@inproceedings{phuc-thin-2025-shot,
title = "Few-Shot Coreference Resolution with Semantic Difficulty Metrics and In-Context Learning",
author = "Phuc, Nguyen Xuan and
Thin, Dang Van",
editor = "Ogrodniczuk, Maciej and
Novak, Michal and
Poesio, Massimo and
Pradhan, Sameer and
Ng, Vincent",
booktitle = "Proceedings of the Eighth Workshop on Computational Models of Reference, Anaphora and Coreference",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.crac-1.13/",
pages = "149--153",
abstract = "This paper presents our submission to the CRAC 2025 Shared Task on Multilingual Coreference Resolution in the LLM track. We propose a prompt-based few-shot coreference resolution system where the final inference is performed by Grok-3 using in-context learning. The core of our methodology is a difficulty- aware sample selection pipeline that leverages Gemini Flash 2.0 to compute semantic diffi- culty metrics, including mention dissimilarity and pronoun ambiguity. By identifying and selecting the most challenging training sam- ples for each language, we construct highly informative prompts to guide Grok-3 in predict- ing coreference chains and reconstructing zero anaphora. Our approach secured 3rd place in the CRAC 2025 shared task."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="phuc-thin-2025-shot">
<titleInfo>
<title>Few-Shot Coreference Resolution with Semantic Difficulty Metrics and In-Context Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nguyen</namePart>
<namePart type="given">Xuan</namePart>
<namePart type="family">Phuc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dang</namePart>
<namePart type="given">Van</namePart>
<namePart type="family">Thin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth Workshop on Computational Models of Reference, Anaphora and Coreference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maciej</namePart>
<namePart type="family">Ogrodniczuk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michal</namePart>
<namePart type="family">Novak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Massimo</namePart>
<namePart type="family">Poesio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sameer</namePart>
<namePart type="family">Pradhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our submission to the CRAC 2025 Shared Task on Multilingual Coreference Resolution in the LLM track. We propose a prompt-based few-shot coreference resolution system where the final inference is performed by Grok-3 using in-context learning. The core of our methodology is a difficulty- aware sample selection pipeline that leverages Gemini Flash 2.0 to compute semantic diffi- culty metrics, including mention dissimilarity and pronoun ambiguity. By identifying and selecting the most challenging training sam- ples for each language, we construct highly informative prompts to guide Grok-3 in predict- ing coreference chains and reconstructing zero anaphora. Our approach secured 3rd place in the CRAC 2025 shared task.</abstract>
<identifier type="citekey">phuc-thin-2025-shot</identifier>
<location>
<url>https://aclanthology.org/2025.crac-1.13/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>149</start>
<end>153</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Few-Shot Coreference Resolution with Semantic Difficulty Metrics and In-Context Learning
%A Phuc, Nguyen Xuan
%A Thin, Dang Van
%Y Ogrodniczuk, Maciej
%Y Novak, Michal
%Y Poesio, Massimo
%Y Pradhan, Sameer
%Y Ng, Vincent
%S Proceedings of the Eighth Workshop on Computational Models of Reference, Anaphora and Coreference
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%F phuc-thin-2025-shot
%X This paper presents our submission to the CRAC 2025 Shared Task on Multilingual Coreference Resolution in the LLM track. We propose a prompt-based few-shot coreference resolution system where the final inference is performed by Grok-3 using in-context learning. The core of our methodology is a difficulty- aware sample selection pipeline that leverages Gemini Flash 2.0 to compute semantic diffi- culty metrics, including mention dissimilarity and pronoun ambiguity. By identifying and selecting the most challenging training sam- ples for each language, we construct highly informative prompts to guide Grok-3 in predict- ing coreference chains and reconstructing zero anaphora. Our approach secured 3rd place in the CRAC 2025 shared task.
%U https://aclanthology.org/2025.crac-1.13/
%P 149-153
Markdown (Informal)
[Few-Shot Coreference Resolution with Semantic Difficulty Metrics and In-Context Learning](https://aclanthology.org/2025.crac-1.13/) (Phuc & Thin, CRAC 2025)
ACL