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Abstract

We tackle the task of mention detection for pair-
programming dialogue, a setting which adds
several challenges to the task due to the charac-
teristics of natural dialogue, the dynamic envi-
ronment of the dialogue task, and the domain-
specific vocabulary and structures. We compare
recent variants of the Llama and GPT families
and explore different prompt and context en-
gineering approaches. While aspects like hes-
itations and references to read-out code and
variable names made the task challenging, GPT
4.1 approximated human performance when
we provided few-shot examples similar to the
inference text and corrected formatting errors.

1 Introduction

Pair programming is a collaboration technique
which has received a lot of scholarly attention due
to the numerous benefits it can lead to, such as im-
proved confidence and code quality (Hawlitschek
et al., 2023). It involves two programmers working
together on the same piece of code. The setting
may vary (e.g., co-located or distributed pair pro-
gramming); the pair dynamics may also vary: e.g.,
scholars mostly observe a navigator and a driver
role, but these may switch variably during the ses-
sion, and some scholars also observe different roles
(Hanks et al., 2011). However, one aspect remains
constant: dialogue drives the task. Dialogue com-
plicates NLP tasks by introducing new challenges
not found in the more traditionally studied written
genres, and the idiosyncrasies of pair-programming
dialogue further add to those challenges.

Below we present a short excerpt from our
dataset to illustrate the type of dialogue that we
are working with. In this excerpt, we can see some
general characteristics of dialogue, such as hesi-
tations (e.g., the repetition of determiners on the
first line or the numerous filler sounds on the last
line) or incomplete sentences (e.g., the turn in line

2 ends abruptly). We also observe some character-
istics more unique to our type of setting, such as
the use of domain terminology (e.g., here ‘a string’
is not thin rope) and references to unrealised enti-
ties (e.g., the speakers keep mentioning a string but
they only type it into the code with the name ‘text’
on the fifth turn. This is frequent in this type of
dialogue because the collaborative setting makes it
necessary to discuss ideas with one’s partner before
deciding what to put into practice.).

A: Can we, uh, I don’t know, define a, a string,
maybe the, the so-cool string.

B: Uh... Yeah, that seems like a good place to
start. And then we can kind of maybe try
and split it up into the.

A: Yeah. Yeah. So should I start defining these,
this string?

B: Yeah, sure. Sounds good.
A: Um. Uh, how should I, uh, call it? Uh...

Just. Um, sentence. [B types ‘text’; the
name ‘sentence’ is discarded and entity be-
comes realised as ‘text’] Oh, text. Yeah,
text

In this work we focus on mention detection, the
basic pillar of work on reference (e.g., this impor-
tance has been described in terms such as ‘The
performance of mention detection is to this day one
of the most important factors in anaphora resolu-
tion’ (Poesio et al., 2023, p. 571)). In simple terms,
it consists on extracting all text spans that refer
to some entity in the world, be it physical or ab-
stract, or a broader element of the discourse in the
case of discourse deixis. We use ‘entity’ to mean
anything that exists, whether concrete or abstract;
thus, mentions will always refer to an entity, and
sometimes they may also be linked to other men-
tions if they all refer to the same entity. A mention
that refers to an entity that is only referred to once
in the discourse is called a singleton mention. Al-
though the basic definition of the mention detection
task is rather simple, researchers often differ in the
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specification of the concrete types of mentions (and
references that these make) that they consider (e.g.,
see Zeldes (2022) for a critique of the commonly
used OntoNotes schema, which includes its omis-
sion of singletons, predication, generic mentions,
and nested mentions). While a full discussion of
our annotation scheme and process is beyond the
scope of the current paper, we do provide some key
details in Section 3.1. In relation to the topic of
what is considered a mention, we shall note that we
included singletons (single mentions to an entity
not mentioned any other time), predication (men-
tions equated to each other through a copula verb,
like in ‘Sahil is a lecturer’), generic mentions (e.g.,
‘Good children eat their vegetables and then Santa
brings presents to good children’), and nested men-
tions (e.g., ‘the book on the table’ would be la-
belled as the book on the table and the table). We
did however not include bridging anaphora (Clark,
1975) in our annotations1, as we considered it much
different from other types of anaphora — e.g., it
is distinct enough to warrant a separate task in the
CODI-CRAC task (Khosla et al., 2021; Li et al.,
2021). Nonetheless, at the mention detection stage,
the anaphors in bridging anaphora are still consid-
ered mentions; we simply consider them first men-
tions at the coreference resolution stage, instead
of linking them to an existing antecedent through
bridging anaphora. As we are working with LLMs,
we shall rely of their vast training data to supply
the schemata needed to interpret bridging anaphora
— we however encourage further work in this area
upon the release of our dataset2. With regard to dis-
course deixis, this is also considered a sufficiently
distinct type of anaphora resolution to warrant its
own task (Khosla et al., 2021; Li et al., 2021). As
such, we did not include any discourse antecedents
in our annotation of mentions, though for our later
annotation of coreference we did add them sepa-
rately after noting that discourse deixis was too
frequent not to be included in the interpretation of
references in our data.

1In bridging anaphora, the anaphor (i.e., the mention) is
linked to a referent that it is not equivalent to, but from which
it is inferred through shared common ground. For example, in
‘I went to a Spanish restaurant. The waiter was from Cuenca’,
the waiter would be linked to a Spanish restaurant via bridg-
ing — it is the waiter’s first appearance in the discourse, but
we could already infer his existence from our knowledge of
restaurants.

2Due to ongoing work, we are currently unable to release
the dataset, but have scheduled its release for the beginning
of 2026. Data will only made available upon request to avoid
data contamination.

In order to analyse the characteristics of pair-
programming dialogue and observe how they may
impact NLP tasks related to reference, we collected
and annotated a dataset of pair-programming ses-
sions. We describe the collection and annotation
procedure in Section 3.1. An analysis of our data
confirmed the relevance of references and shed
light on their characteristics in this domain. We
then used this data to experiment with state-of-the
art LLMs and measure their performance on this
task, paying special attention to how the observed
characteristics of pair-programming dialogue im-
pact it. We describe our experimental methodology
in Section 3.2, and then present and discuss our re-
sults in Sections 4 and 5. Our work is motivated by
the ulterior goal of facilitating the development of
AI agents that can act as pair-programming partners
in an educational setting when no suitable human
partner is available for the student to benefit from
this practice, as suggested in the work of Robe
and Kuttal (Kuttal et al., 2020; Robe et al., 2020;
Kuttal et al., 2021; Robe, 2021; Robe and Kuttal,
2022). This influenced both the design of our data
collection and experiment design: we use LLMs as
the most accessible tools for dialogue agent design
under the new LLM-based paradigm (Jurafsky and
Martin, 2025). Our results have important repercus-
sions for research not only on mention detection,
but also on other tasks related to referring acts, as
they build upon mention detection; we discuss this
impact in Section 5, but it is first contextualised
through the body of research we present now in
Section 2.

2 Related work

Although a lot of research on reference has fo-
cused on written genres, an increasing body of
research has been developed in dialogue as well,
with more available datasets (Khosla et al., 2021;
Li et al., 2021; Poesio et al., 2023). With the recent
paradigm shift introduced by the popularisation of
LLMs, research in this area has also been facili-
tated. With their vast training datasets and their
optimisation for dialogue, these tools offer great
promise for NLP tasks related to reference, even in
dialogue settings. Nonetheless, initial research on
coreference resolution using these types of models
shows that they do not always surpass previous ap-
proaches (Mitkov and An Ha, 2024), but they offer
great generalisability in unsupervised settings (Le
and Ritter, 2023). The models’ vast inherent knowl-
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edge and their capacity for in-context learning have
also been successfully harnessed for entity linking
(Liu et al., 2024). One area in which knowledge
is still much lacking, though, is mention detection
(e.g., the works mentioned above rely on ground-
truth mentions for the successful results).

Mention detection, however, cannot be taken for
granted, as it is the basic task upon which all other
reference tasks are built (Li et al., 2021). This task
has been shown to be challenging and, therefore, at-
tempts have been made at simplifying it. Manikan-
tan et al. (2024) proposed a task that focuses on
the major entities. i.e., the most frequent ones —
that task is useful in their literary setting, where the
main characters of a story are known, but such ma-
jor entities are not so easily extracted in an online
setting with a dynamic environment. Even with
that simplified task, the approach also had to be
broken down into steps for the models to achieve
satisfactory performance; in this case, the gram-
matical heads of the mentions were first extracted
before they were expanded into the full span of
each mention. However, the full mention detection
task (i.e., working on all mentions, not only those
referring to the most frequent entities) still poses a
big challenge. This is specially true in the domain
of situated dialogue with a dynamic environment,
where the system has no prior information about the
entities that may be mentioned. Some evidence of
these challenges are already observed in the work
of Madge et al. (2025), who tested coreference
resolution in one such environments and corrobo-
rated that performance was significantly lower than
in other simpler settings — their experiments in-
cluded the extracted mentions as part of the input,
thus not reflecting mention detection performance,
but we can expect the challenges of the dialogue
setting to similarly affect mention detection.

3 Methodology

3.1 Data collection and annotation

We collected a dataset of 22 distributed (remote)
pair-programming dialogues between students at
our institution. We recorded a total of 25 dialogues,
though two were discarded for technical reasons
and a participant’s withdrawal; a further dialogue
is excluded, as it was used only for training an-
notators. Each session lasted around 30 minutes,
and communication took place only via voice call
and a shared programming interface. We recorded
several data sources: dialogue (audio and transcrip-

tion3), keylog records4, video and screenshots of
the programming interface, and files registering all
changes to the code. The keylog records were incor-
porated into the json files containing the dialogue
transcripts through their timestamps; however, that
level of context was not used in this task, as the
human annotators did not use it either for mention
labelling. The keylog records and the separate vi-
sual information are employed instead for other
tasks in our project for which a richer context is
needed. Further details about the data recording
can be found in (Domingo et al., 2024).

The dataset was then annotated by a team of
7 people trained specifically for the task; before
training, they had to demonstrate the necessary lin-
guistic and programming skills through a test or
relevant qualifications. The majority of the team
worked on annotating coreference chains and link-
ing code references to code files. The task of lo-
cating mentions was carried out by the two team
members with expert knowledge of Linguistics us-
ing LabelStudio.5 The interface was configured
so that no unit smaller than a word could be cap-
tured to avoid human errors, and any adjoining
punctuation marks (e.g., a comma at the end of
a mention) was removed during post-processing.
The annotation scheme and guidelines6 were de-
veloped through discussion among the research
team validated through three rounds of the two ex-
perts double coding sections of two dialogues and
discussing the process as a team with the main re-
searcher, who performed both a quantitative and
qualitative analysis of the output. We thus com-
bined a traditional iterative development approach
(Fuoli, 2018) with a socialisation-based approach
(Godwin and Piwek, 2016) for improved efficiency
and reliability. The annotators who labelled the
mentions also classified them into the linguistic
categories outlined in Appendix B. As we have dis-
cussed, a full discussion of the annotation scheme
is beyond the scope of this article, though more de-
tails can be found in the supplementary materials.
One important piece of information is that we in-

3Dialogues were transcribed using Whisper (Radford et al.,
2022) and revised manually. Manual revision was necessary
due to the tool’s inability at the time to successfully handle
disfluencies and overlapping speech, the imprecisions in audio
segmentation, and the challenging domain terminology.

4Keylog records were obtained using a custom tool or RUI,
depending on compatibility with participants’ computer.

5https://huggingface.co/LabelStudio
6The section of the guidelines concerning mention detec-

tion is available as additional materials and a summary can be
found on Appendix B.

https://ordo.open.ac.uk/articles/software/Data_recorder_for_Windows_10-11/25371409?file=44939962
https://acs.ist.psu.edu/projects/RUI/
https://huggingface.co/LabelStudio
https://ordo.open.ac.uk/articles/online_resource/Annotation_guidelines_-_Mention_detection_and_classification_/30076246?file=57762934
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cluded singletons — we want the data to be usable
as training/testing for an online system, where it is
not possible to know if a singleton is a singleton
or part of a coreference chain until the dialogue is
over.

Table 1 shows the key details of our dataset. An
analysis of our data shows that around a third of
all the words in the corpus correspond to mentions:
the average number of mentions in our dialogues
is 692, with an average number of 3445 words per
dialogue and an average length of 1.6 words per
mention.

Number of: Average
(per dialogue)

Total
(22 dialogues)

turns 385 (SD = 72) 8468
words 3445 (SD = 768) 75797
mentions 692 (SD = 189) 15222
mentions
in chains

289 (SD = 59) 6365

Table 1: Dataset details

For our experiments, we used one dialogue as
our development set, and the remaining 21 for eval-
uation. The development set was chosen semi-
randomly to ensure usefulness: we selected it ran-
domly from the top-ten most ‘average’ dialogues
in terms of the percentage of multimodal mentions,
mentions to abstract programming concepts, names,
read-out sections of code, and ‘intensional’ objects
(borrowing the terminology from (Madge et al.,
2025) to denote references to planned task outputs
that have not been produced yet, or ever).

3.2 Prompt and context engineering and
output processing

In recent years, numerous LLMs have been re-
leased, including many trained on programming
languages in addition to natural languages (Jiang
et al., 2024). It is therefore a futile attempt to try to
carry out a comprehensive performance test of all
possible LLMs, nor even of the most recent ones,
given the rapid developments in the field. Instead,
we chose representative examples to illustrate how
the challenging aspects of our domain may be tack-
led with an LLM approach. We thus limited our
experiments to recent variants of the Llama and
GPT families. With our choice of models we strove
to select frequently used ones — e.g., these are the
families used too by Le & Ritter (2023), and they

represent both proprietary and open-weights mod-
els. Our model selection was further motivated
by the availability of API services that offer suf-
ficient data protection safeguards. With regard to
the model parameters, throughout our experiments,
we have used a constant temperature of 0, for more
deterministic, replicable results.

Prompting makes running the models easy in
principle (Sarkar, 2024); however, results are
highly dependent on the type of prompt used
(White et al., 2023). Bearing this in mind, we
tested different prompting approaches. Our initial
prompt refinement was based on a qualitative anal-
ysis of 20 random outputs from each prompting ap-
proach, considering task completion, format adher-
ence, and task accuracy. We are aware of possible
hallucinations, especially with regard to numerical
values, so we quickly discarded any approach re-
liant on index numbers or any kind of numerical
identifier. Instead, we obtained more consistent re-
sults with simple XML tags (<M></M>). Previous
work with LLMs (Domingo et al., in press) showed
us the effectiveness of a persona-based prompt: in-
stead of providing many details about the task we
expect the model to complete, we describe a per-
sona for it to adopt and rely on its vast training data
to supply the definition of what that persona entails.
A non-human persona showed the best results —
the prompts can be found on Appendix A.1. In our
pursuit of consistency, we did not perform many ex-
periments with temperature parameters, selecting
a temperature of 0 most of the time for consistent,
replicable results. Based on the work by Manikan-
tan et al. (2024), we also tested splitting the task
into the two subtasks that they identify: mention
heads are detected first, and then the second task
consists one expanding them, which can be done
with the same model or using SpaCy7.

In addition to the prompt, the context also re-
quires ‘engineering’. Recent models are capable of
processing long inputs, and it is sometimes the case
that exploiting this capacity by adding long con-
texts improves performance. However, long con-
texts can also introduce noise and draw the model’s
attention away from the main instructions. There-
fore, our context engineering efforts concerned not
only context length, but also quality. We experi-
mented with different few-shot settings where we
provided a varying number of example dialogue
turns with ground-truth labels (from 1 to 10). The

7https://spacy.io/

https://spacy.io/
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examples were randomly selected, or fabricated
by us aiming to exemplify the main difficulties of
our setting, or manually selected to be the most
representative overall, or mixed. We also tested ex-
tracting pool of turns8 from which the best one was
retrieved for each inference turn based on sentence
similarity (also using SpaCy9).

We paired our quantitative evaluation metrics
(F1) with continuous small qualitative analyses
to better understand the performance of each ap-
proach. We observed some consistent errors that
could be corrected through simple rules (e.g., when
the models added spaces or prefaced the output
with an arrow), so we added an automated post-
processing step to our pipeline. Of special inter-
est were some inconsistencies in the models’ pro-
cessing of contracted verbs: e.g., we’ll was some-
times returned as <M>we’ll</M> and sometimes
as <M>we</M>’ll; we corrected the output to fol-
low the latter format, in line with our ground truth.
The use of dialogue data added another difficulty:
sometimes the models struggled with mentions bro-
ken by disfluencies. We corrected the cases where
a determiner was repeated, sometimes with a filler
sound in between (e.g., ‘the, uh, the string’), ensur-
ing that the mention labels grouped the two deter-
miners in the same mention.

We carried out our initial experiments with
smaller models for cost/time efficiency: Llama 3
8B and GPT 4o mini. Both models’ release date is
only a few months apart, and both are claimed to
have a similar size (Abacha et al., 2025), though the
GPT model is distilled from a larger one. Nonethe-
less, these two options offer the highest compa-
rability among the ones available to us. After
analysing our quantitative results, we tested the
best approaches on bigger versions of the models:
Llama 3 70B and GPT4o, as well as GPT 4.1. We
then tested the generalisability of the approaches
on the evaluation set. As our human performance
ceiling we use the agreement between our annota-
tors during the validation stages of the annotation
scheme development: 82.21% to 90.39%.

8For our preliminary tests, we extracted a random pool as a
training set. For our final experiments with the evaluation set,
we were instead able to use a whole dialogue (the development
data) as a more complete training set that we could expect
to contain a variety of turns that could always allow to find
sufficiently similar examples to the turn used for inference.

9Martino Mensio’s Github

4 Results

Here we present the results over the evaluation data:
i.e., the 21 dialogues that are not dialogue 032x028,
which was used as development data The naming
structure \d\d\dx\d\d\d reflects the code assigned
to each speaker in the pair during anonymisation.
The numbers represent the order in which people
interested in participating signed the consent forms.
The experiments with this data allow us to have a
clearer view of model performance without a single
dialogue biasing results. The design of our experi-
ments was based on our preliminary work with the
development data (dialogue 032x028)10. Based on
preliminary work with the development data, we
concluded that the most successful approach was
providing few-shot examples that were similar to
the turn being parsed. We used the development di-
alogue 032x028 as the pool from which to retrieve
the few-shot examples using sentence similarity;
using a whole dialogue would allow us to have a
rich pool of possible examples. We also tested a
zero-shot approach to have a clear view of how
the few-shot examples contribute to the task. For
our final experiments, we used the whole range of
models available to us, both big and small: GPT
4o, GPT 4o mini, GPT 4.1, GPT 4.1 nano, Llama
3 70B, and Llama 3 8B. Under the few-shot con-
dition, we used three few-shot examples, which
had proven to be sufficient with the GPT models.
However, as we had also observed that the Llama
models were more sensitive to the amount of few-
shot examples, we also used six few-shot examples
with Llama 3 8B — given the amount of data we
were testing on, we did not test with a larger num-
ber of examples, and we only used the six exam-
ples on the smaller Llama model. Also drawing on
the insights from our preliminary experiments, we
expected the Llama models to perform below the
GPT models under any condition. Thus, with the
evaluation tests we did not attempt to boost their
performance closer to the GPT models; we only
wished to determine to which extent increasing the
number of few-shot examples boosts performance
in these more context-sensitive models

Table 2 shows the GPT models’ performance un-
der the approaches we’ve described; Table 3 shows
the performance for the Llama models. As we
tested two few-shot conditions, we did not test a
zero-shot approach — our preliminary experiments

10More details about our preliminary work can be found in
Appendix A

https://github.com/MartinoMensio/embeddings_sentence_similarity
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Zero-shot average Few-shot average
Model F1pp Ppp Rpp F1pp Ppp Rpp

GPT 4.1 0.64 0.80 0.53 0.80 0.84 0.76
GPT 4.1

nano
0.25 0.48 0.17 0.57 0.60 0.54

GPT 4o 0.27 0.53 0.18 0.70 0.72 0.68
GPT 4o

mini
0.22 053 0.14 0.73 0.78 0.69

Table 2: Average performance of the GPT models across
the 21 evaluation dialogues. Few-shot performance
involves examples selected based on sentence similarity;
in this case we use three examples. The pp suffix means
that the score was obtained after post-processing the
output.

made it evident that the Llama models rely to a
greater extent on the few-shot examples; thus, our
focus was on seeing the effect of increasing the
number of examples instead.

From these tables we can observe that, as was the
case with the development dialogue, the GPT mod-
els perform better across all dialogues. The best-
performing model is GPT 4.1., which is meant to be
suitable for very complex text tasks. Surprisingly,
GPT4o mini’s performance is not much lower,
though it relies heavily on the post-processing of
the output. As expected, the Llama models perform
below the GPT models in general. We can also see
that increasing the number of few-shot examples
does improve performance to some extent. Here
we have presented the F1 scores; however, we have
also made some observations about precision and
recall. For instance, the average zero-shot precision
for GPT 4.1 was 0.80, but recall was 0.53; with the
few-shot approach, precision increased noticeably
to 0.84, but recall increased even more remarkably
to 0.76. We see this tendency in the other models
through both the final and preliminary experiments,
where precision is higher than recall, and the differ-
ence is larger in the worse-performing approaches.

Additionally, we re-evaluated the final results
using a more lenient metric, based on the work by
Moosavi et al. (2019). They point out that men-
tion detection can be evaluated based on minimum
span match, instead of requiring a system to de-
fine the mention boundaries in exactly the same
way as the ground truth data. They develop an
algorithm for automatically extracting minimum
spans from mentions without the need of additional
manual annotations. Both their algorithm and a

Model FS Few-shot average
F1pp Ppp Rpp

Llama 3 70B 3 0.59 0.62 0.56
Llama 3 8B 6 0.49 0.50 0.48
Llama 3 8B 3 0.46 0.48 0.44

Table 3: Average performance of the GPT models across
the 21 evaluation dialogues. Few-shot performance
involves examples selected based on sentence similarity.
FS stands for the number of few-shot examples. The
pp suffix means that the score was obtained after post-
processing the output.

Model Precision-pp Recall-pp F1-pp
GPT 4.1 0.89 0.80 0.84

GPT 4.1 nano 0.67 0.61 0.64
GPT 4o 0.76 0.72 0.74

GPT 4o mini 0.84 0.74 0.78
Llama 3 70B 0.70 0.62 0.66
Llama 3 8B 0.59 0.55 0.57

Table 4: Scores measuring minimum-span matches on
the similarity-based few-shot example approach with 3
examples. The pp suffix indicates that we evaluated the
output after post-processing it.

simpler method based on head extraction correlate
highly with human annotations in the few datasets
that include such minimum span annotations. Here
we use the head extraction method for simpler im-
plementation. Table 4 shows the adjusted average
scores.

4.1 Error analysis

As our preliminary experiments covered only one
dialogue, with the evaluation data we were inter-
ested in seeing how the characteristics of each di-
alogue affected task performance — all dialogues
in this setting have some broader characteristics in
common, but we already saw in previous analyses
that these are displayed to different extents in each
dialogue. Looking at performance across different
models, we concluded that the ‘easiest’ dialogue
was 040x054 (with a maximum F1 of 0.84 and a
minimum of 0.52), and the ‘hardest’ was 062x059
(with a maximum F1 of 0.67 and a minimum of
0.45). Table 5 shows the main distinctive character-
istics of mentions in this setting for each of these
dialogues. We see that these two dialogues are
in distant sides of the spectrum with regard to the
percentage of mentions that are proper nouns and
the mentions that are read-out code — we must
also bear in mind that, in this domain, both cate-
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gories are linked, as proper nouns are often variable
names. To better understand performance differ-
ences, we performed a brief error analysis of these
two dialogues by looking at their false negatives
and their false positives; we analysed 20 mentions
for each error type for each dialogue. With regard
to the false negatives, in the easy dialogue, 8 of
the missed mentions were direct references to code
(e.g., ‘for x in grade’), while this figure was 14
for the hard dialogue. In this small sample, we
did not find any names in the easy dialogue’s false
negatives, but we found two for the hard dialogue:
‘student student, test scores’ and (BLEEP). These
examples illustrate how names (and mentions in
general) can be challenging in this domain. The
first name includes a hesitation, and the second one
is anonymised — though the pool of few-shot ex-
amples featured this as well. Looking at the false
positives, we can observe how this task is also chal-
lenging and ambiguous for humans, as some of
the false positives could be considered valid pos-
itives or even an error in the ground truth (e.g.,
in ‘Right. I’m doing this wrong, aren’t i? That’s
it.’ the ground truth missed ‘this’). In some other
cases, however, the false positives cannot be con-
sidered mentions even if we apply the annotation
scheme very flexibly (e.g., in the previous example,
‘That’s it’ was returned as a mention, thus a truly
false positive). We observe such verb phrases or
verbs treated as mentions even when the turn shows
no discourse deixis that would justify labelling a
whole verb phrase as a referent; we find four cases
in the easy dialogue, and two in the hard one. The
main cause of false positives that we observe in
both dialogues is a mismatch between the ground
truth span and the output span, where the model
misses parts of a mention when it is a complex noun
phrase — e.g., one turn says ‘Um and then we need
it to output the percentage of students who passed
and then output the grade’, and the ground truth
extracts ‘the percentage of students who passed’,
whereas the model only extracts the main part of
the phrase, ‘the percentage of students’. We find
four such cases in the easy dialogue, and six in the
hard one. Lastly, one important source of false pos-
itives related to this is the presence of hesitations,
which are common in our dataset as part of the
nature of spoken dialogue; in such cases, the model
can miss part of the mention or interpret a repetition
as two separate mentions (e.g., in ‘Yeah um maybe
uh student student, test scores’, the ground truth ex-
tracts ‘student student, test scores’ as a mention to

Type of mention
(percentage range)

Value for
040X054

(easy)

Value for
062x059

(hard)
Multimodality
(2.82-21.36)

5.87 8.24

Abstract
Mentions
(0-19.67))

0.78 1.90

Names
(3.84-24.29)

8.92 15.96

Read-dictate
(1.39-15.35)

6.22 10.47

Intensional
mentions

(1.27-31.85)
5.60 3.95

Total mentions
(350-1154)

482 783

Table 5: Main characteristics of the ‘easiest’ (040x054)
and ‘hardest’ (062x059) dialogues. We show the types
of mentions as a percentage of the total. In parenthe-
ses we show the value range across all dialogues to
contextualise this data.

the variable storing the student test scores, but the
model extracts three separate mentions: ‘student’,
‘student’, and ‘test scores’).

5 Discussion

As we mentioned in Section 3.2, agreement be-
tween our annotators for this task ranged between
82.21% and 90.39% for the three double-coding
validation rounds that we ran. This shows that,
even though this was one of the ‘easier’ tasks in
our work on reference, even trained human experts
sometimes disagreed. We observed some human
errors in the ground truth in our error analysis (Sec-
tion 4.1), but our validation work for the annota-
tion scheme involved qualitative analyses and dis-
cussions with the annotators to ensure that there
were no misalignments in their internalisation of
the scheme; therefore, most disagreements at the
final validation stage can be primarily attributed
to inherent ambiguities of the task — while this
task is simpler than the subsequent task of coref-
erence resolution, for this latter task Poesio et al.
(2023) noted that there is a great degree of ambigu-
ity in references, with figures of up to 40% in dia-
logues annotated for discourse deixis. Bearing this
in mind, we cannot expect any model to surpass the
human scores; that would indicate both overfitting
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to one annotator’s perspective and an imbalance
in our data split — we are preventing this by test-
ing on all our dialogues, thus balancing data from
both annotators. To be able to compare the mod-
els’ performance with the human annotators, we
calculated the models’ agreement with the ground
truth. For GPT4.1, this ranges between 71.86%
and 88.14%; GPT 4o and GPT4o mini reach maxi-
mums of 79.86% and 81.99% respectively, but their
minimums are much lower (38.08% and 37.22%).
We can therefore conclude that, under the best ap-
proach, some recent models approximated human
performance, but only GPT 4.1 did so consistently.

Due to the recent advances in language mod-
els, few studies exist to this date on mention de-
tection using LLMs. However, Manikantan et al.
(2024) and Le & Ritter (2023) offer some compa-
rable results. The latter observed unsatisfactory
performance with Instruct GPT, which yielded an
F1 score of 46.5. The former, however, obtained F1
scores ranging between 77.1 and 85.5 using GPT 4
with their best approach (having the LLM extract
the nucleus of the main mentions, and using SpaCy
to expand the mention span). Our results are unsur-
prisingly higher than Le & Ritter’s, possibly due
to primarily their use of a less powerful model —
in fact their results are similar to what we obtained
with our poorest model, Llama 3 8B. Manikantan
et al.’s better results are more similar to our best
results, despite them performing a simplified task
on literary texts that lack the challenges of pair-
programming dialogue, probably due to our use of
the latest, most powerful models. We find evidence
of this in the fact that performance only reached
this high range of F1 scores between 0.75 and 0.86
with GPT 4.1.

In addition to overall model performance, we
have made some other key observations. We have
observed through models’ zero-shot performance
that their base knowledge allows them to detect
mentions with precision, but that in-context learn-
ing is needed for them to detect a broader range
of mentions. Additionally, as we expected from
analysing the characteristics of our dataset, one key
issue that made mention detection difficult in this
domain is the mentions to code, especially vari-
ables with their flexible form unlike that of names
in other domains. Additionally, the fact that we
are dealing with spoken dialogue resulted in hesita-
tions, which also pose a significant challenge.

6 Conclusions

Through this work, we set out to explore the chal-
lenges that a pair-programming dialogue setting
presents for work on reference, starting with the
base task of mention detection — there can be
no good coreference resolution without very good
mention detection. We used LLMs for this explo-
ration as the most recent and accessible tools for
this task, imagining the kinds of tools that might
available for an online pair-programming agent.

We have looked at the different experimental set-
tings that may improve model performance in a
few-shot setting: prompt and context engineering,
carefully crafting suitable prompts and selecting
the optimal type and amount of few-shot examples.
We have observed that GPT 4.1 is close to human
performance, so it could potentially replace hu-
man annotators with adequate prompt and context-
engineering on texts that are not exceedingly com-
plicated. As we have discussed throughout this
work, LLMs are powerful tools that can detect
mentions to some extent. However, just as hu-
mans require annotation schemes and there is often
debate about which types of mentions should be in-
cluded (Zeldes, 2022), the models require few-shot
examples to capture the whole range of mentions re-
quired. Pair-programming dialogue presents some
additional challenges that are not found in other
text types, primarily hesitations stemming from
it being spoken dialogue, and references to code,
which involve terminology much unlike that of
other domains.

Mention detection is the basic task upon which
work in reference resolution is built. Therefore,
insights into it are important, as outside of research
scenarios coreference resolution cannot rely on hav-
ing gold-standard mentions as input. We have seen
some limitations from LLMs performing this task,
but we have also discussed where some of these
come from and how performance can be improved
in many cases. These insights will inform our fu-
ture work in reference resolution, and we hope it
can also prove useful to the broader NLP commu-
nity. As we discussed in 3.1, we recorded several
types of data, and our annotation work went be-
yond mention detection into reference resolution
and phrase grounding. We will thus work on those
tasks with the outputs and insights obtained at this
first stage of mention detection.
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Limitations

As we have discussed in Section 3.2, we did not
strive to do a comprehensive analysis of LLMs’ per-
formance that included all possible kinds of such
models, nor is that feasible with the rapid develop-
ments in this area. We also did not perform a com-
parative analysis with other neural or rule-based
approaches: our focus is on LLMs as an example
of the SotA in NLP for numerous tasks, to examine
to what degree the idiosyncrasies of our dialogue
setting pose significant challenges. Another signif-
icant limitation of our work is the conversion of
spoken dialogue into text. We used transcriptions
generated with Whisper (Radford et al., 2022) and
revised by us, thus having very robust verbatim
transcripts. Future work with multimodal LLMs
will need to determine whether the same perfor-
mance is achieved when the models process the
audio directly — this could hinder performance
through transcription errors, or it could even sim-
plify the task through the removal of hesitations in
the initial steps of speech processing. Additionally,
although our dataset is not exceedingly small, as
shown on Table 1, it is very far from the size of
popular datasets such as OntoNotes (Weischedel
et al., 2013), which must be taken into account
when interpreting our results/
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Model P R F1 F1pp
GPT 4.1 0.80 0.75 0.77 0.79

GPT 4.1 nano 0.55 0.57 0.56 0.60
GPT 4o 0.62 0.61 0.62 0.66

GPT 4o mini 0.73 0.70 0.72 0.80
Llama 3 8B 0.00 0.00 0.00 0.44

Table 6: Model comparison using 3 random few-shot
examples. Initial results on the development set for
P(recision,), R(ecall) and F1 after post-processing.

much into the results, but they allow us to exem-
plify three basic observations from our broader set
of preliminary experiments: the GPT models per-
form markedly better than Llama, smaller distilled
models are competitive with their full version, and
postprocessing significantly improves results. This
last point is especially true for Llama, which was
consistently inconsistent in its formatting of the
output.

Our initial qualitative analysis allowed us to re-
fine our base prompt, as we discussed in Section
3.2. However, considering that the models that we
are using are optimised for dialogue, we also tested
a prompt that focuses more on this dialogue setting
instead of a parser persona — we called this prompt
a ‘chatty’ prompt. The different prompts are shown
below. Table 7 shows the different F1 scores using
our base prompt and two ‘chatty’ prompt versions,
comparing two small models and different num-
bers of randomly-selected few-shot examples. The
first ‘chatty’ prompt also follows the persona ap-
proach, encouraging the model to respond like a
dialogue partner to a student; the second one in-
troduces the setting as a dialogue, but without ask-
ing the model to adopt any human-like behaviour.
As we can see, performance with the first of the
‘chatty’ prompts decreases noticeably, but with the
second one it is similar to the base prompt. The
table also allows us to exemplify the effect of the
number of few-shot examples. We see that, with
the GPT model, performance is stably high with
few examples, but decreases when we use more
than a couple of examples; for Llama, however, a
higher number of examples increases performance.
In addition to the number of few-shot examples,
we must also consider the type (e.g., Huzaifah et al.
2024 observed the benefits of carefully selecting
examples, with the ones most closely related to
the input content being most useful in clarifying
the task to the model). We therefore compared the
use of random examples against the use of specifi-

Model FS
Base

prompt
F1

Chatty
prompt

1 F1

Chatty
prompt

2 F1
GPT 4o mini 2 0.79 0.56 0.70
GPT 4o mini 3 0.80 0.59 0.72
GPT 4o mini 6 0.81 0.57 0.76
Llama 3 8B 1 0.29 0.11 0.27
Llama 3 8B 2 0.45 0.33 0.28
Llama 3 8B 3 0.44 0.39 0.35
Llama 3 8B 10 0.47 0.47 0.51

Table 7: Performance over development data comparing
two prompt styles, two small models, and three amounts
of randomly-selected few-shot examples. The tests
cover the whole development split (dialogue 032x028),
excluding the 1-10 turns used for few-shot learning.
FS refers to the number of few-shot examples. The
F1 scores represent the value after post-processing the
output.

cally chosen examples. One approach we followed
was manufacturing our own examples that imitated
the style of the dialogues but concentrated in a
few sentences the main phenomena that could be
challenging in our data; we call these examples
‘ideal’ examples. We also tested a similar approach
where we instead selected the most representative
examples from real data; we call these examples
‘real’. Finally, we also tested an approach where
we used real examples from the data but we did not
manually select the best; instead, we used sentence
similarity11 to adapt what the best were for each
case. We separated a pool of dialogue turns; before
inference, each input turn was compared against
the pool of turns and the top n most similar turns
were retrieved as few-shot examples; we call this
approach ‘Similar’. Table 8 shows a comparison of
the performance under the different types of few-
shot examples. Again, using the development data
limits the interpretability of the results, but they
do suggest that a careful selection of the few-shot
examples is far from irrelevant.

Following the work by Manikantan et al. (2024),
we also tested whether dividing the task into two
simpler tasks improved performance. For the first
task, we ask the model to only label the heads of
mentions, expecting that this will reduce the burden
of having to decide which determiners and modi-
fiers to include — we leave that for the second task,
where the heads are expanded into the full mention
span. For the second step, as it relies purely on

11Martino Mensio’s Github

https://github.com/MartinoMensio/embeddings_sentence_similarity
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Model Type of FS FS F1pp
GPT4omini Similar 3 0.81
L3-8b-v1 Similar 3 0.47

GPT4omini Ideal 3 0.75
L3-8b-v1 Ideal 3 0.42

GPT4omini
3 ideal +
n random

1 0.79

GPT4omini
3 ideal +
n random

2 0.79

GPT4omini
3 ideal +
n random

3 0.78

L3-8b-v1
3 ideal +
n random

1 0.45

L3-8b-v1
3 ideal +
n random

2 0.43

L3-8b-v1
3 ideal +
n random

3 0.50

GPT4omini Real 3 0.77
L3-8b-v1 Real 3 0.37

GPT4omini 3 ideal + n real 3 0.79
L3-8b-v1 3 ideal + n real 3 0.44

Table 8: Performance with different types and numbers
of few-shot examples (FS). We present F1 scores after
the output was post-processed (F1pp).

identifying dependencies, we test it both with an
LLM and with a simple script using SpaCy. Ta-
ble 9 shows performance under these conditions,
with a single-prompt approach for comparison. We
can observe that the two-prompt approach never
surpasses the single-prompt approach, and that us-
ing SpaCy to expand the heads does not improve
performance but actually hinders it.

A.1 Prompts

Zero-shot prompt
You are an NLP parser specialised on extract-

ing mentions from text. Your output is fed to a
coreference resolution system and an entity link-
ing system. Therefore, your output should respect
format restrictions and not add any comments; if
there are no mentions, just return the original text.
You will be given a text and you should extract all
the mentions in it. You should return the text with
mention opening tags <M> and closing tags </M>.

Base prompt
You are an NLP parser specialised on extract-

ing mentions from text. Your output is fed to a
coreference resolution system and an entity link-
ing system. Therefore, your output should respect

Model Approach FS F1pp
GPT4o mini 2 prompts 3 0.67

GPT4o mini
1 prompt
+ SpaCy

3 0.63

GPT4o mini 1 prompt 3 0.80
Llama 3 8B 2 prompts 3 0.33

Llama 3 8B
1 prompt
+ SpaCy

3 0.37

Llama 3 8B 1 prompt 3 0.44
GPT4o mini 2 prompts 6 0.67

GPT4o mini
1 prompt
+ SpaCy

6 0.64

GPT4o mini 1 prompt 6 0.81
Llama 3 8B 2 prompts 6 0.36

Llama 3 8B
1 prompt
+ SpaCy

6 0.43

Llama 3 8B 1 prompt 6 0.49

Table 9: Performance comparison with one prompt
or splitting the task into mention-head detection and
mention span expansion (with a second prompt or with
SpaCy). We present F1 scores after post-processing the
output (F1pp).

format restrictions and not add any comments; if
there are no mentions, just return the original text.
You will be given a text and you should extract
all the mentions in it. You should return the text
with mention opening and closing tags as in the
examples.

‘Chatty’ persona-based prompt
You are a university student pair-programming

with a partner, who is also a university student.
Your partner says something and you need to under-
stand it to respond. To show that you’ve understood
your partner, you need to label the things that your
partner has mentioned, to later think about what
each of those mentions refers to.

‘Chatty’ dialogue-based prompt
You are going to see a bit of text from a dia-

logue partner. Think of all the objects, concrete
or abstract, that they mention in their text. Return
the text with <M> </M >tags framing the objects.
Return nothing else. Here are some examples of
how you’ve done this before.

B Appendix: Mention classification labels

The guidelines provided to annotators include nu-
merous images and examples, spanning 28 pages,
so here we only provide a brief summary.

The annotation units are mentions, be it to ele-
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ments in the dialogue (e.g., a previous word now
referred to with a pronoun), in the context (e.g.,
the participants, programming concepts, elements
of the code being created, etc.), or both. These
mentions can be one or more words, and they may
be split by punctuation; if the words are part of the
same mention, we label them as one broad span
that includes the words and the spaces (and possi-
bly commas or apostrophes) between them. If we
did not highlight the space in between the words as
part of the annotation, that would create separate
mentions. If there is a filled pause between parts of
one mention, the pause can be included as part of
the mention. We also include repetition within the
same unit; for example, in many cases the speakers
will repeat an article – we annotate them all as part
of the mention. After labelling the mention spans,
the annotators also classified the mentions accord-
ing to their grammatical number and the linguistic
categories summarised below:

• Pronoun - Personal

• Pronoun - Demonstrative

• Pronoun - Other

• NP - Definite

• NP - Indefinite

• NP - Meta (this category was used for men-
tions referring to words as abstract concepts,
not the meaning represented by the word)

• NP - Read-dictate (this category was used for
read-out or dictated code)

• Name

• Name variation (this category was used for
variable names that were not reproduced ex-
actly, e.g., when the ‘len()’ function is men-
tioned as ‘length’)

• Location adverb

• Incomplete (this label was added indepen-
dently of the others to mentions that spanned
more than one turn, so that we could later join
the segments)
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