement of human annotators
for word sense disambiguation. In Recent Advances
in Natural Language Processing.

Simone Conia and Roberto Navigli. 2021. Framing
word sense disambiguation as a multi-label problem
for model-agnostic knowledge integration. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 3269–3275.

A Conneau. 2019. Unsupervised cross-lingual rep-
resentation learning at scale. arXiv preprint
arXiv:1911.02116.

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the ge-
ometry of bert, elmo, and gpt-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65,
Hong Kong, China. Association for Computational
Linguistics.

Yarin Gal. 2016. Uncertainty in Deep Learning. Phd
thesis, University of Cambridge.

Anna Hätty, Dominik Schlechtweg, and Sabine
Schulte im Walde. 2019. SURel: A gold standard
for incorporating meaning shifts into term extraction.
In Proceedings of the Eighth Joint Conference on
Lexical and Computational Semantics (*SEM 2019),
pages 1–8, Minneapolis, Minnesota. Association for
Computational Linguistics.

Aminul Islam and Diana Inkpen. 2008. Semantic text
similarity using corpus-based word similarity and
string similarity. ACM Transactions on Knowledge
Discovery from Data, 2(2):10:1–10:25.

Edwin T Jaynes. 2003. Probability theory: The logic of
science. Cambridge university press.

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing
Wang, and Fuzhen Zhuang. 2024. Scaling sentence
embeddings with large language models. In Findings
of the Association for Computational Linguistics:
EMNLP 2024, pages 3182–3196, Miami, Florida,
USA. Association for Computational Linguistics.

Sinan Kurtyigit, Maike Park, Dominik Schlechtweg,
Jonas Kuhn, and Sabine Schulte im Walde. 2021.
Lexical Semantic Change Discovery. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), Online. Association for
Computational Linguistics.

108



Andrey Kutuzov and Lidia Pivovarova. 2021. Rushifte-
val: a shared task on semantic shift detection for rus-
sian. Komp’yuternaya Lingvistika i Intellektual’nye
Tekhnologii: Dialog conference.

Andrey Kutuzov, Samia Touileb, Petter Mæhlum, Tita
Enstad, and Alexandra Wittemann. 2022. Nor-
DiaChange: Diachronic semantic change dataset for
Norwegian. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
2563–2572, Marseille, France. European Language
Resources Association.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles.
Advances in neural information processing systems,
30.

Zhu Liu, Cunliang Kong, Ying Liu, and Maosong Sun.
2024. Fantastic semantics and where to find them:
Investigating which layers of generative LLMs reflect
lexical semantics. In Findings of the Association
for Computational Linguistics: ACL 2024, pages
14551–14558, Bangkok, Thailand. Association for
Computational Linguistics.

Zhu Liu and Ying Liu. 2023. Ambiguity meets uncer-
tainty: Investigating uncertainty estimation for word
sense disambiguation. In Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pages
3963–3977.

Jiaqi Mu and Pramod Viswanath. 2018. All-but-the-top:
Simple and effective postprocessing for word repre-
sentations. In International Conference on Learning
Representations.

Roberto Navigli. 2008. A structural approach to the
automatic adjudication of word sense disagreements.
Natural Language Engineering, 14(4):547–573.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM computing surveys (CSUR), 41(2):1–
69.

John A. Nelder and Roger Mead. 1965. A simplex
method for function minimization. The Computer
Journal, 7(4):308–313.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. Wic: the word-in-context dataset for evaluat-
ing context-sensitive meaning representations. In
Proceedings of NAACL-HLT, pages 1267–1273.

T Pires. 2019. How multilingual is multilingual bert.
arXiv preprint arXiv:1906.01502.

Julia Rodina and Andrey Kutuzov. 2020. RuSemShift:
a dataset of historical lexical semantic change in Rus-
sian. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 1037–
1047, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Magnus Sahlgren, Amaru Cuba Gyllensten, Fredrik Es-
pinoza, Ola Hamfors, Jussi Karlgren, Fredrik Olsson,
Per Persson, Akshay Viswanathan, and Anders Holst.
2016. The gavagai living lexicon. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC 2016), Paris, France.
European Language Resources Association (ELRA).

Dominik Schlechtweg. 2023. Human and computa-
tional measurement of lexical semantic change. Ph.D.
thesis, University of Stuttgart, Germany.

Dominik Schlechtweg, Pierluigi Cassotti, Bill Noble,
David Alfter, Sabine Schulte im Walde, and Nina
Tahmasebi. 2024. More DWUGs: Extending and
evaluating word usage graph datasets in multiple lan-
guages. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Process-
ing, Miami, Florida. Association for Computational
Linguistics.

Dominik Schlechtweg, Tejaswi Choppa, Wei Zhao, and
Michael Roth. 2025. The CoMeDi shared task: Me-
dian judgment classification & mean disagreement
ranking with ordinal word-in-context judgments. In
Proceedings of the 1st Workshop on Context and
Meaning–Navigating Disagreements in NLP Annota-
tions, Abu Dhabi, UAE.

Dominik Schlechtweg, Sabine Schulte im Walde, and
Stefanie Eckmann. 2018. Diachronic usage related-
ness (DURel): A framework for the annotation of
lexical semantic change. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 169–174, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Dominik Schlechtweg, Nina Tahmasebi, Simon
Hengchen, Haim Dubossarsky, and Barbara
McGillivray. 2021. DWUG: A large resource of
diachronic word usage graphs in four languages. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
7079–7091, Online and Punta Cana, Dominican
Republic. Association for Computational Linguistics.

David Stutz. 2022. Understanding and improving ro-
bustness and uncertainty estimation in deep learning.
Saarländische Universitäts-und Landesbibliothek.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam
Poliak, R Thomas McCoy, Najoung Kim, Benjamin
Van Durme, Samuel R Bowman, Dipanjan Das, et al.
2019. What do you learn from context? probing for
sentence structure in contextualized word representa-
tions. In 7th International Conference on Learning
Representations, ICLR 2019.

109



William Timkey and Marten van Schijndel. 2021. All
bark and no bite: Rogue dimensions in transformer
language models obscure representational quality. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4527–4546, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Alexandra N Uma, Tommaso Fornaciari, Dirk Hovy, Sil-
viu Paun, Barbara Plank, and Massimo Poesio. 2021.
Learning from disagreement: A survey. Journal of
Artificial Intelligence Research, 72:1385–1470.

Artem Vazhentsev, Gleb Kuzmin, Artem Shelmanov,
Akim Tsvigun, Evgenii Tsymbalov, Kirill Fedyanin,
Maxim Panov, Alexander Panchenko, Gleb Gusev,
Mikhail Burtsev, et al. 2022. Uncertainty estima-
tion of transformer predictions for misclassification
detection. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 8237–8252.
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10 Appendix

10.1 MLP-based Methods

We attempt the MLP-based method in two subtasks,
freezing XLM-RoBERTa-base model parameters to
obtain the vector representation of the target word,
and training a classifier or a regression model down-
stream. MLP1 is a linear layer, MLP2 represents
two linear layers, and uses the ReLU activation
function.

In Subtask 1, we use the cross-entropy loss func-
tion to train a classifier. The results on the de-
velopment dataset are shown in Table 4. We find
that two linear layers achieve better results. We at-
tempt to use a weighted cross-entropy loss function
to alleviate the problem of sample imbalance, but
shows slight improvement. We compare the results
of different layers of the model and find that the
vector representation of the shallower layers(11th)
achieves better results. We attempt layer fusion and
average pooling of the vectors in the last 4 layers,
which results in more stable improvements.

Training settings for the MLP-based method in
Subtask 1: 50 epochs, batch size of 128, 1e-2 learn-
ing rate, AdamW optimizer, and a dropout rate of
0.1 to improve generalization.

In Subtask 2, we use the mean square error loss
function to train a regression model that directly
predicts continuous values of inconsistent labeling
of target words, similar to the baseline provided by
the official source. The results on the development
dataset are shown in Table 5. We find that two
linear layers are worse than a single linear layer.

We try multiple different hyperparameter set-
tings on Task 2. In MLP1, we ultimately chose
200 epochs, batch size of 16, while in MLP2, we
chose 50 epochs, batch size of 32. Other training
settings: 1e-2 learning rate, AdamW optimizer, and
a dropout rate of 0.1.

10.2 Model Groups

We use letters to denote different models: A, B,
C, and D represent Llama-7B, XLM-RoBERTa-
base, BERT-multi-base, and XLM-RoBERTa-large,
respectively.

For encoder-only models, h, i, j, and k indicate
layers 1, 4, 7, and 10, respectively; whereas in
large language models (LLMs), these symbols cor-
respond to layers 8, 16, 24, and 32.

X, Y, Z, and W correspond to four standardiza-
tion methods: non-standard, std, centering, and
all-but-the-top.

Model groups for specific languages. We ex-
periment with various model groups, and differ-
ent groups achieve the best results in different lan-
guages. Table 2 shows the best results for the test
dataset in Subtask 2, and the specific model groups
are shown in Table 6.

Top 5 model groups. We employ three ensemble
strategies, and the top five results of each strategy
on the development dataset of Subtask 2 are pre-
sented in Table 3, with corresponding model groups
shown in Table 7.
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Method AVG ZH EN DE NO RU ES SV

MLP1 0.191 0.105 -0.140 0.192 0.337 0.276 0.418 0.151
weighted loss 0.240 0.361 0.110 0.166 0.156 0.255 0.354 0.277

layer11 0.265 0.267 0.009 0.261 0.357 0.298 0.341 0.321

MLP2 0.407 0.519 0.268 0.609 0.360 0.265 0.565 0.262
layer11 0.418 0.530 0.384 0.511 0.416 0.311 0.576 0.198

last4layer 0.429 0.509 0.229 0.570 0.306 0.416 0.584 0.386

Table 4: Evaluation results for Subtask 1 in MLP-based methods. The upper part presents the outcomes of using a
single linear layer as a classifier, where “weight loss” indicates the employment of a weighted cross-entropy loss
function, and “layer11” denotes utilizing the vector representations from the 11th layer of the language model. The
lower part illustrates the results obtained by employing two linear layers as classifiers, showing the performance of
the 11th layer of the model as well as the outcome after applying average pooling to the last four layers of the model.

Method AVG ZH EN DE NO RU ES SV

MLP1 0.128 0.323 0.088 0.179 0.132 0.061 0.026 0.083
MLP2 0.098 0.232 -0.061 0.131 0.119 0.020 0.061 0.187

Table 5: Evaluation results for Subtask 2 in MLP-based methods, demonstrating the results of Multi-Layer
Perceptrons (MLPs) with different numbers of layers.

Language Model Groups

Chinese AiX-AkX-AhX-AkW
English AjZ-AiX-AjX-AjW
German AhW-AjX-AjW-AjZ

Norwegian AjZ-AiX-AjX-AjW
Russian AiX-AiW-AkW-AkZ
Spanish AhY-AiZ-AhX-AhW
Swedish AiX-AkY-AjZ-AjY

Table 6: The optimal model groups for each specific language for the development set in Subtask 2.

Type 1 2 3 4 5

homo AjY-AjZ-AiX-AiW AjY-AiW-AjZ-AjX AjX-AiX-AiW-AjY AjZ-AiX-AjX-AjW AiX-AjZ-AjX-AhX
hete AjY-BkW-ChZ-DkX AjY-BiX-ChW-DjX AjY-BkW-CiX-DiW AjZ-BkW-ChY-DhW AjY-BhW-ChY-DiX

mixed AjX-ChX-AiX-AjZ AjY-AiX-AjW-ChY AkW-ChX-AjY-AjW AjZ-ChY-DhX-DkX ChX-AkY-AiX-AiW

Table 7: Top five model groups when ensembling models for Subtask 2.
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Abstract

This paper presents our approach in the COL-
ING 2025 - CoMeDi task in 7 languages, focus-
ing on sub-task 1: Median Judgment Classifica-
tion with Ordinal Word-in-Context Judgments
(OGWiC). Specifically, we need to determine
the meaning relation of one word in two differ-
ent contexts and classify the input into 4 labels.
To address sub-task 1, we implement and inves-
tigate various solutions, including (1) Stacking,
Averaged Embedding techniques with a multi-
lingual BERT-based model; and (2) utilizing a
Natural Language Inference approach instead
of a regular classification process. All the ex-
periments were conducted on the P100 GPU
from the Kaggle platform. To enhance the con-
text of input, we perform Improve Known Data
Rate and Text Expansion in some languages.
For model focusing purposes Custom Token
was used in the data processing pipeline. Our
best official results on the test set are 0.515,
0.518, and 0.524 in terms of Krippendorff’s
α score on task 1. Our participation system
achieved a Top 3 ranking in task 1. Besides the
official result, our best approach also achieved
0.596 regarding Krippendorff’s α score on Task
1.

1 Introduction

The CoMeDi 2025 shared-task (Schlechtweg et al.,
2025) aims to investigate and model disagreements
in word sense annotation within context. Specif-
ically, the task focuses on predicting the median
annotator judgment for word usage pairs based on
an ordinal scale and exploring the linguistic and
semantic factors that contribute to annotation dis-
agreement. Two sub-tasks were proposed for par-
ticipants in this shared task. The first challenge
called Median Judgment Classification with Ordi-
nal Word-in-Context Judgments, aims to measure
the meaning of a word in two different contexts
by classifying them into four ordinal judgments:
“homonymy”, “polysemy”, “context variance”, and

“identity”. While the second task, Mean Disagree-
ment Ranking with Ordinal Word-in-Context Judg-
ments aims to predict the mean of pairwise absolute
judgment differences between annotators.

In general, the data annotation process is often
hindered by disagreements among annotators and
misunderstandings in daily communication. These
challenges stem from the inherent ambiguity of
language, where a single word can have multi-
ple meanings and word meanings can shift based
on context. Such ambiguity can significantly im-
pact communication quality, leading to misinter-
pretations and reduced clarity. Addressing these
issues is essential to improve the accuracy and re-
liability of both human and automated communi-
cation. As a result, in this paper, we present our
solutions for Task 1 - Median Judgment Classifica-
tion with Ordinal Word-in-Context Judgments in
the CoMeDi 2025 shared-task (Schlechtweg et al.,
2025). Specifically, we employ two different ap-
proaches to address this task: (1) stacking and aver-
age text embedding methods, and (2) BERT-based
and generative-based models with natural language
inference, combined with custom tokens.

2 Related Works

In recent years, researchers have made signifi-
cant advancements in linguistic features such as
Named Entity Recognition and part-of-speech tag-
ging. However, there has been limited exploration
of utilizing BERT-based models with Natural Lan-
guage Processing approaches or custom tokens. An
early SemEval shared task, Task 3, was introduced
by (Armendariz et al., 2020), which had a substan-
tial impact on advancing research in grading word
similarity within context. This challenge is closely
related to our CoMeDi task (Schlechtweg et al.,
2025). A study by Hettiarachchi and Ranasinghe
(2020) proposed an innovative method to enhance
model performance using Stacked Embeddings. In
this approach, different word embeddings are con-
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catenated to create a final vector. By combining
embeddings from various learning techniques, this
method integrates their distinct characteristics. Ad-
ditionally, average embeddings, which consider the
mean of weights across different layers, are used to
merge the information learned at each layer. Cosine
similarity is then computed to generate predictions.

The work by Costella Pessutto et al. (2020) in-
troduced a technique called BabelEncoding, which
significantly improved word similarity grading in
the context of Croatian. BabelEncoding involves
three key steps: translation, multi-embedding ex-
traction using BERT and Mono Word Embeddings,
and the calculation of weighted averages. Chen
et al. (2020) enhanced prediction results by in-
corporating sentence structure and TF-IDF (term
frequency-inverse document frequency) features
along with BERT word embeddings. In their ap-
proach, TF-IDF features were integrated into a
masking layer of the BERT model, rather than just
feeding the input text into BERT alone. Meanwhile,
Gamallo (2020) proposed an innovative solution
for word similarity tasks by combining BERT word
embeddings with Dependency-Based Contextual-
ization. This technique improves inference by con-
sidering the contextual meaning of a word in a se-
quence, taking into account the static embeddings
of syntactically related words to the target word.

3 Task Description

The CoMeDi (Contextual Meaning Disagree-
ment) shared-task1 focuses on exploring and mod-
eling disagreements in annotator judgments regard-
ing word meanings in specific contexts. The pri-
mary goal is to understand and predict these dis-
agreements in “Word-in-Context” (WiC) scenarios,
where the meaning of a word can change based
on its usage. There are two sub-tasks proposed to
address as described below.

3.1 Task 1: Median Judgment Classification
with Ordinal Word-in-Context Judgments
(OGWiC)

In Task 1, the goal is to predict the median of anno-
tator judgments for each word use pair in the WiC
data. Each use pair consists of two instances of the
same target word in different contexts. Annotators
rate the relatedness of these instances on an ordinal
scale from 1 to 4. This task can also be framed
as a classification problem, where the objective

1https://comedinlp.github.io/

is to categorize the relationship between the two
instances into one of four classes: “homonymy”,
“polysemy”, “context variance”, and “identity”.

3.2 Task 2: Mean Disagreement Ranking with
Ordinal Word-in-Context Judgments
(DisWiC)

In Task 2, the purpose task is to predict the mean
of pairwise judgment differences between annota-
tors for each use pair. This task involves ranking
instances based on the level of disagreement ob-
served in annotators’ ratings. Unlike Task 1, which
focuses on classification, Task 2 explicitly aims to
capture and rank instances with higher annotator
disagreement, providing insight into areas where
word meanings are more subjective or ambiguous.

3.3 Dataset descriptions

The dataset provided by the competition includes
seven languages (Chinese, English, German, Nor-
wegian, Russian, Spanish, and Swedish), based on
various data sets on semantic change as shown in
Table 1. This multilingual scope provides a unique
opportunity to explore how annotator disagreement
patterns manifest across different linguistic and cul-
tural contexts.

4 Methodology

In this section, we present three approaches for
Task 1 in CoMeDi shared tasks in detail.

4.1 Data Processing

Our initial experiments focused on three dataset
variations: raw, cleaned, and lemmatized. Specif-
ically, we applied lemmatization and punctuation
removal as part of the data cleaning process. How-
ever, these pre-processing steps did not lead to im-
proved accuracy. Consequently, we simplified the
cleaning process by removing only special charac-
ters, hashtags, and URLs.

Given the imbalanced nature of the dataset, we
employed the stratified K-fold cross-validation
technique (Bates et al., 2023) with K = 10 to mit-
igate the effects of data imbalance on the models.
Stratified cross-validation ensures that the class dis-
tribution remains consistent across folds, thereby
reducing bias in performance estimation caused
by unequal class distributions in random splits.
This approach enables a more reliable evaluation
of model performance across diverse subsets of the
data.
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Table 1: Dataset Information for the Median Judgment Task.

Language Dataset[version]
Chinese ChiWUG[1.0.0] (Chen et al., 2023)
English DWUG_EN [3.0.0], DWUG_EN_resampled [1.0.0] (Schlechtweg et al., 2024)
German DWUG_DE [3.0.0], DWUG_DE_resampled [1.0.0], DiscoWUG [2.0.0], Re-

fWUG [1.1.0] ((Schlechtweg et al., 2024) (Kurtyigit et al., 2021))
DURel [3.0.0] (Schlechtweg et al., 2018)
SURel [3.0.0] (Hätty et al., 2019)

Norwegian NorDiaChange1, NorDiaChange2 (Kutuzov et al., 2022)
Russian RuSemShift_1, RuSemShift_2 (Rodina and Kutuzov, 2020)

RuShiftEval1, RuShiftEval2, RuShiftEval3 (Kutuzov and Pivovarova, 2021)
RuDSI (Aksenova et al., 2022)

Spanish DWUG_ES [4.0.1] (Schlechtweg et al., 2024)
Swedish DWUG_SV [3.0.0], DWUG_SV_resampled [1.0.0] (Schlechtweg et al., 2024)

For data augmentation, we employed back-
translation, applying it to entire sentences while
preserving the target word. However, this method
did not yield significant improvements, probably
due to contextual alterations introduced during the
translation process. Consequently, we opted not to
use the back-translation technique to address the
imbalance problem.

4.2 Stack Embedding

To create a final representation of each word-
use pair, we combine BERT-based embeddings
from different pre-trained language models, in-
cluding mBERTlarge (Pires et al., 2019) and XLM-
RoBERTalarge (Conneau et al., 2019). These mod-
els are used to extract the embedding features of
BERT words. Stacked embeddings are created by
concatenating vectors from multiple embedding
models to form a final, richer representation. This
approach leverages the complementary characteris-
tics of different embeddings, enabling the models
to generalize across domains and adapt more ef-
fectively during fine-tuning. Let vstk

i represent the
final or stacked word vector corresponding to the
word i, and vmodeli represent the vector obtained by
using the embedding model m. The stacked vector
is formed as shown below:

vstk
i =




vmodel1,i
vmodel2,i

...
vmodelm,i


 (1)

After extracting the Stack Embedding features,
we calculated Cosine Similarity and followed the
baseline approach provided by the organizers. As

Table 2: The result of Stacking Embedding method.

Model Data Krippendorff’s α
BERT Raw 0.267
BERT Clean 0.312
XLM-Roberta Raw 0.217
XLM-Roberta Clean 0.201

shown in Table 2, the results on the test set demon-
strated the performance of this approach.

4.3 Averaged Embedding
Instead of stacking the different representations,
we also compute the average of the weights across
different layers to combine the information learned
by each layer. This approach is called an average
embedding approach. For word i, the average em-
bedding vavg

i is calculated by considering the last l
layers, as shown in Equation 2. The weights in the
last layer are represented by the vector v−1

i , and
k denotes the number of layers selected for this
calculation. The formula of the average embedding
technique is presented below.

v
avg
i =

v−l
i + · · ·+ v−1

i

k
=

1

k

k∑

l=1

v
(l)
i (2)

Because each layer returns a distinct embedding
and different layers of transformer-based models of-
ten capture different types of information, the lower
layers tend to capture more syntactic features, such
as sentence structure and grammar, while higher
layers capture more semantic information, such as
word meaning and sentence context. Average Em-
bedding provides a more robust representation of
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Table 3: The result of Average Embedding method.

Model Data Krippendorff’s α
BERT Raw 0.193
BERT Clean 0.341
XLM-Roberta Raw 0.229
XLM-Roberta Clean 0.231

a word by reducing the impact of noisy or outlier
activations in individual layers. It also helps reduce
the dimensionality of the feature space, creating a
more compact representation of the word or sen-
tence. By combining both syntactic and semantic
features, Average Embedding can improve the qual-
ity of the input embeddings for model fine-tuning.
After extracting the Average Embedding features,
we computed the Cosine Similarity and followed
the baseline approach provided by the organizers.
The results of the test set are shown in Table 3.

4.4 Natural Language Inference

Natural Language Inference (NLI) is the task of
determining whether a “hypothesis” is true (entail-
ment), false (contradiction), or undetermined (neu-
tral) given a “premise”. NLI can also be treated
as a classification task, but there are some key dif-
ferences between the two. NLI requires two text
inputs, labeled as “hypothesis” and “premise”, and
the model needs to classify the relationship be-
tween them into one of three possible labels. Our
team observed that NLI bears a strong resemblance
to Task 1: Median Judgment Classification with
Ordinal Word-in-Context Judgments, as both tasks
involve classifying or grading the relationship be-
tween two textual elements. In task 1, the goal is to
classify the similarity of two words, which is con-
ceptually similar to determining the relationship
between two sentences in NLI. Therefore, conduct-
ing experiments in Task 1 using NLI could prove
promising.

Our team experimented with two strategies, in-
cluding:

• Fine-tuning the original language models
on NLI task: The list of language models
includes mBERT 2 (Devlin et al., 2018), XLM-
R3 (Conneau et al., 2019) and XLM-R 4 (Liu
et al., 2019).

2google-bert/bert-base-multilingual-cased
3FacebookAI/xlm-roberta-large
4FacebookAI/roberta-large

• Fine-tuning the language models trained
NLI task: The purpose of this task is to con-
tinue fine-tuning the model that is trained on
the NLI task for the OGWiC task. We choose
the XLM-R-XNLI model5 as the main lan-
guage model for this strategy.

Initially, our team conducted experiments on
small models due to GPU resource limitations with
the aim of testing whether our approach was ef-
fective. These initial experiments confirmed that
BERT-based models performed better than the
stacking and average embedding methods. Sub-
sequently, we analyzed larger BERT-based mod-
els, such as FacebookAI/xlm-roberta-large and
FacebookAI/roberta-large.

Even though large BERT-based classification ap-
proaches yielded better results than stacking and
average embedding methods, as shown in table
4, the results demonstrated that the large BERT-
based classification approach achieved Krippen-
dorff’s α scores of 0.381 and 0.419, surpassing the
best scores of the stacking and average embedding
methods, which were 0.312 and 0.341, respectively.

Additionally, our team examined the perfor-
mance of a BERT-based model previously trained
on the Natural Language Inference (NLI) task.
As expected, the joeddav/xlm-roberta-large-xnli
model significantly outperformed the other two
large-sized models.

4.5 Generative-based Model Approach
In this approach, using a generative-based model,
our team opted to experiment with the BART model
(Lewis et al., 2020) by adapting it for a classifi-
cation task through fine-tuning. BART functions
as a denoising auto-encoder designed for pretrain-
ing sequence-to-sequence models. It is trained by
intentionally introducing noise into text and then
learning to reconstruct the original content.

The model employs a standard Transformer-
based neural machine translation framework,
which, while straightforward, effectively general-
izes over other models such as BERT (with its bidi-
rectional encoder) and GPT (with its left-to-right
decoder), along with recent pretraining approaches.
For fine-tuning BART for sequence classification
tasks, the model processes the input through both
the encoder and decoder. The last hidden state of
the final token in the decoder is then fed into a new
linear classifier for multi-class prediction. This

5joeddav/xlm-roberta-large-xnli
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Figure 1: BART Architecture fine-tune for NLI task.

Table 4: The experimental results of BERT-based classification and NLI approach on the test set.

Model Method Krippendorff’s α
facebook/bart-large-mnli Natural Language Inference 0.518
joeddav/xlm-roberta-large-xnli Natural Language Inference 0.482
FacebookAI/roberta-large Classification 0.419
FacebookAI/xlm-roberta-large Classification 0.381
google-bert/bert-base-multilingual-cased Classification 0.356

approach resembles the use of the CLS token in
BERT; however, an additional token is appended to
the input’s end, enabling the final token’s represen-
tation in the decoder to attend to all decoder states
generated from the full input sequence.

Similar to the BERT-based approach, we used a
tokenizer to tokenize the two inputs, which were
then fed into BART. Moreover, we utilized the
pre-trained facebook/bart-large-mnli (Lewis et al.,
2019) model, which was trained on the MNLI
(Williams et al., 2018) dataset. The generative-
based model achieved remarkable results compared
to the BERT-based model, as shown in Table 4.

4.6 Custom Token

Given the promising results achieved by pre-trained
BERT-based models on Natural Language Infer-
ence tasks, we sought to further explore this ap-
proach. While pre-trained Natural Language In-
ference models offer significant advantages, a key
challenge arises in directing the model’s focus to
specific target words rather than entire sentences.
To address this, our team introduced a Custom To-

ken technique designed to enhance the model’s
attention to target words. Our analysis suggests
that by incorporating Custom Tokens around tar-
get words, the model can allocate greater attention
to these specific words, leading to subtle improve-
ments in prediction accuracy. The following exam-
ple illustrates the application of Custom Tokens:
Original input:

Context1: "Esposito has gone for an afternoon
walk and fallen asleep, his walking stick in his
hand, one knee bent, his head pillowed on a
stone."

Context2: "Old shopping lists and ticket stubs and
wads of listed newsprint come falling around
Pafko in the faded afternoon."

Custom Token

Context1: "Esposito has gone for an <target> af-
ternoon </target> walk and fallen asleep, his
walking stick in his hand, one knee bent, his
head pillowed on a stone."
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Context2: "Old shopping lists and ticket stubs and
wads of listed newsprint come falling around
Pafko in the faded <target> afternoon </tar-
get>."

Custom tokens help clarify for the model which
parts of the input are significant for the task. Thus,
with the help of Custom Token, we combined this
technique with the Natural Language Inference ap-
proach, and our team has recognized a slight im-
provement in accuracy, which is 0.524 in terms of
Krippendorff’s α.

4.7 Improve Known Data Rate
In this research, we used pre-trained embedding
models, which meant that the dataset included
tokens like names of people, organizations,
locations, and other entities that weren’t part of the
model’s original vocabulary. To create consistency
and make the data more recognizable for the
model during embedding generation, we replaced
these unfamiliar names of people, organizations,
locations, and other entities that weren’t part of the
model’s original vocabulary with more common
ones. This transformation was done automatically
using the Named Entity Recognition (NER) task,
based on the approach described by (Pakhale,
2023). Identified named entities, detected with
spaCy (Honnibal and Montani, 2017) tools, were
substituted in place of the unknown tokens. The
example transformation is shown below:

Original: "Esposito has gone for an afternoon
walk and fallen asleep, his walking stick in his
hand, one knee bent, his head pillowed on a
stone."

Improve Known Data Rate: "Person has gone
for an afternoon walk and fallen asleep, his
walking stick in his hand, one knee bent, his
head pillowed on a stone."

As you can see in the example transformation, "Es-
posito" is replaced with "Person". However, due to
the limitation of time and resources our team could
only perform Improve Known Data Rate transfor-
mation in English and Swedish.

5 Experimental Setup

5.1 Data and Evaluation Metrics
We conducted experiments exclusively on the
dataset provided by the organizer for training mod-
els and testing approaches in this shared task. Table

Table 5: The information of the experimental dataset.

Information Training set Validation set Test set
Number of samples 47833 8287 15332
Number of tokens 2990377 436735 985402
The average length 40.41 37.94 40.74
The maximum length 1643 493 605

5 summarizes key information about the training
and testing datasets, while Table 6 provides gen-
eral statistics and the distribution of four classes
in the training dataset. By observing the class po-
larity in Table 6, we note that the ratio between
the classes is unbalanced. Specifically, the total
samples in classes (1), (2), and (3) are fewer than
the total samples in class (4). This imbalance could
introduce bias during fine-tuning.

Imbalanced data was one of the main challenges
that competitors needed to address while imple-
menting distinct techniques to achieve optimal re-
sults. To handle the imbalance in class labels, our
team utilized data augmentation techniques, one
of the most effective methods for addressing this
issue. Data augmentation helps mitigate bias in
performance estimation. Specifically, we applied
the back-translation method to classes (1), (2), and
(3) to reduce data polarity and make the class dis-
tribution less imbalanced.

However, the back-translation method proved
suboptimal for addressing the imbalance issue.
When translating input while preserving the tar-
get word, changes in the sentence’s context may
negatively impact the prediction of the target word.
As shown in Table 5, the number of samples in
the training dataset is significantly higher than in
the testing dataset, enabling our models to train
effectively and generalize well. Additionally, we
perform some data cleaning processes before fine-
tuning models:

• Noise Removal: We observed that there are a
lot of noises, such as punctuation and special
characters, in the dataset. We found that these
noises are not necessary for the sentence-level
dataset. Therefore, we remove it from the
samples.

• Text Expansion: we also perform text expan-
sion in English for example: "I’ll" into "I will"
or "he’d" into "he would". Text expansion was
utilized for consistency of data purposes, and
this can help the model to generalize better.
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Table 6: The statistic of class distribution beyond dataset.

Class samples Homonymy Polysemy Context variance Identity
Training set 7099 4 510 5967 30257
Validation set 1055 817 739 5676
Full dataset 8154 5327 6706 35933

5.2 System Settings

We conducted our training process using Hugging-
Face (Wolf et al., 2020), and all BERT-based mod-
els were trained for 10 epochs. The AdamW opti-
mizer was utilized to optimize the models. We se-
lected a learning rate of 5e-5,3e-5 for BERT-based
models. The batch sizes were set to 16 and 32,
the random seed was set to 221, and the maximum
token length was 512.

Due to computational resource limitations, we
had to adjust system settings for fine-tuning the
BART-MNLI model (Lewis et al., 2019). Specifi-
cally, we reduced the batch size to 8 and employed
gradient accumulation to effectively train on larger
effective batch sizes. This technique allows us to
accumulate gradients over multiple smaller batches
before updating the optimizer, mitigating mem-
ory constraints. Furthermore, we utilized mixed
precision training (FP16) and gradient checkpoint-
ing to accelerate training and reduce memory us-
age. Mixed precision training combines 16-bit and
32-bit floating-point operations, enabling efficient
training of large-scale models like transformers.
Dynamic loss scaling was employed to maintain
numerical stability. Given GPU limitations, we
trained BART for only 6 epochs and opted for the
AdaFactor optimizer, known for its efficiency in
training large models, instead of AdamW. All mod-
els were evaluated using the metric provided by
the task organizers. Our team leveraged a P100
GPU, available for up to 30 free hours per week on
Kaggle, for computational resources.

6 Main Result

The official evaluation phase and post-evaluation
phase submission results are presented in Table
7. The facebook/bart-large-mnli model with NLI,
custom token, and average embedding on Chinese
achieved the highest Krippendorff’s α score of
0.596. In the official evaluation phase, we submit-
ted predictions created with joeddav/xlm-roberta-
large-xnli with Improve Known Data Rate and
Custom Token for NLI, and facebook/bart-large-
mnli fine-tuned for NLI, which attained a Krippen-

dorff’s alpha score of 0.524 and 0.518, respectively.
Furthermore, in the last submission we submitted
joeddav/xlm-roberta-large-xnli combined with Im-
prove Known Data Rate which only achieved 0.515
in Krippendorff’s alpha.

Through experimentation, our team observed
that all classification or natural language inference
approaches performed worse in Chinese compared
to the stacking and average embedding methods.
As a result, we utilized stacking and average em-
beddings exclusively for Chinese and found that
average embedding outperformed stacking embed-
ding in this context.

By combining different techniques, we leveraged
the advantages of each method, leading to better re-
sults overall. Additionally, our team’s official rank-
ing in the top 3rd position demonstrates promis-
ing results in Task 1: Median Judgment Classifi-
cation with Ordinal Word-in-Context Judgments
(OGWiC).

7 Conclusion and Future Work

In this paper, we present our approaches for the
shared task CoMeDi 2025 (Schlechtweg et al.,
2025), Task 1: Median Judgment Classification
with Ordinal Word-in-Context Judgments (OG-
WiC). Our methods achieved a top 3rd ranking in
the official hard-label evaluation of Task 1 shown
in Table 8 and achieved the final result by us-
ing joeddav/xlm-roberta-large-xnli combined with
Custom token and Improve Know Data Rate tech-
nique which results in 0.524 final scores. More-
over, pretrained BART models on NLI task also
achieve 0.518 and joeddav/xlm-roberta-large-xnli
combined with Improve Know Data Rate only
achieve 0.515 in Krippendorff’s α.

We introduced various methods and combina-
tions, including stacking, averaged embedding tech-
niques, natural language inference, a generative-
based model approach combined with custom to-
kens, and improved known data rates. Through ex-
perimentation and analysis, our approaches yielded
promising results for Task 1. Moreover, our ap-
proaches can bring novelty in examining how word
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Table 7: All evaluation and post-evaluation results.

Model Method Score
facebook/bart-large-mnli NLI + Custom Token + Average Embedding(Chinese) 0.596
joeddav/xlm-roberta-large-xnli NLI + Custom Token + Improve Known Data Rate 0.524
facebook/bart-large-mnli Natural Language Inference 0.518
joeddav/xlm-roberta-large-xnli NLI + Improve Known Data Rate 0.515
joeddav/xlm-roberta-large-xnli Natural Language Inference 0.482
Baseline 0.123

meaning changes based on different contexts be-
cause the former research only uses the text embed-
ding method for this task while our team’s main
approach is leveraging the power of not only BERT-
based models but also generative-based models.
We believe these methods apply to real-world tasks
due to their low computational cost compared to
large language model-based approaches.

Additionally, by analyzing the results, we ob-
served that preprocess stages like data cleaning and
data augmentation can improve the clarity and con-
sistency of data representation which can further
enhance performance.

Ranking Team score
Top 1 Deep-Change 0.656
Top 2 GRASP 0.583
Top 4 JuniperLiu 0.271

Baseline - 0.123
Ours (Top 3) MMLabUIT 0.524

Table 8: Official Results for Task 1: Median Judgment
Classification with Ordinal Word-in-Context Judgments
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Abstract

Human annotation is notorious for being sub-
jective and expensive. Recently, Schlechtweg
et al. (2025) introduced the CoMeDi shared
task aiming to address this issue by predicting
human annotations on the semantic proximity
between word uses, and estimating the varia-
tion of the human annotations. However, distin-
guishing the proximity between word uses can
be challenging, when their semantic difference
is subtle. In this work, we focus on predicting
the aggregated annotator judgment of seman-
tic proximity by using a large language model
fine-tuned on 20 examples with various proxim-
ity classes. To distinguish nuanced proximity,
we propose a weighted few-shot approach that
pays greater attention to the proximity classes
identified as important during fine-tuning. We
evaluate our approach in the CoMeDi shared
task across 7 languages. Our results demon-
strate the superiority of our approach over zero-
shot and standard few-shot counterparts. While
useful, the weighted few-shot should be applied
with caution, given that it relies on development
sets to compute the importance of proximity
classes, and thus may not generalize well to
real-world scenarios where the distribution of
class importance is different1.

1 Introduction

Human annotation, which leverages human anno-
tators to create gold-standard labels, has been an
essential step when curating training data for ma-
chine learning tasks. However, this process is par-
ticularly challenging due to the subjective nature
of human judgment. Such subjectivity may result
in significant disagreements among human anno-
tators, giving rise to poor quality of gold-standard
labels—which may further trouble the reliability of
models trained on these labels. While many efforts

1Our implementation is made publicly available
at https://github.com/yingxuaaaaaan/
automating-semantic-proximity-annotation

have focused on using aggregation to mitigate dis-
agreements among annotators (Uma et al., 2021;
Leonardelli et al., 2023), very few works studied
the fundamental aspects of disagreements, such as
the complexity and underlying causes that may lead
to disagreements in human annotation.

Recently, Schlechtweg et al. (2025) introduced
the CoMeDi 2025 shared task, which investigates
annotation disagreements in semantic proximity
between word uses through two subtasks: (i) pre-
dicting the aggregated judgment among human an-
notators, and (ii) predicting the variation of anno-
tations by estimating the level of disagreement in
annotating semantic proximity.

In this work, we focus on the first subtask and
build our approaches upon the work by Yadav et al.
(2024), which leverages large language models
(LLMs) to produce human judgments of semantic
proximity. We refer to their approach as automat-
ing human judgment. Approaches of this kind have
been shown to incur a much lower cost in annota-
tion compared to using human annotators to do so
(Gilardi et al., 2023). Our main contribution is to
introduce a weighted few-shot learning approach
that prompts LLMs to predict human judgments
of the proximity class between word uses, on an
ordinal scale ranging from 1 to 4, and fine-tunes
LLMs on 20 examples to help them learn how such
judgments are made. Our few-shot approach differs
from the standard one in that important proximity
classes receive greater attention during fine-tuning.

2 Task Description

The CoMeDi 2025 shared task explores annotation
disagreements through two subtasks, both of which
are based on human Word-in-Context (WiC) judg-
ments across seven languages. Each data instance
contains a target word w with a pair of uses u1 and
u2, where each usage conveys a context-specific
meaning. Each use pair associates with a human

122



Target word: chairman
Usage 1: ..out of respect to the chairman's cough...
Usage 2: Ronald J. Gidwitz, chairman, Illinois State
Board of Education..

Human judgments: [3, 4, 4]
Median of judgments: 4
Mean pairwise difference of judgments: 0.667

Figure 1: A running example for the target word ‘chair-
man’. The semantic proximity of the two uses are
judged by three annotators as context variance (3), iden-
tity (4) and identity (4), respectively.

judgment on an ordinal relatedness scale ranging
from 1 to 4. The judgment reflects the semantic
proximity between a pair of uses, interpreted as
homonymy (1), polysemy (2), context variance (3),
and identity (4), respectively. An running example
is illustrated in Figure 1. The subtask descriptions
are outlined as follows:

• Subtask 1: For each use pair (u1, u2), par-
ticipants are asked to predict the median of
annotator judgments regarding semantic prox-
imity of the two uses. Predictions are evalu-
ated against the median labels using the ordi-
nal version of Krippendorff‘s α (Krippendorff,
2018).

• Subtask 2: For each use pair (u1, u2), par-
ticipants are asked to predict the level of an-
notation disagreement in semantic proximity
between the two uses. The level of disagree-
ment is calculated as the mean of pairwise
absolute judgment differences among anno-
tators. Predictions are evaluated against the
mean disagreement labels using Spearman’s
ρ (Spearman, 1961).

3 Our System

In this work, our focus is on subtask 1. Our system
leverages GPT-4o-mini to predict the aggregated
annotator judgment per use pair through prompting.
We experiment with three prompting setups: zero-
shot, standard few-shot and weighted few-shot.

Zero-shot. Our prompt and model configuration
are based on the template by Yadav et al. (2024).
The prompt is designed to automate the annota-
tion of semantic proximity by prompting LLMs
to follow human annotation guidelines to produce
a judgment for each use pair. Additionally, they
found that model performance is affected greatly

by model hyperparameters such as temperature and
top-p, which control the diversity and randomness
of the model output. We adopt the model con-
figuration from their work and set both top-p and
temperature to 0.9.

Standard few-shot. Our prompt in the stan-
dard few-shot setup extends upon the zero-shot
prompt by providing a small number of exam-
ples for GPT-4o-mini to learn annotator judgments
on proximity classes. For instance, in the n-shot
setup, we randomly sample n equally sized data
instances per judgment (proximity) class from de-
velopment data and incorporate these instances
into the prompt. In this case, we assume the four
judgment classes are equally important.

Weighted few-shot. Our preliminary results
showed that performance gaps between judgment
(proximity) classes are substantial (e.g., the judg-
ment class 1 is often the most difficult class for
GPT-4o-mini to predict, cf., Figure 5). Addition-
ally, we found that the number of data instances
per judgment class is imbalanced (see Figure 4).
This indicates that the four judgment classes are
not equally important. Based on these observations,
we propose a weighted few-shot scheme: we first
compute the importance per judgment class, and for
each class we randomly sample data instances from
development data based on the class importance—
the more important a judgment class is, the
greater attention it will receive, i.e. that we will
sample many more data instances of that class com-
pared to other classes for fine-tuning GPT-4o-mini.
As a result, this approach will prioritize model im-
provement on important classes. We consider two
implementations of class importance, based on: (a)
class frequency and (b) class difficulty. For (a),
the importance of each class is estimated based on
the percentage of data instances belonging to that
class. We use these percentages as probabilities for
sampling data instances in each class. Note that we
compute importance separately for each language.
For (b), we refer the importance of each class to the
model performance of that class. To do so, we com-
pute the inverted F1 score (the harmonic mean of
precision and recall) for each class, and normalize
it across the four classes, denoted by:

pi =
F1

−1(i)∑
j∈(1,2,3,4) F1

−1(j)

where pi is the importance of the i-th class that we
use as the probability for sampling data instances
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belonging to that class from development data. Al-
ternative measures for estimating class difficulty
are mostly based on entropy (Capecchi and Moller,
1968; Li et al., 2019; Juszczuk et al., 2021), which
we will explore in future work.

Note that we use the raw texts without apply-
ing lemmatization or removing punctuation, nor do
we explore advanced LLMs such as GPT-4o and
Llama 3. Instead, our system focuses on showcas-
ing the use of our weighted few-shot prompting
for predicting the aggregated annotator judgment
in semantic proximity, and therefore our system
performance might be suboptimal.

In the case that prompting GPT-4o-mini does not
generate a ordinal judgment class for a use pair, we
assign Judgment 0 to that use pair and treat it as an
outlier. We note that such cases are very rare in our
experiments, and therefore their impact on model
performance is expected to be small.

Prompt engineering. Our prompt builds upon
the template by Yadav et al. (2024), with the fol-
lowing modifications. Firstly, we provide examples
by appending them to the prompt; doing so will
not update model weights while Yadav et al. (2024)
submit a fine-tuning job to the OpenAI server that
will update model weights. Secondly, we restrict
the formatting of model response to include the
identifiers of each use pair, to which we observe
performance gains on development sets. We at-
tribute performance gains to the fact that includ-
ing identifiers help avoid mismatches between a
judgment class prediction and the corresponding
use pair. Mismatch may happen in our setup as
we prompt GPT-4o-mini in batch, i.e., judgment
classes for a batch of use pairs are predicted at
once. Note that such identifiers are added to the
prompt only in the few-shot setup, as we observe
that, without providing examples to fine-tune the
model, identifiers are sometimes not generated in
model responses.

We additionally experimented with including a
language identifier in the prompt to state which
language each use pair belongs to, but this is not
helpful. Our prompt in the zero-shot setup is dis-
played in Figure 2. The prompt in the standard and
weighted few-shot setups is provided in Figure 3.

4 Experimental Setup

Datasets. The CoMeDi shared task provides
datasets for seven languages: Chinese, En-
glish, German, Norwegian, Russian, Spanish,

[SYSTEM]
You are a highly trained text data annotation tool
capable of providing subjective responses. Rate the
semantic similarity of the target word in these
sentences 1 and 2. Consider only the objects/
concepts the word forms refer to: ignore any common
etymology and metaphorical similarity! Ignore case!
Ignore number (cat/Cats = identical meaning). If
target is emoji then rate by its contextual function.
Homonyms (like bat the animal vs bat in baseball)
count as unrelated. Output numeric rating: 1 is
unrelated; 2 is distantly related; 3 is closely related;
4 is identical in meaning. Your response should align
with a human’s succinct judgment. Please respond in
the format:
[USER]
Keyword (target word): <value>
Sentence 1: <value>
Sentence 2: <value>

Please provide a judgment as a single integer. For
example, if your judgment is Identical, then provide 4.
If your judgment is Unrelated, provide 1.

Figure 2: Our prompt in the zero-shot setup.

and Swedish. These were sampled from pub-
licly available datasets (Schlechtweg et al., 2018;
Schlechtweg, 2023; Schlechtweg et al., 2021; Hätty
et al., 2019; Rodina and Kutuzov, 2020; Kutuzov
and Pivovarova, 2021; Kurtyigit et al., 2021; Ak-
senova et al., 2022; Kutuzov et al., 2022; Zamora-
Reina et al., 2022; Chen et al., 2023) and supple-
mented with unpublished data (Schlechtweg et al.,
2024). Each dataset is divided into three splits:
train, development, and test sets. Table 1 presents
the data statistics for these datasets. We observed
class imbalance in terms of the percentage of in-
stances per judgment class (see Figure 4).

Train set Dev set Test set

Languages #data #tgts #data #tgts #data #tgts

Russian 8029 189 1126 28 2285 55
Swedish 5457 30 871 5 1345 9
Spanish 4821 70 621 10 1497 20
Norwegian 4494 56 611 8 1380 16
English 5910 31 863 5 2444 10
Chinese 10833 28 2532 4 3240 8
German 8279 116 1663 17 3141 34

Table 1: Statistics of the CoMeDi datasets. ‘#tgts’ de-
notes the number of target words; ‘#data’ means the
number of use pairs.

Class imbalance. In the zero-shot setup, the im-
balance of judgment classes will not harm GPT-
4o-mini, as we do not fine-tune the model on the
CoMedi datasets. For the standard few-shot setup,
we provide equally sized examples to fine-tune the
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[SYSTEM]
You are a highly trained text data annotation tool
capable of providing subjective responses. Rate the
semantic similarity of the target word in these
sentences 1 and 2. Consider only the objects/
concepts the word forms refer to: ignore any common
etymology and metaphorical similarity! Ignore case!
Ignore number (cat/Cats = identical meaning). If
target is emoji then rate by its contextual function.
Homonyms (like bat the animal vs bat in baseball)
count as unrelated. Output numeric rating: 1 is
unrelated; 2 is distantly related; 3 is closely related;
4 is identical in meaning. Your response should align
with a human’s succinct judgment. Please respond in
the format:

Identifier1: <value>
Identifier2: <value>
Rating: <value>

### Examples ###
[USER]
Identifier1: <value>
Identifier2: <value>
Keyword (target word): <value>
Sentence 1: <value>
Sentence 2: <value>

[ASSISTANT]
Identifier1: <value>
Identifier2: <value>
Rating: <value>

Figure 3: Our prompt in the few-shot setup.

model via in-context learning, aiming to avoid sam-
pling bias stemming from data imbalance.

However, we hypothesize that equally sized sam-
pling is suboptimal because it does not make use
of prior knowledge from developments sets, such
as class frequency and difficulty distributions. Inte-
grating such knowledge into the few-shot learning
process might be useful. For instance, if judgment
class 4 is the most popular or most difficult class,
providing more examples of that class to fine-tune
the model would prioritize model improvement on
important classes. Nevertheless, there is no guar-
antee that the class frequency and difficulty distri-
butions are the same (or comparable) across data
splits, but we assume that the difficulty distribution
is more consistent than the frequency distribution
across splits, as the test set could contain any num-
ber of instances per judgment class while the class
difficulty reflects its inherent complexity, less af-
fected by data splits.

Results. Table 2 compares our approach in var-
ious setups on the CoMeDi test set for the post-
evaluation subtask 1. Overall, our approach based
on GPT-4o-mini in the zero-shot setup yields mod-

0.0
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0.0
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0.5
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Judgment Class

0.0

0.5
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Figure 4: Class frequency distributions across train,
dev and test sets, where y-axis shows the percentage of
instances per judgment class.

erate Krippendorff scores in most cases, indicating
moderate agreement between model and human
judgments in semantic proximity. We see our ap-
proach performs poorly in Norwegian and Chinese,
meaning that GPT-4o-mini may struggle to under-
stand these two languages.

Secondly, we see “standard few-shot”, which
fine-tunes GPT-4o-mini on totaling 20 examples
across 4 classes through in-context learning, is use-
ful. It outperforms the counterpart in the zero-shot
setup on average (0.403 vs. 0.388). This is not
surprising, as few-shot learning help GPT-4o-mini
learn how human judgments are made. Addition-
ally, we observe that our weighted few-shot ap-
proach relying on ‘frequency’ achieves the best
performance on average among the four setups.
This is because class frequency distributions are
generally consistent in both dev and test sets (see
Figure 4). In contrast, we see the weighted few-
shot relying on ‘difficulty’ performs only slightly
better than ‘standard few-shot’, which we attribute
to the fact that class difficulty distributions differ

125



Setup Russian Swedish Spanish Norwegian English German Chinese Avg

zero-shot (n=0) 0.504 0.351 0.491 0.207 0.610 0.529 0.026 0.388
standard few-shot (n=20) 0.423 0.441 0.587 0.197 0.626 0.675 -0.127 0.403
weighted few-shot (frequency, n=20) 0.478 0.509 0.569 0.431 0.625 0.673 0.209 0.499
weighted few-shot (difficulty, n=20) 0.512 0.389 0.543 0.183 0.600 0.690 -0.056 0.408

deep-change (Kuklin and Arefyev, 2025) 0.623 0.675 0.748 0.668 0.732 0.723 0.424 0.656
comedi-baseline (Schlechtweg et al., 2025) 0.112 0.018 0.175 0.124 0.102 0.274 0.059 0.123

Table 2: Krippendorff’s results from GPT-4o-mini on the test set in the post-evaluation CoMeDi subtask 1. “deep-
change” is the best-performing system in the CoMeDi leaderboard.

across data splits to a large degree (see Figure 5).
Our approach, even in the zero-shot, performs

much better than comedi-baseline—which relies
on XLM-R coupled with a threshold-based classi-
fier tuned on training data. This means prompt-
ing LLMs could yield very competitive results.
However, our approach lags behind deep-change—
which fine-tunes the Word-in-Context model on
the training data of the shared task; this is because
deep-change benefits greatly from fine-tuning on
the full training data that is 300-500 times larger
than the number of training examples we provided
in the few-shot setups.
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Figure 5: Class difficulty distributions across train, dev
and test sets, where y-axis shows the inverted F1 score
per class after normalization.

5 Conclusions

In this work, we leverage a large language model
to predict the aggregated human judgment of the
semantic proximity between word uses. In par-
ticular, we explore several few-shot learning ap-
proaches for the model to learn annotator judg-
ments through fine-tuning. Our results demonstrate
that our weighted few-shot approach outperforms
standard few-shot and zero-shot approaches.

Limitations. In the shared task setup, the class
frequency distributions generally are consistent
across data splits for all languages. However, such
alignment is not guaranteed in real-world scenarios.
If distributions differ across splits, performance
gains from weighted few-shot learning may be-
come small or even disappear. While class diffi-
culty distributions might be consistent and are not
affected much by data splits, but giving greater at-
tention to difficult classes may not be useful in the
case that such classes are rare in test sets. As such,
how best to leverage prior knowledge (class diffi-
culty and frequency distributions) does not have a
straightforward answer, and the standard few-shot
learning is still useful when the reliability of prior
knowledge is uncertain. Additionally, our findings
are based on a single LLM and might differ when
we use other LLMs. Moreover, our approach is sub-
optimal: further improvements could benefit from
cleaning up datasets, using stronger LLMs, fine-
tuning on a large number of examples in few-shot
setups, developing a new approach combining both
class frequency and difficulty factors, and others.
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Abstract

Annotating texts can be a tedious task, espe-
cially when texts are noisy. At the root of
the issue, guidelines are not always optimized
enough to be able to perform the required
annotation task. In difficult cases, complex
workflows are designed to be able to reach
the best possible guidelines. However, crowd-
source workers are commonly recruited to go
through these complex workflows, limiting the
number of iterations over the workflows, and
therefore, the possible results because of the
slow speed and the high cost of workers. In
this paper, our case study, based on the en-
tity recognition problem, suggests that LLMs
can help produce guidelines of high quality
(inter-annotator agreement going from 0.593
to 0.84 when improving WNUT-17’s guide-
lines), while being faster and cheaper than
crowdsource workers.

1 Introduction

Designing guidelines making every annotator
agree on their annotations is a difficult and te-
dious process. Such a task can be even more
difficult in the context of noisy texts, common
in fast-paced online communication especially on
platforms such as X (formerly known as Twitter).
Such texts can be filled with typos, with specific
tokens (e.g., Twitter handles and hashtags in the
context of Tweets) and with interjections (such as,
for instance, “mmmmhhhh”). Furthermore, texts
to annotate can lack context, because of the na-
ture of the text (e.g., an isolated Tweet) or because
of its collection (e.g., when the logical connec-
tion between the elements of a discussion has been
lost).

These challenges can lead to many iterations
over the guidelines to clarify to the annotators how
to annotate. The classic iterative workflow is, (1)
to have an expert designing the guidelines, (2)
to have annotators annotating with these guide-

lines, (3) to compute an inter-annotator agree-
ment (IAA) to check if the guidelines are clear
enough. If there are not clear enough, Steps 1 to
3 are performed again until an acceptable IAA is
reached (Pustejovsky and Stubbs, 2012).

Expense and time issues related to the multi-
ple iterations over the workflow are commonly
reduced by working with crowd workers (when
compared to, e.g., in-premise recruitment). How-
ever, this is sometimes not enough when working
with complex workflows (Pradhan et al., 2022).
Indeed, the number of iterations to reach good
guidelines can be very large, and processes some-
times never converge.

In this paper, we suggest via a case study that
complex annotation workflows can be automated
with large language models (LLMs), producing
quality guidelines, while significantly reducing the
cost and time needed to go through such work-
flows (more than 700 times cheaper and more than
300 times faster). Furthermore, using LLMs to
automate such workflows also has the benefit of
avoiding human biases, such as post-rationalizing
to stick to their choices when suggested to recon-
sider them.

2 Related Work on the Optimization of
Guidelines

This section introduces the related work on op-
timizing guidelines using complex annotation
workflows. Please note that we use, as done in
the literature, the term “workers” to refer to the
people involved in the workflow used to optimize
the guidelines. Indeed, “annotators” only corre-
sponds to the subset of workers who perform the
annotation work in the workflow. Also, note that
we do not restrict our presentation of the literature
to annotations in natural language processing, as
relevant workflows have been proposed to anno-
tate other items than sentences or words, such as
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images and websites.
When dealing with the task of improving anno-

tation guidelines, the classic approach is MAMA,
or Model-Annotate-Model-Annotate (Pustejovsky
and Stubbs, 2012). The idea is simple: the anno-
tation task needs to be modeled, through guide-
lines, then evaluated via a proper annotation task,
from which will follow a revision of the guide-
lines, and so on. In order to evaluate the guide-
lines, the agreement between the annotators (or
IAA for inter-annotator agreement) is generally
used (Pustejovsky and Stubbs, 2012).

Other, more complex, workflows have been de-
veloped over time, but with an ever increasing
investment in time and money. Bernstein et al.
(2010) proposed a Find-Fix-Verify workflow. This
workflow can be adapted to very different scenar-
ios, but in our context, Find (the first step) corre-
sponds to asking workers to find ambiguous ele-
ments in the guidelines given some examples to
annotate. Based on the identified issues in the
guidelines, workers, in the Fix step, propose alter-
natives to each problematic element in the guide-
lines. The last step, Verify, then consists in asking
new workers to vote for the best alternative.

Drapeau et al. (2016) later introduced a Justify-
Reconsider workflow that leverages rationales
from the workers. In the Justify phase, work-
ers provide rationales for their annotations. Then,
after reading the rationales from other workers,
each worker is given the possibility to reconsider
their annotations. While this workflow can pro-
vide more accurate annotations, it stops short of
improving the guidelines.

In a similar fashion, Chang et al. (2017) pro-
posed a Vote-Explain-Categorize workflow that
also leverages rationales. The first stage, Vote, is
the annotation stage, with the addition of an option
for the annotators to express their uncertainty. The
examples showing disagreement or uncertainty are
then selected for the Explain step, where workers
are asked to provide a rationale for these selected
labels. Finally, the Categorize stage consists, for
each worker, in choosing a label based on the ex-
planations.

In both their work, Drapeau et al. (2016) and
Chang et al. (2017) noted the difficulty of ob-
taining quality rationales in the workflow. Wang
et al. (2018) developed a solution that they called
“Rewarding the Brave” to pay workers based on
the effectiveness of their rationales in convincing
other workers.

Instead of only asking for a rationale, a discus-
sion between the workers using a chat platform
can also be envisioned (Schaekermann et al., 2018;
Chen et al., 2019). This solution has been found to
be effective, but comes with a significant increase
in time.

Bragg et al. (2018) proposed a Work-Filter-
Diagnose-Clarify/GenTest-Organize-Refine
workflow. The first stage, Work, corresponds to
the annotation step in our case. Based on this
annotation work, examples causing disagreement
are selected in the Filter stage. Then, in the
Diagnose stage, another set of workers analyze
the disagreement on each example to identify
if it is best to clarify the guidelines (Clarify
stage) or to add the problematic examples to
the guidelines (GenTest stage). In the Organize
stage, a clustering approach then automatically
organizes the various propositions made by the
new set of workers to clarify the task. Finally,
in the Refine stage, the guideline makers then
take inspiration from the worker’s propositions to
improve the task and the guidelines.

WingIt is a solution to spot ambiguous cases
and to propose improvements to the guide-
lines (VK Chaithanya and Quinn, 2018). The
workers have the possibility to ask questions and
to propose answers to these questions. The guide-
line makers can then choose to pick from the sug-
gested answers, or make their own.

In a subsequent work, VK Chaithanya et al.
(2019) proposed TaskMate, which is a 5-stage
workflow: Identify-Resolve-Merge-Verify-Select.
The Identify stage corresponds to the questions
and answers of WingIt. However, instead of the
guideline makers having to evaluate and select an
answer, the workers themselves vote, in the Re-
solve stage, for the best answer to each question.
Based on all the votes, the workers are then asked
to propose new guidelines in the Merge stage. In
the Verify stage, the workers have to check if the
new proposed instructions indeed clarify the origi-
nal ambiguities. Finally, among all the newly pro-
posed instructions that pass the check, the work-
ers have to vote again, in the Select stage, for the
improved instructions that will be included in the
new version of the guidelines.

Finally, directly inspired by the Find-Fix-Verify
workflow of Bernstein et al. (2010), Pradhan et al.
(2022) proposed a Find-Resolve-Label workflow.
The Find stage is similar to the one of Bernstein
et al. (2010). In the Resolve stage, the guideline
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makers select some of the ambiguous examples
and integrate them as examples in the guidelines.
The Verify stage is then an annotation task with
the guidelines and the ambiguous examples.

Note that focusing on improving the guidelines
may not be the only solution to the problem. Chen
and Zhang (2023) showed that two dimensions can
be considered when dealing with the problem: (1)
how much the texts to annotate are ambiguous
and (2) how much the guidelines are ambiguous.
If the texts to annotate are ambiguous, the solution
can be to modify the texts themselves. However,
if text ambiguity is not the main issue, then the
guidelines probably are. It may then be worth im-
proving the guidelines. Note that the solution pro-
posed here can only be applied if modifying the
texts to annotate is an option.

Many, if not all of these workflows, require mul-
tiple iterations, which is not doable in practice.
While cost and time are regular concerns for these
workflows, the new advances with large language
models (LLMs) may allow for a solution: swap-
ping crowdsource workers with LLMs. However,
the question is: can LLMs go through a complex
workflow and produce good guidelines? We pro-
pose in this paper a case study exploring this ques-
tion. However, before that, we present in the next
section the workflow developed for our case study.

3 Workflow Used in our Case Study

While some parts of the literature showed that de-
veloping and using complex workflows with work-
ers are costly and time-consuming, other parts
highlighted the advance of LLMs in the domain.
Gilardi et al. (2023) showed, for instance, that
GPT models outperform crowdsource workers in
terms of accuracy on annotation tasks. At the
same time, it has been shown that LLMs can fol-
low annotation guidelines closely, and their agree-
ment is on par with the agreement of human an-
notators among themselves (Fonseca and Cohen,
2023). Furthermore, in the case where pre-trained
LLMs are not good enough at following guide-
lines, Sainz et al. (2024) have shown that LLMs
can be fine-tuned to be specifically better at that.

This section introduces the workflow developed
for our case study. We present in Section 3.1 the
different phases of the workflow. Section 3.2 will
then discuss its automation.

3.1 Annotate-Justify-Reconsider-Fix

Inspired by the literature and various internal tests,
we developed Annotate-Justify-Reconsider-Fix as
a pattern for the workflow in our case study (see
the left part of Figure 1). The first phase of the
workflow, “Annotate”, is self-explanatory: annota-
tors are first asked to annotate, given certain guide-
lines.

In the “Justify” phase, each annotator is asked
to justify their annotations (or lack thereof) in two
situations: (1) if there is a disagreement on an an-
notation, and (2) if the annotator did not annotate
an element, while other annotators did. This phase
is separated from the first one for two reasons: (1)
because asking for a rationale is not necessary if
everyone agrees on the annotation, and (2) because
what is not annotated, but could be, is only known
after some annotations are provided. During this
phase, the workers can change their mind about
their annotation.

In the third phase, “Reconsider”, the annotators
are asked to reconsider their annotations consider-
ing the other annotators’ rationales. In addition to
choosing their final annotations, the annotators are
asked to suggest changes to the guidelines. Seeing
different arguments for the same annotation often
makes ambiguities in the guidelines more visible.

Finally, in the “Fix” phase, the annotators are
asked to compile their suggested changes to the
guidelines to re-write the guidelines. The objec-
tive of this phase is twofold. First, the guide-
line makers do not have to interpret the annota-
tor’s suggestions to perform the changes. Second,
suggestions are given, during Phase 3, per anno-
tation. This means that annotators did not nec-
essarily have the big picture in mind when they
provided their suggestions. Because of that, some
suggestions may be contradictory. The annotator
is therefore the best person to provide the global
changes that best reflect the sum of their local
changes.

After the merge of all the guidelines proposed in
the Fix Phase by the workers, a new iteration over
the workflow can begin. This process continues
until a desirable inter-annotator agreement (IAA)
is reached.

Now that the different components of the work-
flow have been presented, next section will de-
scribe how they are automated with LLMs.
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Figure 1: On the left, the workflow developed for our case study with workers. On the right, version of the
workflow adapted for automation.

3.2 From Workers to LLMs

In order to automate the workflow, LLMs are used
replace workers in all phases of the workflow, as
well as the staff member optimizing the guide-
lines. To do so, two types of LLMs are used: anno-
tator LLMs and an optimizer LLM. We define the
annotator LLMs as models that are developed to
provide annotations based on particular guidelines
and an input text to annotate. On the other hand,
we define the optimizer LLM as the model doing
the task of the guideline makers: collecting guide-
line suggestions in order to define new guidelines
for the next iteration of the workflow.

One key element to mention in the automation
is that LLMs do not have the same attention issues
and biases as people. For instance, we noted in
our internal tests a clear bias from people to stick
to their previous choices. Indeed, some annotators
seem to prefer to post-rationalize their choices,
even when difficult to defend, rather than to ad-
mit that they may have made a mistake. While
LLMs have their own attention issues and biases
(e.g., forgetting long-distance context because of
their architecture and/or training), these are defi-
nitely not the same as the ones of people (e.g., be-
ing inattentive due to their fatigue). This has im-
plications, mainly, on the “Justify” and “Recon-
sider” phases. During preliminary internal tests,
we could see that an important advantage of Jus-
tify is that it forces workers to double-check their

annotations. However, LLMs generally do not
need this double-check.

Another difference between the workflow for
people and for LLMs is that Phases 1 and 2 are
mixed for LLMs. This is because the time required
to write a rationale for each annotation is far less of
an issue than it is with people. Also, asking LLMs
for a rationale actually improves their annotations,
as it is similar to a chain-of-thought strategy (Wei
et al., 2022).

Concerning Phase 3, “Reconsider”, we ob-
served that people can have very different lev-
els of expertise and knowledge when annotating.
“Reconsider” is therefore quite important when an
“expert” among the annotators can provide a ratio-
nale that will convince the other annotators. While
the variance in expertise on different subjects can
be high between human annotators, current pre-
trained LLMs have a high degree of knowledge
across the board. We noticed during our internal
tests that the Reconsider phase was not that impor-
tant for LLMs, while it was quite critical for hu-
man annotators. Because of that, we removed the
LLM calls to reconsider in the automated work-
flow. The LLM-based workflow is shown in the
right part of Figure 1.

Based on this workflow and its automation, we
present an experiment in the next section. The goal
of our case study is to discuss the quality of guide-
lines that can be produced by such a methodology,
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while also giving some numbers on the increase in
speed and decrease in cost when using LLMs.

4 Experiment

This section presents an experiment, for our
case study, comparing workers and LLMs going
through the workflow. In order to make this com-
parison, we first explain our experimental setup in
Section 4.1. We then go through the details of the
annotation work done with workers on a Prolific,
crowdsourcing platform, in Section 4.2. Finally,
we present our insights in Section 4.3.

4.1 Experimental Setup

In order to give a fair shot to the LLM considered
in this case study, we use one of the best models to
this date1: GPT-4o-08-06 2. The temperatures of
the annotator LLMs and the optimizer were set to
0.9 and 0 respectively. The prompts are provided
in Appendix A.

To compare the automation of our workflow
with workers going through it, we consider the en-
tity recognition (ER) problem. In ER, the goal is
to detect entities in sentences in order to then as-
sign one or more categories to them.

As the sources of the problem can both be
in ambiguities of the texts to annotate and in
ambiguities of the guidelines (Chen and Zhang,
2023), we consider a dataset that expresses these
two issues: WNUT-17 (Derczynski et al., 2017).
The dataset features ambiguous sentences such as
Tweets, along with guidelines that are not entirely
optimized to annotate these ambiguous sentences.
20 sentences selected at random, and containing
multiple entities, were considered for the experi-
ment.

Next section presents how workers have been
recruited to go through our workflow with the ER
problem applied to the WNUT-17 dataset.

4.2 Crowdsourcing

The workflow developed for this case study has
requirements to consider when choosing a crowd-
sourcing platform. First, the same workers are
sometimes required to work on connected phases.
For instance, the “Justify” phase requires that the
workers justify their annotations provided during

1As per LMArena (https://lmarena.ai/
?leaderboard) at the time of the experiment.

2https://platform.openai.com/docs/
models/gpt-4o

the “Annotation” phase. Second, as the work-
flow is quite complex, a platform that allows the
staff member managing the annotation (or annota-
tion manager) to redirect workers to some forms,
spreadsheets, etc. outside the platform is neces-
sary. Based on these constraints, Prolific 3 was
chosen. The only filter used to recruit workers
was their fluency in English. A bonus payment
was provided to incentivize workers to do a mean-
ingful job (as suggested by “Rewarding the Brave”
of Wang et al. (2018)).

4.3 Insights
This section presents the insights gained from the
comparison between the worker-based and LLM-
based workflow. We perform our case study in
two parts: correctness insights, and time and cost-
related insights.

In order to get the data needed to perform this
comparison, workers went through the workflow
once, and then redid the Annotation phase. 16,
10, 8 and 12 workers went through, respectively,
Phases 1, 2, 3 and then Phase 1 again.

Note that the Fix Phase (Phase 4) had to be sim-
ulated by us, because only 2 workers provided one
suggestion each to change the guidelines. We hy-
pothesize that this issue is due to the low motiva-
tion of workers on crowdsourcing platforms (de-
spite the possibility of receiving a bonus). We
elaborate on this in Section 5.2. Our simulation
of what the workers could propose as changes to
the guidelines revolved around the question “what
changes the workers would have wanted to see in
the guidelines when they wrote their arguments?”

4.3.1 Correctness Analysis
In order to get some insights about the correctness
of the LLM-produced guidelines, we propose a
qualitative and a quantitative assessment. First, we
compare the two solutions after one iteration. Sec-
ond, we produced a new round of annotations with
both the original and the LLM-produced guide-
lines.

Let us start with the comparison after one iter-
ation. The rationale behind this test is that, first,
each iteration over the workflow is independent
to the others, and can therefore be analyzed sep-
arately. Second, the improvement of the guide-
lines is front-loaded – most of the changes are per-
formed at the beginning. Comparing the worker-
based and LLM-based solutions on the first im-

3https://www.prolific.com/
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proved guidelines can give us an idea of their
respective amount and quality of changes. The
comparison between the worker-based and LLM-
based solutions is shown in Table 2 and Table 3 of
Appendix B.

When comparing the guidelines, it can be seen
that the LLM-based solution not only added ele-
ments to the guidelines, but also provided a lot of
reformulations and additional examples. For in-
stances, fully circular definitions like “location:
Names that are locations” have been replaced by
more meaningful descriptions, such as “location:
Names that are specific geographic locations or
landmarks”. In the case of the worker-based so-
lution, the changes are very localized. This is due
to (1) workers not really providing suggestions to
change the guidelines, and due to (2) the diffi-
culty to make changes by having all examples of
the dataset in mind. These points have repeatedly
been shortcomings in the internal tests we made.

To obtain a quantitative understanding of the
quality of the LLM solution, we conducted an ad-
ditional experiment. The objective of this experi-
ment is to compare the IAA produced by the orig-
inal guidelines with the guidelines produced after
the last iteration over the workflow by the LLMs.
Because making sure that the guidelines are fol-
lowed is paramount in this experiment, we de-
cided to not rely on crowdsource workers. Instead,
we mobilized 8 staff members, and each was in-
structed to annotate given two sets of guidelines
(the original WNUT-17 guidelines before start-
ing the workflow and the LLM-improved ones),
while paying close attention to the guidelines. The
LLM-improved guidelines can be seen in Table 4
of Appendix C.

The results of this experiment are shown in Ta-
ble 1. One initial observation is that the IAA is
only barely better with the LLM-based guidelines
when compared to the original ones, before iterat-
ing over the workflow (first row of Table 1). This
is due to three issues creating disagreements inde-
pendently to the quality of the guidelines: intrin-
sically unclear entities, annotators’ lack of knowl-
edge about entities and inattention mistakes.

The issue related to intrinsically unclear entities
is well-known in the literature (Chen and Zhang,
2023). In some situations, the context does not
help annotators decide for their annotation, e.g.
in “Stairs : po jaket MU sampai tgl 8 jan IDR
175rb @Bagusr18971897 PIN 32783FC8 SMS
081912233358”. This sentence will often lead to

disagreements, even when very good guidelines
are considered. By analyzing all the sentences to
annotate and the entities identified by the anno-
tators, we tagged all intrinsically unclear entities.
After removing such entities (25 left over 39), the
IAA of the original and LLM guidelines become
0.558 and 0.613 respectively. As can be seen, the
original gap in IAA of 0.011 enlarges to 0.055
when dropping this source of disagreements.

Annotators’ lack of knowledge about certain
entities is another important source of disagree-
ments. Indeed, disagreements between annota-
tors can occur when annotators lack the relevant
knowledge. In order to identify the disagreements
that were caused by a lack of knowledge, we in-
terviewed the annotators based on annotations that
seemed odd. We spotted these odd annotations by
identifying all the entities for which an internet
search could easily clarify what the entity is. For
instance, “Real” in “RT @KaiWayne : I think Big
Sam was misquoted when he said he could man-
age Real. What he actually said was he could
manage a real ale.” corresponds to Real Madrid
(the football club), but one annotator annotated it
as a Person. The reason for this particular anno-
tation is that, without knowing that Real is Real
Madrid, one can see Real as a singer who is man-
aged by Big Sam. Dropping the entities where at
least one annotator showed a lack of knowledge
(26 left over 39) leads to IAAs of 0.441 and 0.474
(gap of 0.033). Note that the IAAs are lower than
when all entities were considered. This is because
entities with a high agreement can be dropped be-
cause only one annotator showed a lack of knowl-
edge.

Finally, inattention mistakes is another issue
that causing disagreements. Even if the guide-
lines are perfect, annotators can miss entities to
annotate, and can also miss or forget particular in-
structions in the guidelines. During the interview
mentioned above, we became aware of and noted
some inattention mistakes made by the annota-
tors. When dropping the entities with attention is-
sues (34 left over 39), the IAAs become 0.463 and
0.478 (gap of 0.015). Again, like in the case of the
lack of knowledge, some entities were dropped de-
spite having high agreement, explaining the lower
IAAs.

A final overview of the true impact of optimiz-
ing the guidelines can then be provided by drop-
ping entities belonging to any of these three issues
(11 left over 39). By doing so, the disagreements
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Selected Entities Original Guidelines LLM-based Guidelines
All entities 0.488 [0.484, 0.491] 0.499 [0.496, 0.502]

All entities, excluding
intrinsically unclear entities

0.558 [0.555, 0.562] 0.613 [0.608, 0.617]

All entities, excluding
lack of knowledge

0.441 [0.436, 0.446] 0.474 [0.469, 0.479]

All entities, excluding
inattention mistakes

0.463 [0.46, 0.466] 0.478 [0.475, 0.482]

All entities, excluding all 3 issues 0.593 [0.588, 0.599] 0.84 [0.836, 0.845]

Table 1: Comparisons, in different situations, of the inter-annotator agreement (Fleiss’ Kappa) between the original
WNUT-17 guidelines (before iterating over the workflow) and the ones improved by the LLM-based solution after
4 iterations. 95% confidence intervals calculated by a bootstrap sampling with 1,000 samples are provided.

that are compared are mainly about the changes in
the guidelines, and less about issues independent
to the quality of these guidelines. In that situation,
the IAAs for the original guidelines and the LLM-
based guidelines are 0.593 and 0.84 respectively
(gap of 0.247).

It therefore seems like LLMs can produce
guideline changes that greatly reduce the disagree-
ment between annotators. However, it also seems
like the benefit of these changes can be hidden by
disagreements caused by other issues. Each of
these issues must therefore be handled alongside
the guidelines.

4.3.2 Cost and Time-related Analysis

While it seems evident that the LLM-based solu-
tion saves money and time, when compared to the
worker-based solution, we conducted experiments
to quantitatively assess this gap. Indeed, while it
is intuitive that LLMs are faster and cheaper, we
argue that it is important to be able to put numbers
on these intuitions.

During these experiments, we could observe
that going through the annotation workflow with
LLMs was more than 300 times faster and more
than 700 times cheaper than with crowdsource
workers. Many details about these experiments,
including the time and cost per phase, can be
found in Appendix D.

5 Discussion

While the insights provided above had the objec-
tive to shed more light on the difference between
crowdsource workers and LLMs going through
complex annotation workflows, this section fo-
cuses on additional points to discuss.

5.1 Annotation Manager’s Time

In addition to the time and cost of the task itself, a
non-negligible time is also spent by the annotation
manager on tangential sub-tasks, such as coordi-
nating the workers, ensuring that everything goes
smoothly, checking their work (and acting when
cheating is found), answering messages, etc. None
of these sub-tasks are required when working with
LLMs.

However, one can argue that the time needed to
code and debug the LLM-based solution is, on the
other hand, not required for the worker-based so-
lution. A counter-argument to that would be that
implementing the LLM-based solution is needed
once, while coordinating/managing workers is to
be done every time workers work with the work-
flow.

In both solutions, though, it is difficult to mea-
sure the required time. For instance, assessing
the time needed to implement the LLM solution
would require several coders coding the solution
from scratch and taking their average time as an
estimate. We leave this analysis as a future work.

5.2 Quality of Workers’ Work

The poor quality of work in crowdsourcing plat-
forms, as well as cheating, is well known and doc-
umented in the literature (Gadiraju et al., 2015;
Xia, 2024). This kind of behavior, seen in mul-
tiple occasions during our study, has three main
consequences in our context.

First, poor quality guidelines are obtained,
which increases the number of iterations over the
workflow that are needed to reach good quality
guidelines and labels. Second, low effort can
sometimes be hard to detect. Indeed, our study
is based on the fact that texts can be noisy and an-
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notating can be difficult. Because of that, it is dif-
ficult to differentiate between semi-random anno-
tations and honest annotations misled by the noisy
nature of texts. Third, a significant amount of the
annotation manager’s time must be spent detecting
and acting on these cases (see the previous sec-
tion). This has the effect of indirectly increasing
the cost of the worker-based version of the work-
flow. We argue that these consequences can be
avoided when using LLMs.

5.3 Speed and Cost Improvement of LLMs
vs. Crowd Workers

While our study is a snapshot in the history of
LLMs, current trends indicate that the perfor-
mance of LLMs will continue to evolve and im-
prove. Along with their quality, their speed and
cost is also expected to improve. If we consider
the GPT-family of models as an example, the cost
of GPT-4 was initially of $0.03 and $0.06 per 1k
input and output tokens respectively. However,
GPT-4o-mini currently shows, being only slightly
below GPT-4o in benchmarks, for a price more
than 100 times cheaper than GPT-4.

Speed-wise, many efforts are put by academia
and industry in designing new hardware (such as
new GPUs), as well as in strategies for LLMs
to run quicker on these pieces of hardware (e.g.,
FlashAttention (Dao et al., 2022), AWQ (Lin et al.,
2024), etc.). It is therefore expected that LLMs
will increase in speed over time, making the gap
between workers and LLMs larger and larger.

5.4 Nature of Disagreements between LLMs
and between People

We observed during our experiments that the na-
ture of disagreements happens to be different for
LLMs and people. A typical example of that is
Twitter handles (such as @JohnDoe). During all
our experiments, people kept struggling with Twit-
ter handles. Understandably, it is not clear, in the
original WNUT-17 guidelines, if using @JohnDoe
at the beginning of a Tweet to indicate that the
message is about John Doe makes @JohnDoe a
“person” entity.

However, LLMs seem to generally agree on the
fact that Twitter handles are not entities with the
original WNUT-17 guidelines. Examples of LLM
rationales for not annotating Twitter handles are
provided in Appendix E.

This difference between people and LLMs
makes that Twitter handles are always one the first

things to clarify, for people, in the guidelines. For
LLMs, however, it is something to clarify in a later
stage. For instance, while the first iteration did not
contain references to Twitter handles (see Table 3
in Appendix B), it is only at the second iteration
that LLMs consider it worth it to mention them.

5.5 On Subjective Annotation Tasks

In our case study, we assumed that multiple inter-
pretations of an annotation indicated an issue with
either the annotation guidelines or the text being
annotated. However, some annotation tasks are
intrinsically subjective. For instance, annotating a
piece of text as “well written” or not often depends
on the perspective of the annotator. Two changes
in our setup are needed to accommodate such a
task.

First, the notion of agreement needs to be
changed. Instead of checking if the annotators
agree with each other, one may check if the dis-
tribution of annotations is expected. For instance,
the percentage of administrative texts that are “un-
derstandable” (given a definition of what “un-
derstandable” means in the guidelines) should be
close to an expected percentage given in the liter-
ature for a certain population.

Second, annotator LLMs should integrate per-
sonas such that the distribution of personas corre-
sponds to the population simulated by the LLMs
for the subjective annotation task.

6 Conclusion

In this paper, we presented a case study on au-
tomating complex annotation workflow. We pro-
vided some insights about using LLMs for the au-
tomation of such workflows. In particular, our
case study suggests that LLMs can produce guide-
lines of good quality: from an inter-annotator
agreement of 0.596 (original WNUT-17 guide-
lines) to 0.84 (LLM-improved guidelines). We
also noted that the gap in cost and time required
by workers and LLMs to go through the workflow
was significantly large, with LLMs going more
than 300 times quicker through the workflow, for
a cost per annotator that is more than 700 times
cheaper.

Based on our case study, we urge the com-
munity to develop LLM-specific workflows, as
our case study seems to indicate that LLMs are
well-suited for the task. However, further work
is needed to identify the datasets and tasks for
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which humans are superior than LLMs when go-
ing through annotation workflows. Thanks to that,
a subsequent future work can be to categorize
datasets and tasks for the community to better un-
derstand when to leverage crowdsource workers
and when to develop LLM-based systems.

7 Limitations of our Case Study

One limitation of our study is that it is assessed
on one dataset (WNUT-17) and one task (Entity
Recognition) only. While it is true that multiplying
the datasets and tasks would strengthen our con-
clusions, we believe that our case study is enough
to convey some insights about the use of LLMs to
automate complex annotation workflows. Further-
more, we also believe that cost and time-wise, the
gap is so large that it is very unlikely to be dis-
proved by analyzing many datasets and tasks.

However, an interesting future work would be
to find particular datasets and tasks for which our
conclusions would not hold. In particular, this
means finding a dataset and a task for which peo-
ple are a lot superior when going through annota-
tion workflows than LLMs.
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A Prompts Used in the LLM-based
Solution

The LLM-based solution is built upon three com-
ponents: annotator LLMs, an ensemble of these
annotator LLMs and a guideline optimizer LLM.
The prompt used for the annotator LLMs is the
following:

You are an expert in annotating entities
in texts. You will be provided with an-
notation guidelines and, based on them,
you will have to annotate the entities
in a sentence. Here are the guidelines

about the entities to annotate: [GUIDE-
LINES]

Each entity has two versions (B- and
I-) depending on if a token starts the
entity (B-) or not (I-). For instance,
in the sentence "I’m Chuck Norris",
"Chuck" should be annotated as B-
person because "Chuck" starts the entity
"Chuck Norris" and "Norris" should be
annotated as I-person because "Norris"
doesn’t start the entity "Chuck Norris".

The list of all entities available for anno-
tation is therefore the following: [LIST
OF POSSIBLE ANNOTATION CATE-
GORIES]

Given the guidelines, what is the en-
tity type of each of the following to-
kens [TOKENS IN THE SENTENCE
TO ANNOTATE] in "[SENTENCE TO
ANNOTATE]"? Think step-by-step and
answer with a JSON containing two
keys: (1) "reasoning", which will con-
tain a list with your reasoning for each
annotation, and (2) "annotation", which
will contain your annotation only. Your
annotation in the "annotation" key of
the JSON must contain a list of entities
in the format [O,O,B-person,I-person,I-
person,O,B-location].

where all elements in brackets are elements to be
provided in the prompt.

For the guideline optimizer LLM, the prompt is
the following:

You are an expert in making annotation
guidelines better. You will be provided
with annotation guidelines and some el-
ements on which there is some disagree-
ments. Your goal is to improve the pro-
vided guidelines to reduce the disagree-
ment between the annotators. Here are
the annotation guidelines to improve:
"[CURRENT GUIDELINES]"

These guidelines currently have an
inter-annotator agreement of [INTER-
ANNOTATOR AGREEMENT]. The
disagreement is mainly because of dis-
agreements between these elements:
[EXAMPLES OF DISAGREEMENT]
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Provide a new version of these guide-
lines in order to solve these disagree-
ments. When updating the guidelines,
make them so that there will not be new
disagreements on the following sen-
tences that will be annotated: [SEN-
TENCES USED IN THE ANNOTA-
TION PROCESS]

The only thing you can do is to clarify
the description of categories in order to
reduce future disagreements. In other
words, only change the description of
person, location, corporation, product,
creative work and group. If you want
to provide examples in the descriptions
about what to do or not do, invent ex-
amples, i.e. do not take examples from
the dataset. Finally, do not mention the
B and I of the categories in the descrip-
tion (e.g., B-group and I-group). In-
stead, mention the category itself (e.g.,
group).

Answer with nothing else but a string
corresponding to the new guidelines you
propose.

where all elements in brackets are elements to be
provided in the prompt.

B Examples of Guideline Improvements

Tables 2 and 3 show comparisons of the original
WNUT-17 guidelines with the worker-based im-
provements after one iteration (Table 2) and with
the LLM-based improvements after one iteration
(Table 3).

C Experimental Guidelines

Table 4 shows the resulting guidelines after four
iterations over the LLM-based workflow. The
amount of agreements resulting from these guide-
lines has been assessed in Section 4.3.1, with the
results reported in Table 1.

D Cost and Time Insights

Table 5 reports the time taken by workers to go
through each phase of the workflow. 16, 10, 8 and
12 workers went through Phases 1, 2, 3 and then
Phase 1 again in the workflow. Going through
the workflow once, and then annotating again,
spanned roughly one week and a half. This is
due to several factors. First of all, all workers

did not start at the same time – a worker can hold
onto a sheet for 30 minutes, then can decide that
they do not want to work on it, releasing the sheet
for another worker 30 minutes after the first ones
started. However, this accounts for only short de-
lays. Most important delays are due to the fact
that some phases are connected (e.g., Phase 2 and
Phase 1, as Phase 2 is about asking for rationales
related to annotations in Phase 1). Because of
that, the annotation manager had to wait until the
workers from Phase 1 were available again to do
the second phase. Lastly, many workers had is-
sues with the platform, and a significant number
of them cheated (tried to get the completion code,
in order to be paid, without doing the task), did not
do the task in its entirety or did it in a seemingly
random way. Because of that, a significant amount
of time of the annotation manager was required to
handle these issues. Section 5.1 elaborates on that.

In comparison, going through the workflow
once, and then annotating again, is performed in
18.43 seconds by the LLMs (see Table 6). Indeed,
the average runtime to perform the annotation with
the initial guidelines is 5.83 seconds per LLM per
instance/sentence. As all the calls to the LLMs
are parallelized, having 10 annotator LLMs and 20
sentences to annotate still is 5.83 seconds in total
on average. Runtime of going through the work-
flow once and then annotating is therefore the sum
of the runtime for the annotation (which is paral-
lelized), the optimization of the guidelines (only
one call to an LLM) and the re-annotation (which
is also parallelized).

Cost-wise, the cost of an LLM is generally com-
puted in two different ways, depending on the sit-
uation: either the LLM is self hosted, or it is
accessed via an API. In the first case, the cost
of the LLM is the cost of the infrastructure used
to work with the LLM. For example, if Amazon
AWS is used with a specific instance (e.g., an
ml.t3.medium), then the cost per hour of this in-
stance multiplied by the time needed to complete
the workflow will define the cost. If the model
is not self hosted, but rather accessed via an API,
then the cost is generally dependent on the number
of tokens in the input and output (with input and
output tokens varying in price).

In our case, as GPT-4o was used in this study,
the cost is per token. The number of input and
output tokens needed for each phase, as well as the
corresponding costs, are presented in Table 6. The
average number of input and output tokens for 10
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Initial guidelines
(before any iteration)

Worker-based solution
after 1 iteration

• person: Names of people (e.g. Virginia Wade).
Don’t mark people that don’t have their own name.
Include punctuation in the middle of names. Fic-
tional people can be included, as long as they’re re-
ferred to by name (e.g. Harry Potter).

• person: Names of people (e.g. Virginia Wade).
Don’t mark people that don’t have their own name.
Include punctuation in the middle of names. Fic-
tional people can be included, as long as they’re re-
ferred to by name (e.g. Harry Potter). Usernames
are considered a name to identify a person (e.g.
@JohnDoe).

• location: Names that are locations (e.g. France).
Don’t mark locations that don’t have their own
name. Include punctuation in the middle of names.
Fictional locations can be included, as long as
they’re referred to by name (e.g. Hogwarts).

• location: Names that are locations (e.g. France).
Don’t mark locations that don’t have their own
name. Include punctuation in the middle of names.
Fictional locations can be included, as long as
they’re referred to by name (e.g. Hogwarts). Twitter
handles about locations should be considered as lo-
cations.

• corporation: Names of corporations (e.g. Google).
Don’t mark locations that don’t have their own
name. Include punctuation in the middle of names.

• corporation: Names of corporations (e.g. Google).
Don’t mark locations that don’t have their own
name. Include punctuation in the middle of names.
Twitter handles for corporations should be consid-
ered as corporations.

• product: Name of products (e.g. iPhone). Don’t
mark products that don’t have their own name. In-
clude punctuation in the middle of names. Fictional
products can be included, as long as they’re referred
to by name (e.g. Everlasting Gobstopper). It’s got
to be something you can touch, and it’s got to be the
official name.

• product: Name of products (e.g. iPhone). Don’t
mark products that don’t have their own name. In-
clude punctuation in the middle of names. Fictional
products can be included, as long as they’re referred
to by name (e.g. Everlasting Gobstopper). It’s got
to be something you can touch, and it’s got to be the
official name.

• creative_work: Names of creative works (e.g. Bo-
hemian Rhapsody). Include punctuation in the mid-
dle of names. The work should be created by a hu-
man, and referred to by its specific name.

• creative_work: Names of creative works (e.g. Bo-
hemian Rhapsody). Include punctuation in the mid-
dle of names. The work should be created by a hu-
man, and referred to by its specific name.

• group: Names of groups (e.g. Nirvana, San Diego
Padres). Don’t mark groups that don’t have a spe-
cific, unique name, or companies (which should be
marked corporation).

• group: Names of groups (e.g. Nirvana, San Diego
Padres). Don’t mark groups that don’t have a spe-
cific, unique name (e.g. “a group of runners” is not
a specific name, as opposed to “Los Angeles Run-
ners”), or companies (which should be marked as
corporations). Twitter handles can be considered as
specific, unique names for groups.

Table 2: Guidelines improved after 1 iteration over the workflow for the worker-based solution. The first column
of the table shows the initial guidelines. Highlighted in green are the changes made by the solution.

annotators and 20 sentences in the table are com-
puted by taking the average for 1 annotator LLM
annotating 1 sentence, multiplied by 200 (for the
200 calls corresponding to 10 annotator LLMs an-
notating 20 sentences). The result is an approxi-
mate cost of $4 to go through the complex work-
flow with 10 annotator LLMs and 20 sentences.

Concerning crowd workers, the cost related to
workers depends on two variables: the time a spe-
cific phase takes for them and the rate per hour

paid to the workers. The time needed for workers
to go through each phase of the workflow is re-
ported in Table 5. It can be seen that, in addition
to being significantly slower, as each phase takes
roughly 30 minutes per worker, the cost of each
phase per worker is around $4, $5 and $10 for an
hourly rate of $8, $10 and $20 respectively ($8 per
hour being the minimum on Prolific). Therefore,
at the cost of having one worker going through one
phase of the workflow with 20 sentences, while
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Initial guidelines
(before any iteration)

LLM-based solution
after 1 iteration

• person: Names of people (e.g. Virginia Wade).
Don’t mark people that don’t have their own name.
Include punctuation in the middle of names. Fic-
tional people can be included, as long as they’re re-
ferred to by name (e.g. Harry Potter).

• person: Names of people, including titles or roles
when they are part of a name (e.g., President Lin-
coln). Do not mark generic titles or roles without a
specific name. Include punctuation in the middle of
names. Fictional people can be included, as long as
they’re referred to by name (e.g., Harry Potter).

• location: Names that are locations (e.g. France).
Don’t mark locations that don’t have their own
name. Include punctuation in the middle of names.
Fictional locations can be included, as long as
they’re referred to by name (e.g. Hogwarts).

• location: Names that are specific geographic loca-
tions or landmarks (e.g., Eiffel Tower, France). Do
not mark generic terms like “park” or “river” with-
out a specific name. Include punctuation in the mid-
dle of names. Fictional locations can be included, as
long as they’re referred to by name (e.g., Hogwarts).

• corporation: Names of corporations (e.g. Google).
Don’t mark locations that don’t have their own
name. Include punctuation in the middle of names.

• corporation: Names of corporations or compa-
nies (e.g., Google, Microsoft). Do not mark generic
terms like “store” or “company” without a specific
name. Include punctuation in the middle of names.

• product: Name of products (e.g. iPhone). Don’t
mark products that don’t have their own name. In-
clude punctuation in the middle of names. Fictional
products can be included, as long as they’re referred
to by name (e.g. Everlasting Gobstopper). It’s got
to be something you can touch, and it’s got to be the
official name.

• product: Names of tangible products or items (e.g.,
iPhone, Coca-Cola). Do not mark services or in-
tangible products. Include punctuation in the mid-
dle of names. Fictional products can be included,
as long as they’re referred to by name (e.g., Ever-
lasting Gobstopper). It must be something you can
touch, and it must be the official name.

• creative_work: Names of creative works (e.g. Bo-
hemian Rhapsody). Include punctuation in the mid-
dle of names. The work should be created by a hu-
man,and referred to by its specific name.

• creative_work: Names of creative works such as
books, songs, movies, or artworks (e.g., Bohemian
Rhapsody, The Great Gatsby). Include punctuation
in the middle of names. The work should be created
by a human, and referred to by its specific name.

• group: Names of groups (e.g. Nirvana, San Diego
Padres). Don’t mark groups that don’t have a spe-
cific, unique name, or companies (which should be
marked corporation).

• group: Names of groups, teams, or bands (e.g.,
Nirvana, San Diego Padres). Do not mark generic
terms like “team” or “band” without a specific name.
Do not mark companies, which should be marked as
corporation.

Table 3: Guidelines improved after 1 iteration over the workflow for the LLM-based solution. The first column of
the table shows the initial guidelines. Green highlights correspond to elements added by the LLM optimizer, red
ones correspond to what has been deleted, and orange ones to reformulations.

being paid the minimal hourly rate on Prolific, one
can have 10 annotator LLMs doing an entire itera-
tion over the workflow.

E LLM Rationales for not Annotating
Twitter Handles

During our experiments, we could see that know-
ing if a Twitter handles was an entity or not was
an important issues for workers. However, this
was generally not a primary concern for LLMs, for
which clarifying Twitter handles came at a later
stage of the process. Table 7 shows some exam-

ples of LLM rationales for not annotating Twitter
handles.
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Initial guidelines
(before any iteration)

LLM-based solution
after 4 iterations

• person: Names of people (e.g. Virginia Wade).
Don’t mark people that don’t have their own name.
Include punctuation in the middle of names. Fic-
tional people can be included, as long as they’re re-
ferred to by name (e.g. Harry Potter).

• person: Names of people, including titles or roles
when they are part of a name (e.g., President Lin-
coln). Do not mark generic titles or roles without a
specific name. Include punctuation in the middle of
names. Fictional people can be included, as long as
they’re referred to by name (e.g., Harry Potter). So-
cial media handles or usernames that clearly refer to
a person should also be marked as person. Do not
mark possessive forms or contractions as person un-
less they are part of a name. Do not mark standalone
words or punctuation that are not part of a person’s
name.

• location: Names that are locations (e.g. France).
Don’t mark locations that don’t have their own
name. Include punctuation in the middle of names.
Fictional locations can be included, as long as
they’re referred to by name (e.g. Hogwarts).

• location: Names that are specific geographic loca-
tions or landmarks (e.g., Eiffel Tower, France). Do
not mark generic terms like “park” or “river” with-
out a specific name. Include punctuation in the mid-
dle of names. Fictional locations can be included, as
long as they’re referred to by name (e.g., Hogwarts).
Do not mark dates, days of the week, or months as
locations. Do not mark standalone words or punctu-
ation that are not part of a location’s name.

• corporation: Names of corporations (e.g. Google).
Don’t mark locations that don’t have their own
name. Include punctuation in the middle of names.

• corporation: Names of corporations or compa-
nies (e.g., Google, Microsoft). Do not mark generic
terms like “store” or “company” without a specific
name. Include punctuation in the middle of names.
Do not mark groups, teams, or bands as corpora-
tions. Do not mark standalone words or punctuation
that are not part of a corporation’s name.

• product: Name of products (e.g. iPhone). Don’t
mark products that don’t have their own name. In-
clude punctuation in the middle of names. Fictional
products can be included, as long as they’re referred
to by name (e.g. Everlasting Gobstopper). It’s got
to be something you can touch, and it’s got to be the
official name.

• product: Names of tangible products or items (e.g.,
iPhone, Coca-Cola). Do not mark services or in-
tangible products. Include punctuation in the mid-
dle of names. Fictional products can be included,
as long as they’re referred to by name (e.g., Ever-
lasting Gobstopper). It must be something you can
touch, and it must be the official name. Do not mark
generic terms like “truck” or “car” unless they are
part of a specific product name. Do not mark verbs,
actions, standalone words, or punctuation related to
products.

• creative_work: Names of creative works (e.g. Bo-
hemian Rhapsody). Include punctuation in the mid-
dle of names. The work should be created by a hu-
man,and referred to by its specific name.

• creative_work: Names of creative works such as
books, songs, movies, or artworks (e.g., Bohemian
Rhapsody, The Great Gatsby). Include punctuation
in the middle of names. The work should be created
by a human, and referred to by its specific name. Do
not mark parts of a date or time as creative works.
Do not mark conjunctions, prepositions, standalone
words, or punctuation as part of creative works un-
less they are part of the official title.

• group: Names of groups (e.g. Nirvana, San Diego
Padres). Don’t mark groups that don’t have a spe-
cific, unique name, or companies (which should be
marked corporation).

• group: Names of groups, teams, or bands (e.g.,
Nirvana, San Diego Padres). Do not mark generic
terms like “team” or “band” without a specific name.
Do not mark companies, which should be marked
as corporation. Social media handles or usernames
that clearly refer to a group should also be marked
as group. Do not mark standalone words or punctu-
ation that are not part of the group’s name.

Table 4: Guidelines improved after 4 iterations over the workflow for the LLM-based solution. The first column of
the table shows the initial guidelines. Green highlights correspond to elements added by the LLM optimizer, red
ones correspond to what has been deleted, and orange ones to reformulations.
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Phase Median time needed for the phase (with min and max)
Phase 1 (Annotation) 28:54 minutes (15:47 minutes - 53:23 minutes)

Phase 2 (Justify) 25:10 minutes (8:29 minutes - 55:30 minutes)
Phase 3 (Reconsider) 23:12 minutes (12:46 minutes - 1:02:52 hour)

Phase 1
(Annotation w/ new guidelines)

34:54 minutes (14:32 minutes - 49:50 minutes)

Total 1:52:10 hour (51:12 minutes - 3:41:35 hours)

Table 5: Time required by the workers to go through each phase of the workflow. The number of workers who
went through each of these phases is 16, 10, 8 and 12 for, respectively, Phases 1, 2, 3 and then Phase 1 again.

Phase Avg # input
tokens per LLM

Avg # output
tokens per LLM Cost Avg runtime

Annotation
+ Justify

771 499 $0.0069175 5.83 sec

Modifying
the guidelines

1871 472 $0.0093975 5.9 sec

Annotation w/
new guidelines

784 503 $0.00699 6.7 sec

Total for
1 annotator and

1 sentence
3429 1174 $0.0203125 18.43 sec

Total for
10 annotators and

20 sentences
685,800 234,800 $4.0625 18.43 sec

Table 6: Number of input and output tokens needed for each phase per annotator LLM, and the corresponding cost
and runtime for GPT-4o. The information is reported for each instance/sentence on average (“# input tokens” and
“# out tokens”). At the time of this analysis, the cost of GPT-4o was $0.0025/1K input tokens and $0.01/1K output
tokens. The input prompt for the annotation includes the instructions for the task, the guidelines of WNUT17 and
the sentence to annotate. The average runtime from multiple annotators and sentences do not scale because all
the annotations are done in parallel. Please note that for speed and accuracy reasons, Phase 1 and 2 are mixed for
LLMs, and because the results are mostly similar before and after Phase 3 (see Section 3.2), Phase 3 is skipped in
the automation of the workflow.
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Entity Sentence LLM’s Rationale
@TeenThings RT @TeenThings : I love

waking up in the middle
of the night knowing i
have more time to sleep.
#teenthings #comedown-
withlove

This seems to be a Twitter handle, which doesn’t corre-
spond to named entities like person, location, etc. in the
context of physical entities, so it’s labeled as ‘O’.

This is a Twitter handle. While it typically represents a
user or group, it doesn’t fit neatly into the provided cat-
egories like person, group, or corporation. As handles
aren’t named entities per se, it will also be annotated as
‘O’.

Appears to be a social media username. It doesn’t fit any
provided entity categories (person, location, corporation,
etc.). Annotated as O.

@KaulitzClub @KaulitzClub Hahaha!
We dance, eat, drink, and
talk EVERYTIME we get
together. And it’s been
this way for like years
now!

This appears to be a social media handle or username
rather than a name of a person, location, corporation,
product, creative work, or group. Thus, it should be
marked as ‘O’.

It appears to be a username or a handle, but it doesn’t fit
into any of the specified annotation categories, such as
person or group. Thus, it is marked as O.

This could be a group or corporation, but based on the
given format, it’s a social media handle. Without specific
context identifying it as a named entity, it’s marked as O.

Table 7: Examples of LLM rationales for not annotating Twitter handles with the original WNUT-17 guidelines.
Please note that ‘O’ is used by the models to say that it is not an entity.
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Abstract
Abstract Meaning Representation (AMR) is
a graph-based semantic formalism which has
been incorporated into a number of downstream
tasks related to natural language understanding.
Recent work has highlighted the key, yet often
ignored, role of ambiguity and implicit infor-
mation in natural language understanding. As
such, in order to effectively leverage AMR in
downstream applications, it is imperative to un-
derstand to what extent and in what ways ambi-
guity affects AMR graphs and causes disagree-
ment in AMR annotation. In this work, we
examine the role of ambiguity in AMR graph
structure by employing a taxonomy of ambigu-
ity types and producing AMRs affected by each
type. Additionally, we investigate how various
AMR parsers handle the presence of ambiguity
in sentences. Finally, we quantify the impact of
ambiguity on AMR using disambiguating para-
phrases at a larger scale, and compare this to
the measurable impact of ambiguity in vector
semantics.

1 Introduction

Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013) is a semantic representation
which formally encodes the meaning of a sentence
or phrase in the form of a rooted, directed graph.
Figure 1 shows an example AMR graph of a sen-
tence, in both PENMAN (string-based) and graph-
based form. AMR has recently been leveraged for a
range of downstream tasks (Wein and Opitz, 2024).
While progress has been made on incorporating
AMR for engineering purposes, there has not yet
been consideration for how ambiguity affects AMR
graph structure.

Ambiguity is a key factor in understanding the
meaning of a sentence (Zipf, 1949; Piantadosi et al.,
2012) and is also a pain point for current NLP sys-
tems (Yuan et al., 2023; Liu et al., 2023), making
this an important consideration for formal semantic
representations such as AMR. Further, ambiguity

want-01

we finish-01 week

thisexperiment-01

:ARG1:ARG0

:ARG0

:ARG1 :mod

:time

:poss

(w1 / want-01
:ARG0 (w2 / we)
:ARG1 (f / finish-01

:ARG1 (e / experiment-01
:poss w2)

:ARG0 w2)
:time (w3 / week

:mod (t / this)))

Figure 1: The AMR annotation for the sentence “we
want to finish our experiments this week,” as a graph
(top) and as a string in PENMAN notation (bottom).

in the form of “differences in interpretation” is
cited as one of the primary causes of disagreement
in AMR annotation (§2.1). Therefore, if we want
to effectively leverage AMR as a meaning repre-
sentation for downstream tasks, it is important to
investigate how ambiguity affects AMR given the
critical role ambiguity plays in meaning.

In this work, we investigate the role of ambiguity
on English AMR graph structure by (1) examining
which types of ambiguity affect graph structure,
(2) determining how three top-performing text-to-
AMR parsers handle ambiguity in text, and (3) mea-
suring the effect of ambiguity on AMR in compari-
son to vector semantics.

First (in §3), in order to assess which types of
ambiguity affect AMR graph structure, we apply
the ambiguity taxonomy from Li et al. (2024). Us-
ing the ambiguous sentences and their possible
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interpretations provided from Li et al. (2024); Liu
et al. (2023), we parse the sentences into AMR
graphs for each interpretation, with the notion that
if the ambiguous sentence breaks down into multi-
ple AMRs (with the AMR graph being dependent
upon interpretation), then the type of ambiguity
present in the sentence affects AMR.

Second (in §4), we examine how ambiguity in
text is handled by text-to-AMR parsers. Text-to-
AMR parsing is the task of automatically convert-
ing a sentence or phrase into its corresponding
AMR annotation. We elicit parses of the ambigu-
ous sentences from three high-performing AMR
parsers and assess whether they parse AMRs corre-
sponding to the same or different interpretations.

Third (in §5), for a large set of disambiguating
paraphrases of ambiguous sentences, we measure
AMR graph overlap (via Smatch (Cai and Knight,
2013)) and BERTscores (Zhang et al., 2019) of the
sentences in order to see a broader picture of the
measurable effect of ambiguity on both forms of
semantic representations.

2 Background

2.1 AMR Disagreement

Abstract Meaning Representation (AMR) is a se-
mantic representation which reflects “who does
what to whom,” capturing the core concepts and
relationships of elements of meaning (Banarescu
et al., 2013). AMRs are rooted, directed graphs in
which the nodes correspond with concepts in the
sentence and edges indicate the relationships be-
tween those concepts; the root typically reflects the
main action verb. AMR was originally designed
for English but has since been extended to a num-
ber of other languages (Wein and Schneider, 2024).
Annotation is fairly lightweight but still requires an-
notator training. Inter-annotator agreement (IAA)
is often calculated using Smatch (Cai and Knight,
2013), a hill-climbing algorithm which measures
graph overlap on a scale from 0 to 1; 1 indicates
graph isomorphism and 0 indicates no shared graph
attributes.

In existing AMR corpora, reported IAA has
ranged from 0.71 to 0.89. Numerous causes have
been cited as the reason for annotator disagreement.
Persian AMR (Takhshid et al., 2022), Portuguese
AMR (Sobrevilla Cabezudo and Pardo, 2019), Ko-
rean AMR (Choe et al., 2020), Spanish AMR (Wein
et al., 2022), and Chinese AMR (Li et al., 2016) all
cited different interpretations of sentences as being

causes of different AMR graphs. Specific sources
of difference included modality, conjunctive mark-
ers with multiple meanings, and verb sense labels.
Thus, it is important to investigate how ambiguity,
as it relates to different possible interpretations of
sentences, quantitatively affects AMR annotation.

Multilingual issues, such as a lack of in-language
frame sets or individual collocations not repre-
sented in the guidelines (Takhshid et al., 2022; So-
brevilla Cabezudo and Pardo, 2019; Choe et al.,
2020), errors (Li et al., 2016; Sobrevilla Cabezudo
and Pardo, 2019; Oral et al., 2024; Wein et al.,
2022), and confusion with guidelines (Sobre-
villa Cabezudo and Pardo, 2019; Choe et al., 2020;
Wein et al., 2022) were also cited as causes of an-
notator disagreement. English AMR (Banarescu
et al., 2013) did not describe causes of annotator
disagreement.

2.2 Related Work on Ambiguity in Symbolic
Representations

As we do for AMR in this work, prior work has con-
sidered the role of ambiguity in other symbolic rep-
resentations. In particular, prior work investigated
the impact of ambiguous input on semantic parsing
with regard to synchronous context free grammars
(Arthur et al., 2015), logical forms (Stengel-Eskin
et al., 2023), and synactic parse trees (Church and
Patil, 1982).

Dumitrache et al. (2019) produced a crowd-
annotated FrameNet corpus which contains multi-
ple annotations per frame and disagreement-based
confidence scores, as opposed to the single most-
chosen frame, in order to account for ambiguity
in the text which would alter the frame annotation.
Similarly, Vossen et al. (2018) created a data-to-
text corpus with incorporated referential ambiguity.

On the other hand, it is also possible to address
the presence of ambiguity using formal represen-
tations. Koller et al. (2008) addressed scope ambi-
guity by computing the most likely reading using a
regular tree grammar and Duan et al. (2016) used
CCG to produce disambiguating paraphrases.

3 Effect of Each Type of Ambiguity on
AMR Graphs

In this section, we investigate which types of am-
biguity have an effect on AMR via analysis on a
small dataset.
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3.1 Data and Approach to AMR Parsing

We extract the ambiguous sentences and their indi-
vidual interpretations from Li et al. (2024), which
contains sentences collected from various sources
plus newly generated sentences, and an appendix
with taxonomically annotated sentences from the
AmbiEnt dataset (Liu et al., 2023). We use all of
the sentences included in the work, which results in
25 sentences occupying 11 categories of ambiguity,
with two or three sentences per category.

We produce AMRs for each interpretation by
automatically parsing (1) the original ambiguous
sentence, (2) the first interpretation, and (3) the
second interpretation, using SPRING (Bevilacqua
et al., 2021). We manually write the sentences cor-
responding to the two interpretations based on the
descriptions of the source of ambiguity provided in
Li et al. (2024). Then, we manually fix any errors
in the automatically parsed AMRs and ensure that
they do in fact represent the two distinct possible
interpretations of the ambiguous sentence.

In producing and analyzing the AMRs, we de-
termine whether, for each of the explored types
of ambiguity, different AMR graph structures are
necessary to reflect the individual interpretations.
If different AMR graph structures result from each
interpretation, this indicates that the type of ambi-
guity has an effect on AMR graph structure.

3.2 Results

The results for this experiment, with different
AMRs being parsed for the individual interpre-
tations indicating the ambiguity has an effect on
AMR, can be found in Table 1.

Of the 11 types of ambiguity, four (syntactic, el-
liptical, idiomatic, and coreferential) have an effect

Type of Ambiguity Sent. 1 Sent. 2 Sent. 3
Lexical
Syntactic
Scopal
Elliptical
Collective
Implicative
Presuppositional
Idiomatic
Coreferential
Generic
Type/Token

Table 1: For each type of ambiguity, shows which sen-
tences have the same (X) versus different (check) AMRs
for both interpretations, where having different AMRs
indicates that the ambiguity does have an effect on AMR
graph structure for that sentence.

on the AMR graph for all sentences in that cate-
gory, five (collective, implicative, presuppositional,
generic, and type/token) have no effect on AMR for
any sentences in that category, and two (lexical and
scopal) have mixed effects. All AMR graphs along
with their interpretations and IDs (which ambiguity
they contain) can be found in Appendix A.
Consistent effect. Syntactic ambiguity consis-
tently has an effect on AMR graph structure be-
cause it changes argument placement. For exam-
ple, in the case of “superfluous hair remover,” for
the interpretation remover of superfluous hair re-
mover, superfluous modifies hair, whereas for the
hair remover which is superfluous interpretation,
superfluous modifies remover.

Elliptical and coreferential ambiguity consis-
tently affect AMR graph structure because they
dictate the content of the coreferent concept. For
example, for elliptical ambiguity, “Peter walked
his dog, and Dan did, too” could indicate that Dan
walked either his own or Peter’s dog, which is repre-
sented differently in AMR because the dog walked
by Dan will either be possessed by Peter or Dan.
For coreferential ambiguity, such as “Abby told
Brittney that she upset Courtney” the :ARG0 of up-
set, i.e. the actor doing the upsetting, will be either
Abby or Brittney depending on the interpretation.

Idioms are incorporated in AMR as special
frames. Therefore, whether the idiom is the in-
tended meaning or the literal interpretation is the
intended meaning will change whether the special
frame is used (e.g. (z1 / kick_bucket-05) ver-
sus (z1 / kick-01 :ARG1 (z2 / bucket)) for
“kick the bucket”).
Mixed effects. Lexical ambiguity sometimes has
an effect on AMR graph structure depending on
whether one interpretation receives special treat-
ment in AMR. For example “bank” is not rep-
resented differently if it is a financial or river
bank, but “speaker” could be represented as (z1
/ person :ARG0-of (z2 / speak-01)) or (z1
/ speaker) if it is a person speaking or a loud-
speaker, respectively. This is indicative of the fact
that people are rooted by person in AMR, and
other entities such as organizations would receive
similar treatment, and thus would similarly induce
an AMR divergence based on lexical ambiguity.

Scope is not represented in AMR and as a result,
scopal ambiguity generally should not affect AMR
graph structure. However, for the sentence “he
wants to attend a school in New York,” the empha-
sis could change based on the interpretation to have
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the school be an argument of be-located-at-91
or have location be a modifier of the school.

No effect. The types of ambiguity which do not
have an effect on AMR graph structure generally
rely on commonsense knowledge or assumptions,
which are not incorporated into AMR. For example,
“the students wrote a paper” (which is affected by
collective/distributive ambiguity) is represented the
same in AMR whether the students wrote a paper
together or individually.

Similarly, implicative, presuppositional, and
generic/non-generic ambiguity all rely on assump-
tions about content not contained in the sentence,
which therefore does not affect AMR structure,
since implied content does not appear in an AMR
annotation.

Type/token ambiguity can be closer to under-
specification than outright ambiguity, as in the case
of “you should visit Norway in the summer.” This
is represented the same in AMR whether it is inter-
preted as “you should visit Norway this summer”
or “you should visit Norway during a summer,” but
they would differ if the text explicitly said “this/a
summer.”

4 AMR Parsers and Ambiguity

In this section we investigate how text-to-AMR
parsers handle the presence of ambiguity in text,
using the same data as in §3.

Methodology. For this experiment, we test how
ambiguity affects the output of the SPRING
(Bevilacqua et al., 2021), XFM-BART-large, and
T5-based text-to-AMR parsers.1

Results. For all cases except for two where the
ambiguity resulted in two different AMR struc-
tures (one for each interpretation), the three parsers
produced graphs corresponding with the same in-
terpretation.

The first case where the parsers produced differ-
ent interpretations was due to an error made by the
T5-based parser, which for the sentence “Calvin
will honor his father and Otto will too” produced
an AMR reflecting that Otto will honor himself.
The SPRING parser also had difficulty with this
sentence, as even when explicitly stating that Otto
will honor Otto’s father, the output still indicated
that Otto too will honor Calvin’s father.

1On the AMR 3.0 dataset (Knight et al., 2020), XFM-
BART-large and SPRING both achieve Smatch scores of 0.84,
while the T5-based parser achieves a Smatch score of 0.82.
We run all three parsers through the amrlib package.

The next case of different interpretation produc-
tion amongst the parsers was for the sentence “My
roommate and I met the lawyer for coffee, but she
became ill and had to leave.” The SPRING and
XFM-BART-large parsers both produced AMRs
indicating that the roommate became ill, while the
T5-based parser produced an AMR indicating that
the lawyer became ill.

In general, the parsers accommodated the ambi-
guity by outputting one acceptable interpretation,
though ambiguity is a possible cause of parser dis-
agreement and/or error, as demonstrated here by
the two cases where parser disagreement/error did
occur. Still, the quite consistent parsing of ambigu-
ous sentences into the same meaning suggests that
there is perhaps a “default” or more likely meaning
for the ambiguous sentence from the perspective
of text-to-AMR parsers, which is the interpretation
reflected in the automatic AMR parse.

5 Overall Effect of Ambiguity on AMR
Similarity

Now, we measure the quantitative impact of am-
biguity on AMR by parsing a large set of disam-
biguating paraphrases and comparing the Smatch
scores of the AMRs against their corresponding
sentences’ BERTscore values.

5.1 Approach to Calculating Overall Effect

For this analysis, we use the linguistically anno-
tated sentences from the AmbiEnt dataset (Liu
et al., 2023), a natural language inference test set
of ambiguous sentences; the premises form disam-
biguating paraphrases of the original sentence (if
the original sentence is ambiguous, which not all
are). We use only the sentences which have dis-
ambiguations and pair their premises, resulting in
919 disambiguated sentence pairs. Then, we use
the SPRING parser to produce the 1,838 AMRs of
these sentences. This allows us to then calculate
Smatch similarity between each of the different
interpretations of the original sentence.

5.2 Results

Overall, we find that the Smatch similarity between
the different AMRs of the interpretations is 0.83.
The pairwise scores range from 0.17 to 1.0, with
387 of the items having a Smatch score of 1.0.2

A number of the especially low scores (including

2The variance was 0.03 and the median was 0.88.
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the 0.17 case) were caused by multi-sentence dif-
ferences (i.e. whether one or both AMRs were
rooted by multi-sentence), which is not a diver-
gence in AMR structure that conveys a difference
in meaning.

One example of an AMR pair with a low Smatch
score (0.67) is for the following sentence pair: “the
vote was close because many people were unsure
of their vote” and “the vote was close because
many people abstained due to indecision.” The
AMRs diverge because the argument of their shared
cause-01 root either reflects the abstention or the
indecision, making the AMRs quite different. How-
ever, these sentences have a BERTscore of 0.78.

The average bert-base-uncased BERTscore
of the sentences is 0.91, noticably higher than the
0.83 average Smatch score. Thus, in line with
prior work (Leung et al., 2022; Wein et al., 2023;
Opitz et al., 2023), we find that AMR metrics are
even more sensitive to finer-grained differences in
meaning than embedding-based semantics. While
AMR reflects finer-grained differences in meaning,
in particular with respect to predicate-argument
structure, BERTscore and similar vector-based rep-
resentations of meaning are less sensitive to these
nuances of meaning. Therefore, taking ambiguity
into account is even more important when working
with AMR than with vector-based models.

6 Conclusion & Future Work

In this work, we investigated the effect of ambiguity
on AMR by determining whether different interpre-
tations of ambiguous sentences result in different
AMR graphs. Ultimately, we find that syntactic,
elliptical, idiomatic, and coreferential ambiguity
consistently affect AMR graph structure, and lex-
ical and scopal ambiguity can also affect AMRs
depending on the specific sentence. We manually
examine a small amount of sentences, which makes
it possible that the other types of ambiguity have
edge cases which may impact an AMR; still, in our
sample and as a general rule, they do not have an
impact and we reason through why in §3.

The results of our experiments indicate that ambi-
guity not only has an effect on AMR, but likely has
an even greater effect on AMR than on embedding-
based semantics. Therefore, when calculating IAA,
it is important for AMR dataset curators to ver-
ify to what extent ambiguity is present in the data.
Further, our results suggest that when ambiguity
can be resolved by presenting additional context to

annotators, the extra-sentential context should be
provided.

Finally, these findings motivate future work pro-
viding AMR datasets with multiple acceptable
AMRs per sentence, following Dumitrache et al.
(2019). Similarly to how Huang et al. (2023) cre-
ated a dataset where each AMR led to the produc-
tion of multiple paraphrased sentences, our work
suggests the utility of datasets containing multiple
AMRs per sentence (of which ours is the first).3

Limitations

Our qualitative analysis, though supplemented with
a larger-scale quantitative analysis, is limited to the
sentences contained in Li et al. (2024) and is small-
scale. However, we contextualize the observed
effects within the AMR schema to further unpack
which types of ambiguity affect AMR generally.

While we leverage a thorough taxonomy of am-
biguity for NLP, it is possible that there are other
kinds of ambiguity which may be relevant. Also,
this investigation is for English data, so it is yet to
be seen how this would extend to other languages.

Regarding additional future work, if in the future
the AmbiEnt dataset (Liu et al., 2023) is annotated
with the types of ambiguity presented in Li et al.
(2024), we could also quantify the effect of each
category (rather than overall effect).
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A All Categorized AMR Graphs

# ::snt We finally reached the bank. ::id
lex_amb_1_interpret_1

# ::interpretations: We finally reached the
river bank.; We finally reached the
financial bank.

(z1 / reach-01
:ARG0 (z2 / we)
:ARG1 (z3 / bank)
:time (z4 / final))

# ::snt The speaker is at the front of the
room. ::id lex_amb_2_interpret_1

# ::interpretations: The person who is
speaking is at the front of the room.

(z1 / person
:ARG0-of (z2 / speak-01)
:location (z3 / front

:part-of (z4 / room)))

# ::snt The speaker is at the front of the
room. ::id lex_amb_2_interpret_2

# ::interpretations: The loudspeaker is at
the front of the room.

(z1 / speaker
:location (z2 / front

:part-of (z3 / room)))

# ::snt superfluous hair remover ::id
synt_amb_1_interpret_1

# ::interpretations: remover of superfluous
hair

(z1 / remove-01

:ARG1 (z2 / hair
:mod (z3 / superfluous)))

# ::snt superfluous hair remover ::id
synt_amb_1_interpret_2

# ::interpretations: hair remover which is
superfluous

(z1 / remove-01
:ARG1 (z2 / hair)
:mod (z3 / superfluous))

# ::snt The girl hit the boy with the book.
::id synt_amb_2_interpret_1

# ::interpretations: With the book, the girl
hit the boy.

(z1 / hit-01
:ARG0 (z2 / girl)
:ARG1 (z3 / boy)
:ARG2 (z4 / book))

# ::snt The girl hit the boy with the book.
::id synt_amb_2_interpret_2

# ::interpretations: The girl hit the boy
who had the book.

(z1 / hit-01
:ARG0 (z2 / girl)
:ARG1 (z3 / boy

:ARG0-of (z4 / have-03
:ARG1 (z5 / book))))

# ::snt He's drawing all over the bus with
graffiti. ::id synt_amb_3_interpret_1

# ::interpretations: He is drawing graffiti
on the surface of the bus.

(z1 / draw-01
:ARG0 (z2 / he)
:ARG1 (z3 / graffiti)
:location (z4 / bus)
:extent (z5 / all-over))

# ::snt He's drawing all over the bus with
graffiti. ::id synt_amb_3_interpret_2

# ::interpretations He is on the bus,
drawing graffiti.

(z1 / bus
:location-of (z2 / he

:ARG0-of (z3 / draw-01
:ARG1 (z4 / graffiti))))

# ::snt Every student read two poems. ::id
scop_amb_1_interpret_1

# ::interpretations Every student read two (
possibly different) poems.; Two poems
were read by every student (same poems).

(z1 / read-01
:ARG0 (z2 / person

:ARG0-of (z3 / study-01)
:mod (z4 / every))

:ARG1 (z5 / poem
:quant 2))

# ::snt He wants to attend a school in New
York. ::id scop_amb_1_interpret_1

# ::interpretations There is a school in New
York that he wants to attend.

(z1 / want-01
:ARG0 (z2 / he)
:ARG1 (z3 / attend-01

:ARG0 z2
:ARG1 (z4 / school
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:location (z5 / city
:name (z6 / name

:op1 "New"
:op2 "York")))))

# ::snt He wants to attend a school in New
York. ::id scop_amb_1_interpret_1

# ::interpretations He wants to attend
school in New York.

(z1 / want-01
:ARG0 (z2 / he)
:ARG1 (z3 / attend-01

:ARG0 z2
:ARG1 (z4 / be-located-at-91

:ARG1 (z5 / school)
:ARG2 (z6 / city

:name (z6 / name
:op1 "New"
:op2 "York")))))

# ::snt Peter walked his dog, and Dan did,
too. ::id ellip_amb_1_interpret_1

# ::interpretations Peter and Dan walked
Peter's dog.

(z1 / walk-01
:ARG0 (z2 / and

:op1 (z3 / person
:name (z4 / name

:op1 "Peter"))
:op2 (z5 / person

:name (z6 / name
:op1 "Dan")))

:ARG1 (z7 / dog
:poss z3))

# ::snt Peter walked his dog, and Dan did,
too. ::id ellip_amb_1_interpret_2

# ::interpretations Peter walked his dog,
and Dan walked his own dog.

(z1 / and
:op1 (z2 / walk-01

:ARG0 (z3 / person
:name (z4 / name

:op1 "Peter"))
:ARG1 (z5 / dog

:poss z3))
:op2 (z6 / walk-01

:ARG0 (z7 / person
:name (z8 / name

:op1 "Dan"))
:ARG1 (z9 / dog

:poss z7)))

# ::snt Sam loves Jess more than Jason. ::id
ellip_amb_2_interpret_1

# ::interpretations Sam loves Jess more than
Sam loves Jason.

(z1 / love-01
:ARG0 (z2 / person

:name (z3 / name
:op1 "Sam"))

:ARG1 (z4 / person
:name (z5 / name

:op1 "Jess"))
:ARG1-of (z6 / have-degree-91

:ARG3 (z7 / more)
:ARG4 (z8 / love-01

:ARG0 z2
:ARG1 (z9 / person

:name (z10 / name

:op1 "Jason")))))

# ::snt Sam loves Jess more than Jason. ::id
ellip_amb_2_interpret_2

# ::interpretations Sam loves Jess more than
Jason loves Jess.

(z1 / love-01
:ARG0 (z2 / person

:name (z3 / name
:op1 "Sam"))

:ARG1 (z4 / person
:name (z5 / name

:op1 "Jess"))
:ARG1-of (z6 / have-degree-91

:ARG3 (z7 / more)
:ARG4 (z8 / love-01

:ARG0 (z9 / person
:name (z10 / name

:op1 "Jason"))
:ARG1 z4)))

# ::snt Calvin will honor his father and
Otto will too. ::id
ellip_amb_3_interpret_1

# ::interpretations Calvin and Otto will
honor Calvin's father.

(z1 / and
:op1 (z2 / honor-01

:ARG0 (z3 / person
:name (z4 / name

:op1 "Calvin"))
:ARG1 (z5 / person

:ARG0-of (z6 / have-rel-role
-91
:ARG1 z3
:ARG2 (z7 / father))))

:op2 (z8 / honor-01
:ARG0 (z9 / person

:name (z10 / name
:op1 "Otto"))

:ARG1 z5
:mod (z11 / too)))

# ::snt Calvin will honor his father and
Otto will too. ::id
ellip_amb_3_interpret_2

# ::interpretations Calvin will honor Calvin
's father, and Otto will honor Otto's
father.

(z1 / and
:op1 (z2 / honor-01

:ARG0 (z3 / person
:name (z4 / name

:op1 "Calvin"))
:ARG1 (z5 / person

:ARG0-of (z6 / have-rel-role
-91
:ARG1 z3
:ARG2 (z7 / father))))

:op2 (z8 / honor-01
:ARG0 (z9 / person

:name (z10 / name
:op1 "Otto"))

:ARG1 (z11 / person
:ARG0-of (z12 / have-rel-

role-91
:ARG1 z9
:ARG2 (z13 / father)))

:mod (z14 / too)))
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# ::snt The students wrote a paper. ::id
coll_amb_1_interpret_1

# ::interpretations The students wrote a
paper together.; Each student wrote a
paper separately.

(z1 / write-01
:ARG0 (z2 / person

:ARG0-of (z3 / study-01))
:ARG1 (z4 / paper))

# ::snt Jenny and Zoe solved the puzzle. ::
id coll_amb_2_interpret_1

# ::interpretations Jenny and Zoe each
solved the puzzle individually.; Jenny
and Zoe solved the puzzle together.

(z1 / solve-01
:ARG0 (z2 / and

:op1 (z3 / person
:name (z4 / name

:op1 "Jenny"))
:op2 (z5 / person

:name (z6 / name
:op1 "Zoe")))

:ARG1 (z7 / puzzle-01))

# ::snt Some gems in this box are fake. ::id
impl_amb_1_interpret_1

# ::interpretations Some, and not all, gems
in this box are fake.; Some, and perhaps
all, gems in this box are fake.

(z1 / fake-02
:ARG1 (z2 / gem

:quant (z3 / some)
:location (z4 / box

:mod (z5 / this))))

# ::snt Carolyn had talked to two senators.
::id impl_amb_2_interpret_1

# ::interpretations Carolyn had talked to (
exactly) two senators.; Carolyn had
talked to (at least) two senators.

(z1 / talk-01
:ARG0 (z2 / person

:name (z3 / name
:op1 "Carolyn"))

:ARG2 (z4 / person
:quant 2
:ARG0-of (z5 / have-org-role-91

:ARG1 (z6 / government-
organization
:name (z7 / name

:op1 "Senate"))))
)

# ::snt Jane left early too. ::id
pres_amb_1_interpret_1

# ::interpretations (e.g. Robert left early
.) Jane left early too.; (e.g. Jane
arrived early.) Jane left early too.

(z1 / leave-11
:ARG0 (z2 / person

:name (z3 / name
:op1 "Jane"))

:time (z4 / early)
:mod (z5 / too))

# ::snt The new software is also available
in a Spanish-language version. ::id

pres_amb_2_interpret_1
# ::interpretations The new software is also

available in a Spanish-language version
(in addition to older software).; The
new software is also available in a
Spanish-language version (in addition to
other languages).

(z1 / available-02
:ARG2 (z2 / software

:ARG1-of (z3 / new-01))
:mod (z4 / also)
:manner (z5 / version

:mod (z6 / language
:name (z7 / name

:op1 "Spanish"))))

# ::snt kick the bucket ::id
idiom_amb_1_interpret_1

# ::interpretations die
(z1 / kick_bucket-05)

# ::snt kick the bucket ::id
idiom_amb_1_interpret_2

# ::interpretations hit a bucket with one's
foot

(z1 / kick-01
:ARG1 (z2 / bucket))

# ::snt He didn't see the big picture. ::id
idiom_amb_2_interpret_1

# ::interpretations He didn't see the
physical big picture.

(z1 / see-01
:polarity -
:ARG0 (z2 / he)
:ARG1 (z3 / picture

:mod (z4 / big-01)))

# ::snt He didn't see the big picture. ::id
idiom_amb_2_interpret_2

# ::interpretations He didn't see the
metaphorical big picture.

(z1 / see-01
:polarity -
:ARG0 (z2 / he)
:ARG1 (z3 / big-picture-01))

# ::snt Abby told Brittney that she upset
Courtney. ::id coref_amb_1_interpret_1

# ::interpretations Abby told Brittney that
Abby upset Courtney.

(z1 / tell-01
:ARG0 (z2 / person

:name (z3 / name
:op1 "Abby"))

:ARG1 (z4 / upset-01
:ARG0 z2
:ARG1 (z5 / person

:name (z6 / name
:op1 "Courtney")))

:ARG2 (z7 / person
:name (z8 / name

:op1 "Brittney")))

# ::snt Abby told Brittney that she upset
Courtney. ::id coref_amb_1_interpret_2

# ::interpretations Abby told Brittney that
Brittney upset Courtney.
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(z1 / tell-01
:ARG0 (z2 / person

:name (z3 / name
:op1 "Abby"))

:ARG1 (z4 / upset-01
:ARG0 (z5 / person

:name (z6 / name
:op1 "Brittney"))

:ARG1 (z7 / Courtney))
:ARG2 z5)

# ::snt My roommate and I met the lawyer for
coffee, but she became ill and had to
leave. ::id coref_amb_2_interpret_1

My roommate and I met the lawyer for coffee,
but the lawyer became ill and had to
leave.

(z1 / meet-02
:ARG0 (z2 / and

:op1 (z3 / person
:ARG0-of (z4 / have-rel-role

-91
:ARG1 (z5 / i)
:ARG2 (z6 / roommate)))

:op2 z5)
:ARG1 (z7 / lawyer)
:purpose (z8 / coffee)
:concession-of (z9 / and

:op1 (z10 / become-01
:ARG1 z7
:ARG2 (z11 / ill-01

:ARG1 z7))
:op2 (z12 / obligate-01

:ARG1 z7
:ARG2 (z13 / leave-11

:ARG0 z7))))

# ::snt My roommate and I met the lawyer for
coffee, but she became ill and had to
leave. ::id coref_amb_2_interpret_2

# ::interpretations My roommate and I met
the lawyer for coffee, but my roommate
became ill and had to leave.

(z1 / meet-02
:ARG0 (z2 / and

:op1 (z3 / person
:ARG0-of (z4 / have-rel-role

-91
:ARG1 (z5 / i)
:ARG2 (z6 / roommate)))

:op2 z5)
:ARG1 (z7 / lawyer)
:purpose (z8 / coffee)
:concession-of (z9 / and

:op1 (z10 / become-01
:ARG1 z3
:ARG2 (z11 / ill-01

:ARG1 z3))
:op2 (z12 / obligate-01

:ARG1 z3
:ARG2 (z13 / leave-11

:ARG0 z3))))

# ::snt dinosaurs ate kelp ::id
gen_amb_1_interpret_1

# ::interpretations In general, dinosaurs
ate kelp.; On one occasion, some
dinosaurs ate kelp.

(z1 / eat-01

:ARG0 (z2 / dinosaur)
:ARG1 (z3 / kelp))

# ::snt John ate breakfast with a gold fork.
::id gen_amb_2_interpret_1

# ::interpretations John generally ate
breakfast with a gold fork.; During one
breakfast, John ate with a gold fork.

(z1 / eat-01
:ARG0 (z2 / person

:name (z3 / name
:op1 "John"))

:ARG1 (z4 / breakfast)
:instrument (z5 / fork

:consist-of (z6 / gold)))

# ::snt If an athlete uses a banned
substance, they will be disqualified
from the competition. ::id
gen_amb_3_interpret_1

# ::interpretations As a rule, if an athlete
uses a banned substance, they will be
disqualified from the competition.; If
the referenced athlete uses a banned
substance, they will be disqualified
from the competition.

(z1 / disqualify-01
:ARG1 (z2 / athlete)
:ARG2 (z3 / compete-01

:ARG0 z2)
:condition (z4 / use-01

:ARG0 z2
:ARG1 (z5 / substance

:ARG1-of (z6 / ban-01))))

# ::snt I paid for the same car. ::id
type_amb_1_interpret_1

# ::interpretations I paid for the same car
as another person.; I paid for the same
car twice.

(z1 / pay-01
:ARG0 (z2 / i)
:ARG3 (z3 / car

:ARG1-of (z4 / same-01)))

# ::snt You should visit Norway in the
summer. ::id type_amb_2_interpret_1

# ::interpretations You should visit Norway
this summer.; You should visit Norway
during a summer.

(z1 / visit-01
:ARG0 (z2 / you)
:ARG1 (z3 / country

:name (z4 / name
:op1 "Norway"))

:time (z5 / date-entity
:season (z6 / summer))

:ARG1-of (z7 / recommend-01))
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Abstract

Traditional linguistic annotation methods often
strive for a gold standard with hard labels as
input for Natural Language Processing models,
assuming an underlying objective truth for all
tasks. However, disagreement among annota-
tors is a common scenario, even for seemingly
objective linguistic tasks, and is particularly
prominent in figurative language annotation,
since multiple valid interpretations can some-
times coexist. This study presents the annota-
tion process for identifying metaphorical tweets
within a corpus of 3733 Public Communication
of Science texts written in Mexican Spanish,
emphasizing inter-annotator disagreement. Us-
ing Fleiss’ and Cohen’s Kappa alongside agree-
ment percentages, we evaluated metaphorical
language detection through binary classifica-
tion in three situations: two subsets of the cor-
pus labeled by three different non-expert an-
notators each, and a subset of disagreement
tweets, identified in the non-expert annotation
phase, re-labeled by three expert annotators.
Our results suggest that expert annotation may
improve agreement levels, but does not exclude
disagreement, likely due to factors such as the
relatively novelty of the genre, the presence
of multiple scientific topics, and the blending
of specialized and non-specialized discourse.
Going further, we propose adopting a learning-
from-disagreement approach for capturing di-
verse annotation perspectives to enhance com-
putational metaphor detection in Mexican Span-
ish.

1 Introduction

Studies on Figurative Language Processing (FLP)
have increased substantially in recent years, with
metaphor as one of the main topics addressed from
different computational approaches. Since most of
the research related to computing and technology is
carried out in English-speaking contexts, the great-
est advances in computational metaphor processing
have been developed for the English language, a

situation that has brought an imbalance for the rest
of the languages spoken on the planet. As men-
tioned by Sánchez-Bayona (2021), there is a gap
in Spanish annotated data that can be used for au-
tomatic detection, interpretation and generation of
linguistic metaphors.

As far as Mexican Spanish is concerned, works
on metaphor annotation and metaphor computa-
tional processing are virtually nonexistent. Even
though Natural Language Processing (NLP) ap-
proaches to the study of metaphor date back at
least to the 1980s (Shutova et al., 2013), most of
the research related to computing and technology
is carried out in English-speaking contexts, which
means the greatest advances in metaphor automatic
processing have been developed for the English lan-
guage. Languages like Spanish face a gap in NLP
studies regarding the automatic detection, interpre-
tation, and generation of linguistic metaphors.

To address this gap, we have explored a multi-
class annotation approach to develop an anno-
tated corpus, aiming to study both binary and fu-
ture multi-class classification of metaphorical texts
within the domain of Public Communication of Sci-
ence (PCS) in Twitter/X. We devised this dataset
would provide sufficient training data for a compu-
tational NLP model to identify and understand lin-
guistic metaphors in Spanish texts of this particular
type of discourse, where the wide use of metaphor
—in contrast to specialized scientific discourse—
has been pointed out, emphasizing communicative
and didactic purposes, stemming from the target
audience: the general public. Metaphors play a
major role in PCS, as they are useful for explain-
ing complex concepts in a way that makes them
more accessible and easier to understand for the
non-specialized audience (Berber Sardinha, 2007;
Alexander et al., 2015; Merakchi, 2020).

During our annotation process, we noticed that
human metaphor identification is a challenging pro-
cess, far less intuitive than anticipated. Despite
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rigorously adhering to a meticulous annotation pro-
tocol, carefully adjusted to to the linguistic char-
acteristics of the corpus, we observed consistent
disagreements among annotators on what consti-
tutes metaphorical language in science communi-
cation. In parallel, we have held expert meetings
to address the nuanced linguistic and cognitive as-
pects of metaphors in PCS in relation to impor-
tant features of Twitter/X language use —such as
brevity, interactivity, and the use of multimodal-
ity—, aiming to develop coherent annotation guide-
lines and a consistently annotated corpus. Through
these examinations, we have pursued making the
process of metaphor identification as methodical
and systematic as possible. However, our annota-
tion data has revealed the difficulty of achieving
a reliable gold standard with hard labels through
conventional methods, which highlights the impor-
tance of analyzing annotator disagreements more
closely. Moreover, given the scarcity of research
on disagreement in figurative language annotation
(Weitzel et al., 2016; Sandri et al., 2023; Xiao
et al.), we consider this a critical area for further
exploration.

In this work, we discuss the development of
our annotated corpus, from designing annotation
guidelines to a focused analysis of annotator dis-
agreement. Beyond resolving the points of dis-
agreement to establish a gold standard, we are con-
cerned with understanding the causes and charac-
teristics of this divergence in the binary classifica-
tion of metaphorical texts and non-metaphorical
texts. For our corpus annotation, we have relied on
the MATTER cycle (Pustejovsky and Stubbs, 2013)
and an adaptation of the Metaphor Identification
Procedure Vrije Universiteit Amsterdam (MIPVU)
(Steen et al., 2010), to identify three categories of
metaphors: direct metaphor, indirect metaphor, and
personification metaphor. These categories were
considered to detect only the presence or absence
of metaphorical language in the text.

We annotated a corpus of 3733 PCS tweets pub-
lished in Mexican Spanish from January 2020 to
May 2023. Both our annotated dataset and the
annotation guidelines are publicly available on a
GitHub repository, to support future research in
metaphor analysis and automatic metaphor detec-
tion. This paper is structured as follows: Section
2 outlines the linguistic metaphor annotation, in-
cluding the MATTER cycle, the MIPVU method,
related work in metaphor annotation, and observa-
tions about learning from disagreement. Section 3

details the annotation guidelines, while section 4
reviews a pilot testing as a key phase in improving
the guidelines. Section 5 focuses on corpus annota-
tion, encompassing inter-annotator agreement eval-
uation, expert annotation for disagreement cases,
and subsequent guide refinements. Finally, section
6 presents conclusions and future directions for
potential applications of the corpus.

2 Framework for Linguistic Metaphor
Annotation

2.1 Metaphor Identification Procedure Vrije
Universiteit (MIPVU)

Natural Language Processing (NLP) systems often
rely on linguistic features, such as lexical patterns,
syntactic structures, or semantic associations, to
identify metaphorical language. To tackle this ob-
jective, NLP researchers have turned to a comple-
mentary theoretical approach, exemplified by Steen
et al. (2010) work on the Metaphor Identification
Procedure Vrije Universiteit (MIPVU). Originally
formulated as MIP by Pragglejaz (2007), the MIPVU

provides a systematic and structured methodology
for identifying metaphor related words (MRWs) in
text corpora, offering clear guidelines and criteria
for manual annotation. Unlike the cognitive guid-
ance of other metaphor theories —such as concep-
tual metaphor theory or CMT (Lakoff and Johnson,
1980)—, MIPVU operationalizes metaphor identi-
fication based on linguistic and contextual consid-
erations. Using this approach, researchers have
constructed the VUAM corpus, which stands as
the most extensive dataset with annotations aimed
at characterizing linguistic metaphor (Steen et al.,
2010).

The MIPVU procedure involves several steps for
identifying metaphorical language in text. Just like
MIP, it begins with reading the text to understand
its meaning, followed by identifying lexical units
and establishing their contextual meaning. If a
unit’s contextual meaning contrasts with its basic
meaning and can be understood metaphorically, it
is marked as metaphorical (Pragglejaz, 2007).

In the realm of NLP, MIPVU serves as a valuable
tool for automatically identifying and analyzing
metaphorical language in large text corpora. By in-
corporating refinements such as the consideration
of word class boundaries and various metaphor
types, NLP systems can more accurately detect
MRWs within text. Although the MIPVU method-
ology has been adapted to other languages (Nacey
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et al., 2019), Spanish has been notably omitted,
resulting in a scarcity of labeled data to train super-
vised models (Sanchez-Bayona and Agerri, 2022).

2.2 Related Work
Research and advances in metaphor annotation
in Spanish remain sparse. Notably, the work
by Sanchez-Bayona and Agerri (2022) on this
topic stands out. They developed the Corpus for
Metaphor Detection in Spanish (CoMeta), compris-
ing 3633 sentences from general domain texts with
annotations at the token level (words with seman-
tic content only) with binary labels. The CoMeta
corpus was annotated following an adaptation of
MIPVU into Spanish by the authors, representing a
vital contribution to advancing metaphor research
in the Spanish language.

Before CoMeta, “the only known attempt to an-
notate linguistic metaphor in general domain texts
in Spanish is that of [Martínez] Santiago et al.
(2014), who labeled a sample from SemEval 2013
dataset of the news genre employed for WSD task
in Spanish” (Sánchez-Bayona, 2021, 15). Using
the VUAM corpus as a benchmark and evaluating it
against 9 large language models, CoMeta demon-
strated lower performance results compared to En-
glish. This outcome is understandable, given the
smaller size of the training set in Spanish, although
this does not diminish its remarkable contribution
to NLP in Spanish. However, CoMeta’s binary
tagging represents a certain shortcoming since it
does not allow the study of the different types of
automatically detected metaphors.

Agreement levels in metaphor annotation,
though rarely central in literature related to com-
putational metaphor processing, are occasionally
reported but often without in-depth discussion.
Among the notable cases, the (VUAM) corpus, an-
notated over a two-year period, achieved a high
Fleiss’ kappa of 0.85 (Krennmayr and Steen, 2017).
Another study by Zayed (2021), focused on clas-
sifying metaphorical verbs in Twitter datasets, re-
ported Fleiss’ kappa values exceeding 0.6. Simi-
larly, Sanchez-Bayona and Agerri (2022) involved
six Spanish-speaking linguists in an evaluation of
a 10% random selection of CoMeta, achieving an
average Cohen’s kappa of 0.631. In contrast, our
study involves additional variables which may em-
phasize both the complexity and subjectivity of
the task: a relatively unexplored genre that mixes
specialized and non-specialized discourse, limited
annotation time, and reliance on non-expert anno-

tators.
In contrast to the limited studies on metaphor

detection in Spanish using NLP techniques (Richi
Pons-Sorolla, 2020; Uribe and Mejía, 2023), in En-
glish there have been important developments in
the use of deep learning techniques and transform-
ers for metaphor detection, as reported by Tong
et al. (2021). Furthermore, noteworthy models
have emerged such as MelBERT (Choi et al., 2021)
and MIss RoBERTa WiLDe (Babieno et al., 2022),
specifically trained for metaphor processing from
fine-tuning large language models. Alternative
methods have addressed metaphor detection from
a cross-lingual or multilingual setting (Aghazadeh
et al., 2022; Lai et al., 2023; Hülsing and Schulte
Im Walde, 2024) as well as using Large Language
Models (Wachowiak and Gromann, 2023).

2.3 Learning from Disagreement
In recent years, the approach known as ‘learning
from disagreement’ has emerged in NLP as a re-
action to traditional methods based on a gold stan-
dard annotation, which assumes a single objective
truth underlies the annotation task. This approach
challenges that epistemological assumption and, in-
stead, it adopts a perspectivist view in which “dis-
agreements provide useful information for learn-
ing” (Uma et al., 2021, 1389). This methodological
shift is relevant for linguistic tasks like metaphor
annotation, where multiple valid interpretations of-
ten coexist. By framing disagreements as a source
of information for training data, FLP research can
capture the diversity of perspectives, subjectivity
and interpretative variability to the linguistic phe-
nomena.

Uma et al. (2021) review the evidence for dis-
agreements on NLP and Computer Vision (CV)
tasks, pointing out that annotators might differ
even on supposedly objective linguistic tasks, such
as POS tagging; in some cases, even detailed an-
notation guidelines fail to eliminate errors or re-
solve “hard cases”. Disagreement is even more
pronounced in subjective tasks like sentiment anal-
ysis or hate speech, and it can similarly arise in
tasks involving figurative language. The sources
of disagreement include annotator errors, interface
issues, ambiguities in the annotation scheme, item
difficulty, and the inherent subjectivity of the task.
Several methods have emerged to address this chal-
lenge, from aggregating crowd annotations into a
single label (a form of ‘silver’ truth) to hybrid meth-
ods combining hard and soft labels. While hard

157



labels assign a single definitive label to each item,
soft labels capture the distribution of annotators’
responses, which reflects uncertainty or variability
in the data.

Evaluation of these methods contrasts traditional
‘hard’ metrics —e.g. F1 or accuracy— with ‘soft’
evaluation metrics such as cross-entropy, Jensen-
Shannon divergence, and normalized entropy. The
findings of Uma et al. (2021) indicate that there
is no clear ‘winner’ among methods that do not
rely on gold labels, as the best approach depends
on the specific dataset. However, methods using
hard labels generally perform better when evalu-
ated with hard metrics, while those that do not
assume a recoverable gold label tend to excel with
soft evaluation metrics.

3 Annotation Guidelines

Development of accurate annotation guidelines was
essential for the task of identifying metaphorical
language in Mexican Spanish tweets, as no material
available for this language variety was found. We
established a group of linguists to meet and discuss
the development of the guide, starting from the idea
of adapting the MIPVU to this language and to the
characteristics of the project. An early suggestion
was to first perform a binary corpus annotation,
aimed at distinguishing between metaphorical lan-
guage tweets and literal language tweets. However,
it was determined that focusing on the identifica-
tion of specific metaphor types during annotation
implied the detection of metaphorical language in
the texts. This would enable annotators to classify
the presence of metaphor at a binary level while
subclassifying metaphorical tweets into metaphor
types. Starting with a multi-class annotation system
to support binary classification not only addressed
the immediate objectives of the project, but also
provided data for analyzing metaphor subclasses in
the future.

In our guidelines, we first defined metaphor as a
a conceptual relationship between a source domain
and a target domain, expressed through verbal lan-
guage, according to CMT’s fundamental concepts
(Lakoff and Johnson, 1980). Next, we examined
the MRWs described by Steen et al. (2010), and
decided to focus on three types of metaphors: di-
rect (DM), indirect (IM), and personification (PM),
due to the features of our corpus. Table 1 shows
labeled examples of the three types of metaphors,
extracted from tweets in the corpus and presented

to the annotators in the guide. A more detailed
explanation of our multi-class annotation schema
can be found in Sánchez-Montero et al. (2024), and
our guidelines can be consulted via our GitHub
repository.

Since our primary goal was to detect the pres-
ence of metaphors, we utilized the identification of
metaphor types as a means to this end. Therefore,
we assigned general labels of 0 (non-metaphorical)
and 1 (metaphorical) to the annotated tweets. In
addition, our annotation focused on identifying
scientific metaphors and everyday or colloquial
metaphors in the corpus, both present in PCS
tweets that bridge the specialized realm of science
and the colloquial domain of language.

In addition to providing examples extracted from
the corpus and offering guidance on how to use
the annotation platform, clarifications were pro-
vided regarding the scope of the annotations, i.e.
the whole set of words that should be considered
within each unit tagged with a different label. It
was emphasized that labels should be applied to
lexical words containing relevant semantic content
in all cases, like complete proper names, and for
verbs, annotators were reminded to consider the
type of verb for comprehensive annotation, given
the complexity of Spanish verb morphology. This
included simple verbs and multi-word expressions,
like compound verbs, verbal periphrases, and ver-
bal phrases.

Furthermore, it was explained that scientific ter-
minology of metaphorical origin, such as “plane-
tary rings”, “family trees”, or “neural networks”,
should also be marked. No further information was
added on the determination of linguistic units, as
annotators were presumed to have a background in
linguistics. It was also emphasized that: i) all in-
stances identified as metaphors should be marked,
ii) annotators could refer to a dictionary for assis-
tance, and iii) any problematic cases not present in
the guide should be reported immediately.

4 Pilot Testing

We gathered a group of 6 native Mexican Spanish-
speaking annotators to carry out a pilot test for
the validation of our guidelines1. These annota-
tors are undergraduate students of linguistics in
the age range of 18 to 25 years old, 2 of them fe-
male and 4 male. We chose the Argilla platform

1The principles of the Belmont Report were followed in
the data labeling process (Belmont, 1978).
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Category Annotation Example Translation

Direct
Metaphor

¿Acostumbras ver tu celular antes de dormir?
¡Tache! Te explicamos porqué este aparato es nue-
stro peor aliado a la hora de conciliar el sueño. ¡#Re-
descubreLaCiencia en el #DíaMundialDelSueño!

Do you usually watch your cell phone before going
to sleep? Strike! We explain you why this device
is our worst ally when it comes to falling asleep.
#DiscoverScience on #WorldSleepDay!

Indirect
Metaphor

¡Las mujeres a la conquista del espacio!
#SpaceConCiencia y @Ciencia_UNAM presentan
a @AnaC_Olvera y @TerricolaMex en una plática
con @RaulGranada más allá del firmamento
¡Descubre porqué la mujer ha sido fundamental en
la carrera espacial!

Women to the conquest of space!
#SpaceConCiencia and @Ciencia_UNAM present
@AnaC_Olvera and @TerricolaMex in a talk with
@RaulGranada beyond the firmament.
Find out why women have been instrumental in the
space race!

Personification
Metaphor

El telescopio James Webb fotografió varias galaxias
que gravitan en torno de un hoyo negro que está
capturando parte de su gas.

The James Webb telescope photographed several
galaxies gravitating around a black hole that is cap-
turing some of their gas.

Table 1: Examples of metaphor annotation in the guidelines including their English translation.

for corpus annotation due to its suitability for han-
dling Spanish idiosyncrasies, including accents and
the letter “ñ”, as well as other distinctive elements
found in tweets such as emojis. Additionally, the
platform’s ability to tokenize texts upon dataset
loading proved advantageous, enhancing efficiency
during the annotation task.

We evaluated a dataset of 73 tweets commonly
annotated by all six annotators, randomly sampled
from the corpus, using Fleiss’ Kappa coefficient
(Fleiss, 1971). Our evaluation focused on a binary
classification, i.e., distinguishing between tweets
with metaphors and tweets without metaphors, re-
gardless of the specific labels that annotators placed
on the texts. We extracted the binary labels of each
record per annotator, assigning ‘0’ to texts with no
metaphor and ‘1’ to the rest of the labels used.

Once this structured dataset was determined, the
Fleiss’ Kappa coefficient was calculated, result-
ing in a value of 0.22. According to the Landis
and Koch (1977) scale, a Kappa score like this
falls within the scope of a “fair” agreement, which
means that the level of inter-annotator agreement
(IAA) beyond what might be expected by chance
alone, but not sufficiently strong. Initially, we an-
ticipated a lower rate of IAA given the task’s com-
plexity for this initial phase.

During the annotation process, several common
errors were identified, including the misclassifi-
cation of verbs that do not personify but, being
adjacent to inanimate objects words, were labeled
as personificators. Additionally, concerning DMs,
annotators tended to focus on identifying metaphor
signals from the provided list of expressions, rather
than addressing conceptual mappings, resulting in
the misclassification of this type of metaphor.

Furthermore, the annotators failed to consider
multiple metaphors within a text, even though the
corpus presented examples of combined metaphors,
such as simultaneous PMs and DMs.

Regarding annotation scope, verbs were incon-
sistently labeled, despite linguistic training of anno-
tators. Oftentimes multi-word verbs were not con-
sidered, and annotations extended only to inflected
verb words. Similarly, nouns were sometimes la-
beled without adjacent adjectives, highlighting the
importance of context for accurate annotation in re-
lation to training data for computational metaphor
processing.

5 Corpus Annotation

Based on the annotation errors, some key improve-
ments to the guide were implemented for clarity
and guidance. A revised version of the annota-
tion guide was provided to the six annotators who
would be working on the full corpus. Although
only four of the original pilot participants contin-
ued, the demographic profile of the corpus annota-
tors remained consistent with that of the pilot study.
Two additional annotators joined the project and
also completed the same preparatory pilot test.

Based on observations from the pilot study, the
revised guide minimized the theoretical content to
essential information and reduced the number of
examples presented. A separate document, cre-
ated to outline common annotation errors from the
previous phase, was also provided to the annota-
tors.This new version of the guide also emphasized
the need to focus not only on linguistic structural
features but also primarily on underlying concep-
tual mappings within the specific context of each
item.
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Dataset Agreement (%) Fleiss’ Kappa
1st Half 49.57 0.11

2nd Half 55.06 0.24

Table 2: Agreement Percentage and Cohen’s Kappa Score
by section of the corpus.

We also accentuated the semantic characteris-
tics of personification markers, such as verbs or
nouns that implied attributes like [+ANIMATE]
and [+HUMAN]. For IMs, identified subcategories
were explicitly pointed out, including scientific ter-
minology, idioms, abstract science concepts ex-
plained through familiar terms, and implicit con-
ceptual mappings. Finally, we decided that non-
metaphorical tweets would be validated directly
with no labels on the text.

Our research corpus consisted of 3733 tweets
obtained via the Twitter API v2 from 19 science
communicators based in Mexico. We divided this
dataset into two parts: 1866 assigned to annotators
A1, A2, and A3, and 1867 to annotators A4, A5,
and A6. Each half of this corpus was labeled three
different times to evaluate points of agreement and
disagreement. We used Argilla once again for this
process.

5.1 Inter-Annotator Agreement
A binary evaluation was performed for the detec-
tion of the metaphor, using both agreement percent-
age and Fleiss’ Kappa as IAA metrics. As shown
in Table 2, in the first half of the corpus, the agree-
ment percentage was 49.57%, with a kappa value
of 0.11, while in the second half the agreement
increased to 55.06% and the kappa to 0.24. These
values, ranging from “slight” to “fair”, indicate
that annotator consistency was slightly higher that
would be expected by chance, although far from
perfect.

To analyze IAA at a more granular level, we
also evaluated each annotator pair using agreement
percentage and Cohen’s Kappa coefficient (Cohen,
1960). The results from this evaluation, presented
in Table 3, reflect slight to fair consistency accross
annotator pairs, with agreement percentages rang-
ing from 61.36% to 79.97%, and Kappa values bew-
teen 0.09 and 0.38. Overall, the levels of agreement
are only slightly higher than expected by chance,
which means our annotation faces a significant dis-
agreement issue and, consequently, a challenge for
using the annotated data as reliable training input
for a metaphor detection model.

Pair of annotators Agreement (%) Cohen’s Kappa

A1 – A2 74.28% 0.17

A1 – A3 61.36% 0.09

A2 – A3 63.50% 0.21

A4 – A5 63.63% 0.18

A4 – A6 66.52% 0.27

A5 – A6 79.97% 0.38

Table 3: Evaluation metrics for interannotator agreement per
pair of annotators in the binary classification of metaphorical

and non-metaphorical tweets.

Although the results exhibit relatively low IAA
in terms of Kappa coefficients, it is important to
mention that, to the best of our knowledge, these
are the first numerical indicators for the task of
annotating metaphors in Mexican Spanish PCS
tweets, so we have no point of comparison for our
study. Several factors may have contributed to
the considerable influence of annotator subjectivity
when interpreting metaphors, including the rela-
tively unexplored nature of this text genre, which
implies a thematic diversity from astronomy and
general physics to genetics and history of science,
among other areas. Additionally, the hybridiza-
tion of specialized and non-specialized discourse
within PCS adds complexity to the task, as it de-
mands a very nuanced understanding of context
and metaphor use. We hypothesize that a direct
binary classification approach from the start could
contribute to a better inter-annotator agreement,
by simplifying the task. Moreover, the reliance
on non-expert annotators, despite their linguistics
background, adds another layer of variability in
their interpretation and application of metaphor cat-
egories. It should also be noted that our low agree-
ment levels contrast with some studies reported in
2.2 that focused on specific words, such as verbs,
because we chose to annotate all Spanish lexical
categories. From this disagreement scenario, we
sought alternative strategies to maximize the recall
of possible metaphorical tweets, which could en-
sure a more complete representation of metaphor
use in the corpus.

Table 4 shows examples of the various levels of
agreement among annotators in the binary classi-
fication of tweets. The categories include: 100%
agreement classified as metaphorical, 100% agree-
ment classified as non-metaphorical, 2/3 voting
as metaphorical, and 1/3 voting as metaphorical.
As can be noted, the first two rows of examples
demonstrate cases of unanimous agreement. In the
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metaphorical example, scent-based ant communi-
cation is anthropomorphized, described in terms
of “vocabulary” and “words”, which posits a clear
metaphorical framing, straightforward for anno-
tators to unanimously classify it as metaphorical.
On the contrary, the non-metaphorical example
presents factual information about alternative ther-
apies, using direct language and lacking figurative
expressions, which is easier for annotators to iden-
tify.

The last two rows present more challenging ex-
amples, as indicated by lower agreement among
annotators. For the 2/3 category, neural activity
during learning is compared to the process of mas-
tering a new instrument. While this metaphori-
cal framing is present, it can be harder to identify,
likely because the description blends scientific ex-
planation with figurative language. As for the 1/3
category, the example provides statistical informa-
tion about Parkinson’s disease in a straightforward,
factual manner. However, the single annotator la-
beling it as metaphorical might have interpreted
Parkinson’s disease as a personified entity due to
the use of the verb “affects”," which could imply
an active, agent-like role, an interpretation more
open to discussion. These examples illustrate the
variation in annotator decisions and demonstrate
the intricacies of the annotation task.

5.2 Expert Annotation in Disagreement Items
After analyzing the annotation data, we found that
1953 tweets out of 3,733 (52.3% of the corpus) ex-
hibited perfect agreement, with 200 tweets classi-
fied as metaphorical and 1753 as non-metaphorical.
Given the very small number of class 1 (metaphori-
cal) instances, we considered additional strategies
for our research, considering that class 1 is the pri-
mary focus of the task, not class 0. The remaining
1780 tweets (47.6% of the corpus) showed mixed
agreement: in terms of class 1, 1229 received a
2/3 vote and 551 received a 1/3 vote. To counter-
act these ambiguities, we implemented an “expert
annotator” strategy, following the methodology pro-
posed by Aldama et al. (2022), where an external
evaluator makes a final decision on the status of
each “hard case”.

Accordingly, we randomly selected 84 tweets
with disagreement from the 1780 uncertain, or
“hard”, cases for this annotation experiment. Three
linguists, who developed the annotation guide,
were assigned with classifying these tweets into
a binary task (1 for metaphorical, 0 for non-

metaphorical). We opted for this experiment to
assess the consistency of the expert annotators’ de-
cisions and compare their classifications with those
of the non-expert annotators to identify any signifi-
cant differences. Table 5 provides a comparison of
the annotation process across the different datasets:
the first half of the corpus, the second half, and the
expert annotation.

As previously discussed, in the first and second
corpus halves, IAA measured by Fleiss’ Kappa was
relatively low, even though the percentage of per-
fect agreement was around 50%. In terms of the
voting system, 35.32% of the items in the first half
received a 2/3 vote for class 1, while 30.53% of
the second half did. A smaller proportion (15.11%
and 14.41%, respectively) received a 1/3 vote for
class 1. When looking at the expert annotation,
the Fleiss’ Kappa improved to 0.30, which indi-
cates a higher level of agreement among the expert
annotators, even on disagreement items, although,
according to Landis and Koch (1977) agreement
is still “fair”. The expert group achieved a higher
overall agreement rate (61.9%) and a greater av-
erage agreement per item (0.82), compared to the
non-expert annotators. In addition, the proportion
of tweets with a 2/3 vote dropped to 25%, while
the 1/3 vote category was also smaller (13.1%)
but very close to non-expert values. Although the
annotation conditions are not strictly comparable
—the task involves binary classification versus mul-
ticlass, with a considerably smaller sample size,
among other factors—, expert annotation could be
helpful in certain cases, as indicated by the aver-
age agreement per item. Nonetheless, despite the
involvement of expert annotators, some disagree-
ment persists in the classification, which stresses
the complexity of the task and the need to refine
annotation strategies in this context.

5.3 Guide Refinements
According to the sub-cycle of iterating modeling
and annotation in the MATTER cycle (Pustejovsky
and Stubbs, 2013), if we aim to create a reliable
binary classification gold standard for metaphor
identification, we consider refining the guide as
crucial step to reduce disagreement. In our re-
search, after evaluating IAA, we have clarified
which expressions do not qualify as DMs or PMs,
and have worked to define more precise subcat-
egories for IMs. In the case of DMs, we have
decided that metalinguistic clarifications (defini-
tions, translations, etymologies), exemplifications,
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Category Example Translation

3/3 voting as
metaphorical

Las hormigas tienen un vocabulario de 20 diferentes
“palabras” que dicen ¡con el aroma! ¡CuriosaMente!

Ants have a vocabulary of 20 different “words” that
they say with scent! CuriousMind!

3/3 voting
as non-
metaphorical

¿Podemos esperar que las terapias alternativas logran
algún día avances que cambien trascendentalmente
nuestro presente y futuro? Es muy probable que no.
Consulta nuestro tema de portada del mes de octubre.
¡Ya disponible en puestos de periódicos!

Can we expect that alternative therapies will one
day achieve breakthroughs that will transcenden-
tally change our present and future? Most likely
not. Check out our October cover story. Now avail-
able on newsstands!

2/3 voting as
metaphorical

Imagina que estás intentando aprender un nuevo in-
strumento: al principio las neuronas involucradas
comienzan a tener mucha actividad, y si esta activi-
dad se mantiene se empiezan a liberar más neuro-
transmisores o puede que haya un incremento de
receptores.

Imagine that you are trying to learn a new instrument:
at the beginning the neurons involved start to have a
lot of activity, and if this activity is maintained more
neurotransmitters start to be released or there may
be an increase of receptors.

1/3 voting as
metaphorical

-De acuerdo a la Organización Mundial de la Salud,
la enfermedad de #Parkinson afecta a 1 de cada 100
personas mayores de 60 años. -Se estima que para el
año 2030 habrán unas 12 millones de pacientes con
Parkinson.

-According to the World Health Organization,
#Parkinson’s disease affects 1 in 100 people over
the age of 60. -It is estimated that by 2030 there will
be 12 million Parkinson’s patients.

Table 4: Examples of annotator agreement levels in the binary classification of Mexican Spanish tweets including their English
translation.

First Corpus Half Second Corpus Half Expert Annotation

# of Annotators 3 3 3

# of Items 1866 1867 84

Fleiss’ Kappa 0.11 0.24 0.30

Agreement (%) 49.57% 55.06% 61.90%

Items with Perfect Agreement 925 1028 52

2/3 Voting (Class 1) 659 (35.32%) 570 (30.53%) 21 (25%)

1/3 Voting (Class 1) 282 (15.11%) 269 (14.41%) 11 (13.1%)

Average Agreement per Item 0.71 0.74 0.82

Table 5: Inter-annotator agreement statistics for metaphor classification across different datasets and expert annotation.

comparisons within the same conceptual domain,
and size comparisons should not be considered in-
stances of DMs, despite their linguistic structure
often resembling metaphorical expressions. For
IMs, our new guide is more specific in delineat-
ing subtypes, which for PCS tweets include sci-
entific terminology (e.g., “agujero negro” [black
hole], “radiación infrarroja” [infrared radiation],
“efecto invernadero” [greenhouse effect]), biolog-
ical species names (e.g. “tiburón anguila” [frilled
shark], “flor cadáver” [corpse flower]), Spanish
idioms (e.g. “sentar las bases” [lay the founda-
tions]), conceptual mappings by contrast of mean-
ings (e.g., “hilo” [thread] in digital communica-
tion). For personification metaphors (PMs), the
distinction between metonymy and personification
is crucial, as they are separate phenomena, albeit
closely related. We also find it important to spec-
ify that only non-human or non-animate entities
should be personified, with both verbs and nominal

personifiers clearly delineated and exemplified. Ex-
pert annotation can help resolve ambiguous cases.
However, a gold standard is not the only possibility,
as the disagreement itself can also be leveraged to
refine the metaphor classification process.

6 Conclusions and Future Work

In this work, we explored the metaphor annotation
process within the domain of public communica-
tion of science (PCS), with an emphasis on ex-
amining the challenges of reaching inter-annotator
agreement (IAA). The frequent and meaningful
disagreements observed in our corpus annotation
have underscored the complexities of metaphorical
language identification, where subjectivity plays a
significant role. While disagreement has tradition-
ally been regarded as a problem for Natural Lan-
guage Processing, we acknowledge its strengths as
a window into the diverse human interpretations
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of what constitutes a metaphor. Diversity in inter-
pretation may arise from several factors, includ-
ing understanding of terminology, domain-specific
knowledge (particularly in scientific or technical
contexts), and individual subjectivity. For instance,
what one annotator perceives as a metaphor might
be interpreted by another as a literal or descriptive
statement.At least for this corpus, factors such as
the dialect (Mexican Spanish) or the media (Twit-
ter) do not influence the level of agreement. Since
these types of tweets are written for PCS purposes,
the usual writing style of social networks is not
present; therefore, these publications avoid the use
of confusing dialectal language.

For future work, rather than striving for per-
fect IAA, we propose using a probabilistic ap-
proach, based on the learning from disagreement
paradigm, where soft-labeling techniques may al-
low us to capture different perspectives in com-
putational metaphor detection. This type of re-
search could benefit from approaches such as de-
liberate metaphor theory, as proposed by Steen
(2023), since it involves greater attention to the
communicative context of enunciation and cogni-
tive models of context, with the aim of distinguish-
ing between deliberate and non-deliberate use to
interpret metaphors in context. We believe this
could go beyond rigid computational categoriza-
tion and embrace the multifaceted human nature of
figurative language.

Another possibility is to re-annotate our dataset
based on our last refinements to produce a gold
standard, which, together with soft label annota-
tions, might improve the quality of metaphor clas-
sification. Moving forward, we aim to conduct
additional experiments and alternative annotation
approaches that further explore the role of disagree-
ment. Since the annotation method we followed
in this study might not be the most appropriate,
we propose to develop an alternative annotation
protocol focused on binary annotation with em-
phasis on class 0 (non-metaphorical) comparisons,
leveraging the fact that this is the class with the
highest rate of agreement. Such an approach could
provide a more nuanced perspective on annotator
behavior and improve consistency in metaphori-
cal language detection. We hypothesize that non-
traditional labeling methods, such as pairwise com-
parisons, for linguistic metaphor annotation could
address the limitations of existing metrics such as
Fleiss’ Kappa while generating high-quality reli-
able annotations.

Our findings provide an important precedent for
metaphor annotation in the PCS context, showing
that disagreement can be attributed to the influ-
ence of annotator subjectivity when interpreting
metaphors in texts, despite the use of detailed guide-
lines. This subjectivity, however, should not be
seen as a weakness but as an opportunity to add
depth to our annotated dataset. We hope this initial
work will guide future efforts on metaphor detec-
tion, classification, and figurative language analysis
in scientific communication.
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