# Findings of the Fourth Shared Task on Multilingual Coreference Resolution: Can LLMs Dethrone Traditional Approaches?

Michal Novák<sup>1</sup>, Miloslav Konopík<sup>2</sup>, Anna Nedoluzhko<sup>1</sup>, Martin Popel<sup>1</sup>, Ondřej Pražák<sup>2</sup>, Jakub Sido<sup>2</sup>, Milan Straka<sup>1</sup>, Zdeněk Žabokrtský<sup>1</sup>, Daniel Zeman<sup>1</sup>

<sup>1</sup> Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics, Prague, Czechia {mnovak, nedoluzko, popel, straka, zabokrtsky, zeman}@ufal.mff.cuni.cz

> <sup>2</sup> University of West Bohemia, Faculty of Applied Sciences, Department of Computer Science and Engineering, Pilsen, Czechia {konopik,ondfa,sidoj}@kiv.zcu.cz

#### **Abstract**

The paper presents an overview of the fourth edition of the Shared Task on Multilingual Coreference Resolution, organized as part of the CODI-CRAC 2025 workshop. As in the previous editions, participants were challenged to develop systems that identify mentions and cluster them according to identity coreference.

A key innovation of this year's task was the introduction of a dedicated Large Language Model (LLM) track, featuring a simplified plaintext format designed to be more suitable for LLMs than the original CoNLL-U representation.

The task also expanded its coverage with three new datasets in two additional languages, using version 1.3 of CorefUD – a harmonized multilingual collection of 22 datasets in 17 languages.

In total, nine systems participated, including four LLM-based approaches (two fine-tuned and two using few-shot adaptation). While traditional systems still kept the lead, LLMs showed clear potential, suggesting they may soon challenge established approaches in future editions.

#### 1 Introduction

Coreference is the phenomenon where multiple expressions in a text refer to the same real-world entity. For example: "Beethoven was a revolutionary artist. The German composer changed the course of music, and he continues to inspire musicians today." Here, "Beethoven", "the German composer", and "he" all point to the same individual. The computational task of coreference resolution is

to automatically identify such links between mentions and group them into clusters that represent entities. In the multilingual setting, the task is the same, but complicated by the diversity of languages and their grammatical and discourse conventions.

In this article, we present the overall setup and results of the fourth edition of the shared task in multilingual coreference resolution. For descriptions of previous editions, as well as references to the roots and predecessors of the series, see Novák et al. (2024).

This year's edition uses an improved and expanded collection of coreference data, CorefUD 1.3 (Novák et al., 2025), currently spanning 17 languages from a few typologically different families. However, the most important novelty in this edition is the introduction of the Large Language Model (LLM) track. Although non-LLM models were still welcome, a dedicated LLM Track was introduced to highlight and explore the capabilities of LLM-based approaches. Hence, to accommodate different modeling strategies and study their effects, we defined two shared-task tracks:

- LLM Track: Focused on solutions that primarily rely on LLMs for coreference resolution. Allowed strategies include fine-tuning LLMs, using in-context learning, designing effective prompts, utilizing constrained decoding strategies, and building more complex agentic systems.
- *Unconstrained Track:* Open to all other approaches, including non-LLM models and hybrid systems. This track allows the use of

**Spanish:** El conductor del tren vio el coche en la vía e intentó frenar. **English transl.:** The driver of-the train saw the car on the track and tried to brake.

Our serialization: El|[e22 conductor de el tren|[e5],e22] vio el|[e7 coche|e7] en la|[e8 vía|e8] e intentó ##|[e22] frenar|[e23] .

Figure 1: Our plaintext serialization of a Spanish example sentence from es\_ancora. For clarity, mention spans are highlighted by colored underlining, where two coreferential entities share the same color. A zero mention labeled on an empty node is greyed. Note that multi-word tokens are split in the plaintext format into syntactic words (e.g., the Spanish "del" appears as "de el"); this conversion error was identified after the data release.

additional pre-existing coreference systems, external tools, and extensive model modifications.

A major trend in NLP is the shift from traditional task-specific models to LLMs, which can address a wide range of tasks with little fine-tuning and are comparatively easy to deploy. This unification brings greater efficiency, flexibility, and scalability, but also raises challenges such as bias, computational cost, and privacy concerns. At the same time, LLMs have shown strong performance on tasks that require understanding of textual context and relations, including question answering, summarization, and commonsense reasoning.

A category of benchmarks that are commonly used to test these coreference-related capabilities are derivations of the Winograd Schema Challenge (Levesque et al., 2012), for instance KnowRef (Emami et al., 2019), WinoGrande (Sakaguchi et al., 2021), and recently WinoWhat (Gevers et al., 2025). However, these benchmarks represent an overly narrow view of coreference resolution. They primarily focus on commonsense reasoning through carefully crafted disambiguation scenarios, while real-world coreference resolution involves a much broader spectrum of phenomena.

Previous works on using LLMs for coreference resolution show that they struggle with this task and are not able to outperform systems specifically tailored for coreference resolution (Le and Ritter, 2023; Vadász, 2023; Hicke and Mimno, 2024; Gan et al., 2024; Saputa et al., 2024). One of the reasons may be that the data used to model and test the task is very heterogeneous due to practical difficulties in clearly and precisely defining the elements that coreference relations work with, specifically the scope of mentions, the degree of zero reconstruction, and the typology of coreference and anaphoric relations.

Still, the progress in LLMs is so rapid that it

seems just a matter of time before these LLM-based systems will dominate also in this task. We see the LLM track of this shared task as an opportunity to test this hypothesis and encourage development in this field, providing a platform for researchers to explore the current boundaries and future potential of LLM-based coreference resolution.

The step towards LLMs does not represent only a technological change – it often requires rethinking how we approach a particular task. Structured (possibly pipelined) solutions are typically abandoned and replaced by processing "flat" sequences of (sub)words. In the particular case of this shared task, we replace the relatively richly structured CoNLL-U format in which the encoding of coreference relations is stored in the CorefUD collection with an encoding of coreference that could be added directly into plain text.

Naturally, there are many possible ways to insert coreference markup into text, and prior work on LLMs for coreference has each used its own prompt and format. So far, no widely accepted best practices have emerged for encoding or prompting coreference in plain text. We implement our own conversion from CorefUD into a plaintext serialization (example in Figure 1), but acknowledge that our design choices may limit applicability and that further optimization could improve LLM performance.

The remainder of the paper is structured as follows. Section 2 discusses the changes in the data compared to the previous (third) edition of the shared task. Section 3 outlines the evaluation metrics used in the task, including both the primary and supplementary scores. Section 4 details all participating systems, both in the LLM track and in the Unconstrained track. Section 5 presents a summary of the results and discusses some differences between the performance of LLM and Unconstrained systems. Section 6 provides the conclusion.

#### 2 Datasets

As in previous years, the shared task takes training and evaluation data from the public part of the CorefUD collection (Nedoluzhko et al., 2022),<sup>1</sup> now in its latest release (1.3).<sup>2</sup> The public edition of CorefUD 1.3 consists of 24 datasets<sup>3</sup> covering 17 languages from five language families. Compared to CorefUD 1.2, used last year (Novák et al., 2024), the release adds three new datasets and two new languages including Korean, which represents a new language family. The new datasets are French ANCOR, Hindi HDTB, and Korean ECMT. In addition, several existing datasets from CorefUD 1.2 were updated. The data span diverse domains including news, fiction, Bible texts, and Wikipedia articles. French ANCOR notably introduces transcripts of originally spoken conversational data, which were previously only marginally represented in CorefUD. Table 1 gives an overview of the datasets and their sizes. See Appendix A for references of the individual datasets.

One of the goals of the CorefUD project is to encourage research on coreference resolution in languages other than English, particularly those with zero anaphora. Zero anaphora, or zero mentions, occur when a referent (like a subject or object) is implied but not explicitly stated. This is a common feature of pro-drop languages, where verb conjugation often provides enough information to infer the missing pronoun. In CorefUD, zero mentions are represented as *empty nodes* that are artificially inserted into Universal Dependencies (UD) trees. This allows them to be grouped with other mentions in a coreference chain, just like any other explicitly stated mention. Although the two newly added languages, Korean and Hindi, are considered pro-drop, the original datasets do not include zero mention annotation. Therefore, the collection of datasets with zero mentions remains the same as in the previous edition.

Our shared task focuses exclusively on identity coreference. The datasets in the CorefUD collection, however, may include annotations of other relations, such as bridging. Similarly, phenomena like event anaphora and abstract anaphora may be annotated in some datasets but not in others. Because CorefUD is not fully harmonized in terms

of annotation guidelines, the precise nature of annotated anaphoric phenomena may vary slightly across corpora. In converting to the CorefUD format, we aim to isolate identity coreference<sup>4</sup> while largely preserving the original annotations.

#### 2.1 New Resources

French ANCOR (fr\_ancor; Muzerelle et al., 2014) is a collection of three different corpora of conversational speech (Accueil\_UBS, OTG, ESLO), annotated for coreference. Cross-sentence mentions (caused e.g. by two speakers speaking simultaneously) are ignored in the conversion from TEI to CorefUD.

**Hindi HDTB** (hi\_hdtb; Mujadia et al., 2016) is based on the HDTB corpus (Palmer et al., 2009) annotated with coreference and anaphoric relations and corresponding to the namesake treebank in UD. However, the coreference corpus does not constitute a strict subset of the UD treebank, as approximately 14% of its sentences are not included in the UD release. Still, each coreference-annotated document contains at least one sentence that appears in the treebank. Although the original annotations distinguish *PartOf* relations, these are often merged with identity coreference relations within the same cluster, complicating the separation of identity, bridging, and split-antecedent relations. As a result, we currently treat all mentions within a cluster as coreferential, without making finer distinctions. At present, we do not incorporate the manually annotated morpho-syntactic information from the UD treebank; instead, we replace it with automatic parses produced by UDPipe 2.

Korean ECMT (ko\_ecmt; Nam et al., 2020) is a conversion of the dataset created for the paper "Effective Crowdsourcing of Multiple Tasks for Comprehensive Knowledge Extraction" (ECMT). The original dataset is based on Korean Wikipedia and KBox with crowdsourced annotations for four information extraction tasks: (1) entity detection, (2) entity linking, (3) coreference resolution, and (4) relation extraction. The original dataset seems to contain errors where distinct entities are incorrectly merged into a single coreference cluster. The CorefUD conversion did not attempt to fix these errors.

https://ufal.mff.cuni.cz/corefud
http://hdl.handle.net/11234/1-5896

<sup>&</sup>lt;sup>3</sup>For the shared task, we used only 22 of them (see Section 2.3).

<sup>&</sup>lt;sup>4</sup>We are aware that complete isolation is not possible due to near-identity relations; see Recasens et al. (2010).

|                            |       | total  | number of |          |        | entitie | es  |      | mentions |        |      |      |
|----------------------------|-------|--------|-----------|----------|--------|---------|-----|------|----------|--------|------|------|
| document                   |       |        |           |          | total  | per 1k  | len | gth  | total    | per 1k | leng | gth  |
|                            | docs  | sents  | words     | empty n. | count  | words   | max | avg. | count    | words  | max  | avg. |
| Ancient_Greek-PROIEL       | 19    | 6,475  | 64,111    | 6,283    | 3,215  | 50      | 332 | 6.6  | 21,354   | 333    | 52   | 1.7  |
| Ancient_Hebrew-PTNK        | 40    | 1,161  | 28,485    | 0        | 870    | 31      | 102 | 7.2  | 6,247    | 219    | 22   | 1.5  |
| Catalan-AnCora             | 1,298 | 13,613 | 429,313   | 6,377    | 17,558 | 41      | 101 | 3.6  | 62,417   | 145    | 141  | 4.8  |
| Czech-PCEDT                | 2,312 | 49,208 | 1,155,755 | 35,654   | 49,225 | 43      | 236 | 3.4  | 168,055  | 145    | 79   | 3.6  |
| Czech-PDT                  | 3,165 | 49,419 | 834,707   | 21,092   | 46,460 | 56      | 173 | 3.3  | 154,437  | 185    | 99   | 3.1  |
| English-GUM                | 237   | 13,263 | 233,926   | 119      | 9,200  | 39      | 131 | 4.4  | 40,656   | 174    | 95   | 2.6  |
| English-LitBank            | 100   | 8,560  | 210,530   | 0        | 2,164  | 10      | 261 | 10.8 | 23,340   | 111    | 129  | 1.6  |
| English-ParCorFull         | 19    | 543    | 10,798    | 0        | 188    | 17      | 38  | 4.4  | 835      | 77     | 37   | 2.1  |
| French-ANCOR               | 455   | 31,761 | 454,577   | 0        | 13,204 | 29      | 103 | 4.3  | 56,459   | 124    | 17   | 1.9  |
| French-Democrat            | 126   | 13,057 | 284,883   | 0        | 7,162  | 25      | 895 | 6.5  | 46,487   | 163    | 71   | 1.7  |
| German-ParCorFull          | 19    | 543    | 10,602    | 0        | 243    | 23      | 43  | 3.7  | 896      | 85     | 30   | 2.0  |
| German-PotsdamCC           | 176   | 2,238  | 33,222    | 0        | 880    | 26      | 15  | 2.9  | 2,519    | 76     | 34   | 2.6  |
| Hindi-HDTB                 | 271   | 3,479  | 76,282    | 0        | 3,148  | 41      | 36  | 3.8  | 12,082   | 158    | 43   | 1.8  |
| Hungarian-KorKor           | 94    | 1,351  | 24,568    | 1,569    | 1,122  | 46      | 41  | 3.6  | 4,091    | 167    | 42   | 2.2  |
| Hungarian-SzegedKoref      | 400   | 8,820  | 123,968   | 4,857    | 4,769  | 38      | 36  | 3.2  | 15,165   | 122    | 36   | 1.6  |
| Korean-ECMT                | 1,470 | 30,784 | 482,986   | 0        | 16,536 | 34      | 55  | 3.4  | 56,538   | 117    | 12   | 1.3  |
| Lithuanian-LCC             | 100   | 1,714  | 37,014    | 0        | 1,087  | 29      | 23  | 4.0  | 4,337    | 117    | 19   | 1.5  |
| Norwegian-BokmaalNARC      | 346   | 15,742 | 245,515   | 0        | 5,658  | 23      | 298 | 4.7  | 26,611   | 108    | 51   | 1.9  |
| Norwegian-NynorskNARC      | 394   | 12,481 | 206,660   | 0        | 5,079  | 25      | 84  | 4.3  | 21,847   | 106    | 57   | 2.1  |
| Old_Church_Slavonic-PROIEL | 26    | 6,832  | 61,759    | 6,289    | 3,396  | 55      | 134 | 6.5  | 22,116   | 358    | 52   | 1.5  |
| Polish-PCC                 | 1,828 | 35,874 | 538,885   | 18,615   | 22,143 | 41      | 135 | 3.7  | 82,706   | 153    | 108  | 1.9  |
| Russian-RuCor              | 181   | 9,035  | 156,636   | 0        | 3,515  | 22      | 141 | 4.6  | 16,193   | 103    | 18   | 1.7  |
| Spanish-AnCora             | 1,356 | 14,159 | 458,418   | 8,112    | 19,445 | 42      | 110 | 3.6  | 70,663   | 154    | 101  | 4.8  |
| Turkish-ITCC               | 24    | 4,732  | 55,358    | 11,584   | 4,019  | 73      | 369 | 5.4  | 21,569   | 390    | 31   | 1.1  |

Table 1: CorefUD 1.3 data sizes in terms of the total number of documents, sentences, words (i.e. non-empty nodes), empty nodes (empty words), coreference entities (total count, relative count per 1000 words, average and maximal length in number of mentions) and coreference mentions (total count, relative count per 1000 words, average and maximal length in number of words). All the counts are excluding singletons and for the concatenation of train+dev+test. Train/dev/test splits of these datasets roughly follow the 8/1/1 ratio. However, note that for the shared task we used reduced versions of dev and test: mini-dev and mini-test, respectively.

#### 2.2 Updated Resources

More data The English GUM corpus (en\_gum) is now in its version 11, which has approximately 10% more data. All the other datasets are the same size as before (except for a few minor changes resulting from annotation corrections).

New prediction of morphosyntax For datasets that do not come with manual morphosyntactic annotation, the UD relations, tags and features were predicted with newer models for UDPipe (based on UD release 2.15 instead of 2.12). This involves the following ten corpora: Czech PCEDT, English LitBank, English ParCorFull, German ParCorFull, German PotsdamCC, Hungarian KorKor, Hungarian SzegedKoref, Lithuanian LCC, Polish PCC, Russian RuCor.

**Substantial changes** Re-implementation of conversion from non-CorefUD formats and/or major revision of the annotation was applied to Czech PDT (cs\_pdt) and Hungarian KorKor (hu\_korkor). For Czech, the source dataset is now

the PDT part of PDT-C 2.0 (previously it was 1.0), which has substantial improvements on the surface-syntactic layer. Many other changes were done in the PDT-to-UD conversion of morphology and syntax; coreference annotation is unchanged, except for a few corrections. For Hungarian, the conversion from the native format was almost completely rewritten. Empty copula nodes are now deleted as required in UD. DROP empty nodes now receive correct incoming dependency relations (nsubj, obj, or nmod:att), and there are several other small improvements.<sup>5</sup>

#### 2.3 Data for the Shared Task

Compared to the public edition of CorefUD 1.3, the data provided for the shared task participants underwent slight adjustments.<sup>6</sup>

<sup>&</sup>lt;sup>5</sup>More details on the changes can be found in the README files of the individual corpora.

<sup>&</sup>lt;sup>6</sup>Both the shared task data and submissions are available at http://hdl.handle.net/11234/1-5987.

**Data reduction** Firstly, the English and German ParCorFull datasets were excluded from this year's shared task. These datasets are the smallest (their test sets contain less than 900 words, one third of the next smallest test set) and exhibited the largest variance, considerably influencing overall macroaveraged scores.<sup>7</sup>

Secondly, the development and test sets were reduced to *mini-dev* and *mini-test* sets, respectively. This change was introduced to lower the computational cost of evaluation while preserving high discriminative power. Each dev and test set is now capped at 25k words, achieved by randomly sampling complete documents. The 25k threshold was selected to cut the overall collection size by roughly half, while affecting only a few of the largest corpora and still ensuring reliable and representative results.<sup>8</sup>

**Plaintext format** For the LLM track, we provide a conversion to a simple plaintext format, along with both the conversion tool and the converted dataset files.

The plaintext format (see Figure 1) is a plain text file in which each line represents a document, and tokens are separated by spaces. Coreference annotations are appended to each token after the '|' character. Each mention, including singletons, is defined by its span boundaries, marked with opening and closing square brackets concatenated with the entity ID. Empty nodes are prefixed with '##'; if an empty node has a form or lemma in the original data, it is appended immediately after. Because empty nodes are defined by their syntactic position rather than linear order, each empty node is placed directly after its syntactic parent. This format does not encode the dependency relation type to the parent, which means it cannot distinguish between multiple empty nodes dependent on the same parent (see Section 3). While this limitation may slightly affect evaluation results, we consider the impact marginal and an acceptable trade-off for preserving the simplicity of the format.

The plaintext format is intentionally less expressive than CoNLL-U and lacks sufficient information for some evaluation metrics (e.g., head match requires mention heads derived from spans using syntactic trees). To bridge this gap, we provide a backwards conversion tool that restores plaintext annotations to CoNLL-U format, as well as an output cleaner.<sup>9</sup>

The cleaner addresses common issues caused by LLM outputs, such as broken annotation structure (e.g., unclosed mentions) or added/removed/modified words. It first ensures all mentions are properly opened and closed, then uses word-level edit distance to align output documents to the original input. Empty nodes are ignored in the edit-distance computation, as systems are expected to insert them themselves. Once the token sequences match exactly, the output annotations can be safely mapped back to the original CoNLL-U files.

**Data variants and starting points** In both tracks, two main variants of the data are provided: gold, and input data. In addition, participants of the Unconstrained track can choose from three starting points.

Gold data includes gold-standard annotations of coreference and empty nodes, intended for fine-tuning and evaluation. The data are consistent with the CorefUD 1.3 release, retaining manually annotated morpho-syntactic features (for datasets that originally included them), gold empty nodes, and gold coreference annotations. The only technical modification is the removal of empty nodes' forms in order to align the data with the output of the baseline empty node prediction, which does not predict these forms (see Section 4.1). While the gold train and mini-dev sets were available for download, the gold test set remained secret and were used internally in CodaLab for evaluation.

Input data was intended to be processed by participants' systems and subsequent submission. The following preprocessing was thus performed only on the mini-dev and mini-test sets. To better simulate a real-world scenario where no manual linguistic annotation is available, we removed the forms of empty nodes and replaced the original morphosyntactic features with the outputs of UD 2.15 models across all datasets, including those with origi-

<sup>&</sup>lt;sup>7</sup>Considering eight training runs of the last year's winning system differing in just random initialization, the standard deviation of the ParCorFull development results is more than 10 times larger than the standard deviation of the overall macro-averaged scores and 15 times larger than the standard deviation of the largest dataset.

<sup>&</sup>lt;sup>8</sup>Again considering eight training runs of the last year's winning system differing in just random initialization, capping the large datasets to 25k words increase the standard deviation of the overall macro-averaged percentage results on the development sets by less than +0.03, from 0.296 to 0.324.

 $<sup>^9</sup> The conversion tool and cleaner are available as a single application/Python library on GitHub: <math display="block">\label{library} \verb|com/ondfa/text2text-coref|$ 

nally human-annotated features. Additionally, the gold empty nodes and coreference annotations were removed, forming the input data for the LLM track. On the other hand, in line with the setup of the last year's edition, participants of the Unconstrained track could choose from three different *starting points* for entering the shared task, with varying degrees of work required: (1) *Coreference and zeros from scratch* with no predictions of empty nodes and coreference (practically identical to the LLM-track variant), (2) *Coreference from scratch* with baseline predictions of empty nodes, and (3) *Refine the baseline* with baseline predictions of empty nodes and coreference.

#### 3 Evaluation Metrics

The systems participating in the shared task are evaluated using the CorefUD scorer. In line with previous editions, the primary evaluation score is the CoNLL  $F_1$  score, computed with head mention matching and excluding singletons. To align zero mentions, no longer guaranteed to match one-to-one due to the shift to a more realistic setup introduced last year, we apply a dependency-based matching method. In addition to the primary metric, we also compute several supplementary scores to support a more comprehensive comparison of the shared task submissions.

Official scorer We evaluate participant submissions using the CorefUD scorer<sup>10</sup>, specifically the February 2025 version, which remains virtually unchanged from the version used in the previous edition. The scorer builds on the Universal Anaphora (UA) scorer 2.0 (Yu et al., 2023),<sup>11</sup> adopting all features relevant to the shared task, including implementations of widely used coreference evaluation metrics. In contrast to the UA scorer, the CorefUD scorer also supports head matching and a dependency-based method for aligning zero mentions.

The scorer takes two CoNLL-U files as input: the gold file and the predicted file. Since our plaintext format cannot capture all the information required for evaluation (e.g., mention heads), any LLM output produced in this format must first be restored into CoNLL-U before it can be properly

evaluated.

**Mention matching** Due to the limitations of *exact* and *partial* mention matching methods (see Žabokrtský et al. (2023) for details), we have settled on the *head match* strategy for the primary evaluation metrics. In this approach, a gold and predicted mention are considered a match if their heads refer to the same token. <sup>12</sup> Full mention spans are ignored, except in cases where multiple mentions share the same head; in such instances, span information is used to disambiguate them.

However, this approach is not applicable to empty nodes, which frequently occur in zero anaphora. Predicted counterparts of gold zero mentions may be missing, spurious, or appear at different surface positions within a sentence, even if they serve the same syntactic or semantic role. To handle this, we devised a dependency-based method last year (Novák et al., 2024). The method aligns predicted and gold zero mentions within the same sentence by maximizing their overlap in enhanced dependency annotations. It formulates the task as a one-to-one matching in a weighted bipartite graph, where each candidate pair is scored based on how well the predicted zero replicates the gold zero's dependencies. Matches that correctly assign both the parent and the dependency type receive higher weights, though the method remains robust even when dependency types are not provided.

**Primary score** As is standard in coreference resolution, we use the CoNLL  $F_1$  score (Denis and Baldridge, 2009; Pradhan et al., 2014) as the primary evaluation metric. This score is calculated as the unweighted average of the  $F_1$  scores from three widely used coreference evaluation measures: MUC (Vilain et al., 1995),  $B^3$  (Bagga and Baldwin, 1998), and CEAF-e (Luo, 2005). These metrics offer complementary perspectives: link-based, mention-based, and entity-based, respectively. As we aim to identify systems with stable performance across all datasets, the final ranking of submissions is determined by the macro-average of CoNLL  $F_1$  scores across all mini-test sets in the shared task collection.  $^{13}$ 

<sup>10</sup>https://github.com/ufal/
corefud-scorer

<sup>&</sup>lt;sup>11</sup>The UA scorer 2.0 merges, reimplements, and extends several earlier tools, including previous versions of the CorefUD scorer.

<sup>&</sup>lt;sup>12</sup>Gold mention heads in the CorefUD data are determined from the dependency tree using the Udapi block corefud. MoveHead.

 $<sup>^{13}</sup>$ The evaluation protocol with macro-averaging CoNLL  $F_1$  scores was announced before the start of the development phase and it was used also in previous versions of the shared task. We think it is the fairest aggregation method. As alternatives, one could average differences to the baseline or average

**Supplementary scores** Beyond the primary CoNLL F<sub>1</sub> score, we report its alternative variants based on different mention matching strategies: partial match<sup>14</sup> and exact match. We also compute the CoNLL score using head match for all mentions, including singletons.

To provide a more comprehensive evaluation, we report the individual coreference metrics comprising the CoNLL score (MUC, B³, and CEAF) as well as other commonly used metrics such as BLANC (Recasens and Hovy, 2011) and LEA (Moosavi and Strube, 2016). Furthermore, we include the Mention Overlap Ratio (MOR) to assess mention detection independently of coreference clustering and the anaphor-decomposable score for zero anaphora, both introduced in Žabokrtský et al. (2022).

# 4 Participating Systems

#### 4.1 Baseline

As in the previous edition, two baseline systems are provided: one for predicting empty nodes as slots for zero anaphora and another for coreference resolution. Only participants in the Unconstrained track are permitted to use or build upon these baseline systems.

**Empty nodes prediction baseline** Empty node prediction was introduced as an additional task in last year's shared task, and it is again part of the shared task this year. To support participants who wish to focus exclusively on coreference resolution, we again provide a baseline system for empty nodes prediction. We release the source code, <sup>15</sup> the trained multilingual model, <sup>16</sup> and the mini-dev and mini-test data with predicted empty nodes.

The baseline model architecture is virtually unchanged from last year. Each input sentence is processed by a XLM-RoBERTa-large (Conneau et al., 2020), generating embeddings for each input word. Then, two candidate empty nodes are predicted for each word, and passed through three

heads: (1) a binary classification head predicting whether the candidate is really an empty node or not, (2) a word-order prediction head implemented using self-attention selecting the word after which the empty node should be added, and (3) a dependency relation prediction head, which first concatenates the candidate representation and the representation of the word most probable according to the word-order prediction head, and then predicts the dependency relation. A single model is trained on a concatenation of all corpora with empty nodes, sampling every sentence proportionally to the square root of its corpora size. For a detailed description and a visualization of the model architecture, see Straka (2024).

We intrinsically evaluate the empty node prediction baseline using precision, recall, and the F1 score, as shown in Table 2, where a prediction is classified as correct only when all of its dependency head, dependency relation, and word order are correct. For comparison, we also include the last year's F1 score. This year's results are very consistent, with the exception of hu\_korkor showing an increase of nearly 20 percent points due to improved conversion to the CorefUD format in CorefUD 1.3 (see Section 2.2).

Coreference resolution baseline The coreference resolution baseline is the same as in the past three years. It is based on the multilingual end-to-end neural coreference resolution system by Pražák et al. (2021), which adapts the original end-to-end model of Lee et al. (2017). The model considers all possible spans up to a predefined maximum length and directly predicts an antecedent for each span. Since it has no separate mention detection step, it is well suited for datasets that do not annotate singletons. The baseline uses the mBERT base model as its encoder.

Hereafter, we denote the combination of the two baseline systems as BASELINE and the coreference resolution baseline applied to gold empty nodes as BASELINE-GZ.

### 4.2 System Submissions

This year, nine systems were submitted to the shared task by six teams: UWB, 17 PUXAI, 18

ranks. The former yields the same final ranking as macroaveraging, while the latter would lead to a single difference: in the LLM track, the winner would be LLM-UWB, despite this system not producing output for one dataset and not covering zero anaphora in some datasets (see Sections 4.2 and 5).

<sup>&</sup>lt;sup>14</sup>Partial match was used as the primary metric in the first edition of the shared task (Žabokrtský et al., 2022).

<sup>15</sup>https://github.com/ufal/crac2025\_ empty\_nodes\_baseline

<sup>16</sup>https://www.kaggle.com/models/
ufal-mff/crac2025\_empty\_nodes\_baseline/

<sup>&</sup>lt;sup>17</sup>UWB = University of West Bohemia.

<sup>&</sup>lt;sup>18</sup>PUXAI refers to the system by Nguyễn Xuân Phúc.

| Language   | Recall | Precision | F1   | 2024<br>F1 |
|------------|--------|-----------|------|------------|
| ca_ancora  | 91.1   | 91.9      | 91.5 | 91.7       |
| cs_pcedt   | 61.4   | 77.1      | 68.4 | 67.8       |
| cs_pdt     | 74.9   | 81.0      | 77.8 | 76.2       |
| cu_proiel  | 79.0   | 81.0      | 80.0 | 80.2       |
| es_ancora  | 93.4   | 92.9      | 93.2 | 92.0       |
| grc_proiel | 86.3   | 89.7      | 88.0 | 88.4       |
| hu_korkor  | 83.3   | 85.5      | 84.4 | 66.7       |
| hu_szeged  | 87.8   | 88.9      | 88.3 | 90.7       |
| pl_pcc     | 91.9   | 89.0      | 90.4 | 89.5       |
| tr_itcc    | 94.0   | 79.8      | 86.3 | 85.8       |

Table 2: Empty nodes prediction baseline performance on the minidev sets of CorefUD 1.3 languages containing empty nodes. An empty node is considered correct if it has the correct dependency head, dependency relation, and word order. For comparison, we also show results from the last year on CorefUD 1.2 dev sets.

GLaRef, <sup>19</sup> NUST-SEECS, <sup>20</sup> ÚFAL CorPipe, <sup>21</sup> and Stanford NLP Group. <sup>22</sup> For clarity, we distinguish the submissions to the LLM track with the 'LLM-' prefix in the following text.

**LLM-UWB** (hejmanj) The UWB team finetunes a Llama-3.1-8B model on the official plaintext export of the CoNLL-U files. Training is done using QLoRA adaptation. The model is trained to generate the fully tagged document text, including empty nodes, by inserting them directly in the output. For some datasets, they modify the input format to use just a headword for mention representation. Two variants of the model are trained: a simple version using the provided format, but ignoring empty nodes, and an extended version with empty nodes and headword mention representation. Versions for the final submission was selected based on dev set results. The simple version is used for: cs pcedt, cs pdt, es ancora, grc proiel, hu korkor, ko ecmt, It Icc, and pl pcc. For hbo ptnk, the model was not properly trained due to very long sequences and inefficient tokenization, and the system failed to meet the output format. Input windows up to 4 096 tokens are used in training; at inference time, contexts of 2 048 tokens and outputs of 4 096 tokens are typical, with occasional extensions to 8 192/16 384. No additional data is used.

**LLM-PUXCRAC2025 (PuxAI)** This system is purely prompt-based, few-shot coreference resolver combining two closed-source LLMs (Gemini-Flash-2.0 and Grok-3). A difficulty-aware pipeline selects three hardest examples per language, reranks them by two semantic scores, and feeds them plus the test document into the model. Output chains are post-processed into CoNLL-U. No fine-tuning or extra data is used; the system runs free of charge on public tiers.

**LLM-GLaRef-CRAC25** (oseminck) The authors fine-tune google/gemma-3-12b-it in two stages: a context-free end-to-end tagger, and a context-aware variant that processes chunks of sentences (8 or 10 at a time) with preceding context of 500–700 characters. The best three runs (context-free, 8sent\_500char, 10sent\_700char) are combined for the final submission. Training follows QLoRA + prompt tuning + quantization over plaintext inputs; no extra data are used.

**LLM-NUST-FewShot** (moizsajid) This system applies few-shot in-context learning with Gemini 2.5 Pro. Up to 300k tokens of input are allowed; generation limits are defined by the task. No fine-tuning or additional data are used. The system demonstrates that performance scales with the number of examples provided

**GLaRef-Propp** (antoine.bourgois) This work is based on a multi-stage pipeline built on google/mt5-xl. Empty nodes are detected first (pro-drop languages only), then mentions with a BiLSTM-CRF, followed by a mention-pair feed-forward coreference scorer. Windows of up to 512 subwords are used, with sliding overlaps. The three modules contain approximately 54 million trainable parameters and are all fine-tuned solely on CoNLL-U input.

CorPipeSingle (ÚFAL CorPipe) The system utilizes a PyTorch re-implementation of CorPipe24 using google/umt5-xl. Mentions and links are predicted jointly, but empty nodes are taken from the provided baseline. The model is trained multilingually for 150k gradient updates over 15 epochs;

<sup>&</sup>lt;sup>19</sup>GLaRef = Group Lattice for Reference. Two systems are submitted under this name: GLaRef-CRAC25 and GLaRef-Propp.

<sup>&</sup>lt;sup>20</sup>NUST-SEECS = National University of Sciences and Technology, School of Electrical Engineering and Computer Science.

<sup>&</sup>lt;sup>21</sup>ÚFAL CorPipe submitted three variants: CorPipeSingle, CorPipeBestDev, and CorPipeEnsemble.

<sup>&</sup>lt;sup>22</sup>Stanford NLP Group is the creator of the Stanza package.

batch sizes of 6–16 sentences with proportional sampling yield the final selected checkpoint.

**CorPipeBestDev** (ÚFAL CorPipe) Same architecture as CorPipeSingle, but instead of one fixed checkpoint, the best checkpoint per treebank (out of 13 models trained with different seeds and sampling) is selected on the mini-dev sets.

**CorPipeEnsemble** (ÚFAL CorPipe) An ensemble of the top five out of the 13 multilingual umT5-xl models from CorPipeSingle, averaging their predicted mention-pair probabilities.

Stanza (Stanford NLP Group) This work is based on a head-joining efficient word-level conference approach, built on the work of Dobrovolskii (2021); D'Oosterlinck et al. (2023); Liu et al. (2024). Mentions are first linked by head words, after which spans are resolved locally through a CNN. Embeddings for mention resolution are initialized via XLM-RoBERTa large, with a sliding window over the document 512 tokens wide.

### 4.3 System Comparison

Overview of tables Tables 3–5 provide a comprehensive comparison of all nine submissions. Table 3 lists each system's shared-task track, primary pretrained backbone, and key methodological components (e.g. fine-tuning, prompt tuning, few-shot prompting, pipeline modules). Table 4 details each model's maximum input context length, maximum new tokens generated at inference, and total number of trainable parameters. Finally, Table 5 outlines the training regimes: whether models were tuned per language, the batch sizes used, the total number of gradient updates, which hyperparameters were tuned, and how empty nodes were handled.

Although all nine submissions share the same official CoNLL-U training data and target format, they diverge along four main dimensions: modelling paradigm, context capacity, empty node handling, and language- or treebank-specific adaptation.

Modeling paradigms There are four contributions in the LLM track and five submissions in the unconstrainted track. The four LLM-track systems (LLM-UWB, LLM-PUXCRAC2025, LLM-GLaRef-CRAC25, LLM-NUST-FewShot) treat coreference as a text-generation or promptanswering task. LLM-UWB and LLM-GLaRef-CRAC25 perform full fine-tuning (via QLoRA,

LoRA, quantization, or prompt tuning) of large open-source models (Llama-3.1-8B, gemma-3-12b-it), teaching them to output bracketed and empty-node-annotated text. In contrast, LLM-PUXCRAC2025 and LLM-NUST-FewShot use purely few-shot or in-context prompting on closed-source models (Gemini, Grok), with no parameter updates.

Unconstrained-track submissions (GLaRef-Propp, CorPipeSingle, CorPipeBestDev, Cor-PipeEnsemble, Stanza) adopt a more traditional, mention detection – mention-pair scoring pipeline. These systems fine-tune XLM-RoBERTa, mT5-xl or umT5-xl in a supervised manner and build clusters via antecedent ranking and transitive closure.

Context capacity and model scale The LLM-track systems exploit the extended context windows of modern LLMs: LLM-UWB up to 8 192 input / 16 384 output tokens, LLM-PUXCRAC2025 effectively unlimited (1 048 576), and LLM-NUST-FewShot 300 000 tokens. LLM-GLaRef-CRAC25 similarly benefits from large-context inference. By contrast, the Unconstrained track systems are limited by standard transformer lengths (512–2 560 subwords), relying on sliding windows or chunking to cover long documents. Model sizes range from 54 M trainable parameters in GLaRef-Propp's BiLSTM-CRF modules to 12 B in gemma-3-12bit, with most systems clustering around 1.7 B–8 B parameters.

**Data usage** All nine systems use only the official CoNLL-U data, with no additional corpora. Most train a single multilingual model rather than separate per-language models. The only exception is the CorPipeBestDev system, which picks the best checkpoint per treebank. In terms of computational cost, only LLM-NUST-FewShot reports a non-zero expense (about \$234.7), while all other systems either report zero cost or rely on university computing resources.

Empty node handling Empty nodes are addressed in different ways: (1) predicted end-to-end with a fine-tuned system (LLM-UWB and LLM-GLaRef-CRAC25), (2) predicted end-to-end via incontext learning (LLM-PUXCRAC2025 and LLM-NUST-FewShot), (3) adopted from the shared task's baseline (CorPipe variants, Stanza), or (4) predicted with a custom model (GLaRef-Propp). The LLM-based systems relied on the serialized

| Name              | Track     | Techniques                     |
|-------------------|-----------|--------------------------------|
| LLM-UWB           | LLM       | FT, LoRA, QLoRA, quant.        |
| LLM-PUXCRAC2025   | LLM       | few-shot, re-rank              |
| LLM-GLaRef-CRAC25 | LLM       | FT, prompt-tune, QLoRA, quant. |
| LLM-NUST-FewShot  | LLM       | few-shot in-context            |
| GLaRef-Propp      | Unconstr. | BiLSTM-CRF + feedforward       |
| CorPipeSingle     | Unconstr. | FT multistage                  |
| CorPipeBestDev    | Unconstr. | FT + per-treebank select       |
| CorPipeEnsemble   | Unconstr. | FT + ensemble                  |
| Stanza            | Unconstr. | FT + LoRA                      |

Table 3: System names, task tracks, and main techniques.

| Name              | Model                      | Input ctx. len. | Output tok. len. | #Params              |
|-------------------|----------------------------|-----------------|------------------|----------------------|
| LLM-UWB           | Llama-3.1-8B               | 8,192           | 16,384           | 8 B                  |
| LLM-PUXCRAC2025   | Gemini-Flash-2.0<br>Grok-3 | 1,048,576       | 16,384           | _                    |
| LLM-GLaRef-CRAC25 | gemma-3-12b-it             |                 |                  | 12 B                 |
| LLM-NUST-FewShot  | Gemini 2.5 Pro             | 300,000         |                  |                      |
| GLaRef-Propp      | mt5-xl                     | 512             |                  | 54 M                 |
| CorPipeSingle     | umT5-x1                    | 512/2,560       | _                | 1.7 B                |
| CorPipeBestDev    | umT5-x1                    | 512/2,560       | _                | 1.7 B                |
| CorPipeEnsemble   | umT5-x1                    | 512/2,560       | _                | 8.6 B                |
| Stanza            | XLM-RoBERTa-L              | 512             | _                | 31M +<br>560M frozen |

Table 4: Models: model name, maximum input context length, maximum new tokens generated, and model sizes.

| Name              | <b>Empty nodes</b>   | Batch size           | Grad ups                  | Tuned h-params                         |
|-------------------|----------------------|----------------------|---------------------------|----------------------------------------|
| LLM-UWB           | predicted<br>ignored | 1                    | ?                         | ?                                      |
| LLM-PUXCRAC2025   | predicted            | few-shot             | 0                         |                                        |
| LLM-GLaRef-CRAC25 | predicted            | ?                    | ?                         | ?                                      |
| LLM-NUST-FewShot  | predicted            | few-shot             | 0                         | _                                      |
| GLaRef-Propp      | predicted            | 16,000 mention pairs | 1.26 M                    | batch, epochs                          |
| CorPipeSingle     | baseline             | 6 sentences          | 150 k                     | sampling mode                          |
| CorPipeBestDev    | baseline             | 6 sentences          | $150 \text{ k} \times 13$ | same as Single                         |
| CorPipeEnsemble   | baseline             | 6 sentences          | $150 \text{ k} \times 5$  | same as Single                         |
| Stanza            | baseline             | 10.512-token windows | 367 k                     | learning rate, warmup,<br>LoRA params, |

Table 5: Training configuration: empty-node handling, batch sizes, total gradient updates, and tuned hyperparameters. GLaRef-Propp used batch size: 16 sentences for empty nodes prediction and mention detection and 16,000 mention pairs for coreference resolution.

format, which represents empty nodes using '##' markers (see Figure 1). These varied approaches reflect different assumptions about the importance and difficulty of modeling zero-anaphora phenomena.

**Language/treebank specialization and ensembling** Most systems train a single multilingual model for all languages (LLM-UWB, LLM-PUXCRAC2025, GLaRef-CRAC25, NUST-

FewShot, GLaRef-Propp, CorPipeSingle, Stanza). Only CorPipeBestDev and CorPipeEnsemble select or combine checkpoints: CorPipeBestDev picks the best of 195 (13 models · 15 epochs) multilingual checkpoints for each corpus, while Ensemble averages the top five multilingual models. Neither LLM-UWB nor LLM-GLaRef-CRAC25 employ per-language tuning, favoring a unified model. The few-shot systems dynamically adapt to each input

via prompt construction but do not explicitly retrain per language.

In sum, the task saw a spectrum from lightweight, prompt-only solutions on closed LLM APIs to heavyweight, quantized fine-tuned open models, and from end-to-end generation of annotations to modular neural-pipeline architectures.

## 5 Results and Comparison

Main results The main results are summarized in Table 6. LLM-GLaRef-CRAC25 and Cor-PipeEnsemble are the top-performing systems in the LLM and Unconstrained tracks, respectively, outperforming all other submissions in their respective tracks according to the primary metric. Both systems also achieve the best results within their track when evaluated with alternative mention matching strategies: partial match, exact match, and head match including singletons.

The LLM track exhibits tighter competition, with performance differences between systems significantly smaller than in the Unconstrained track. Excluding the baseline system, the standard deviation of the head match score in the Unconstrained track is 5.53, compared to just 1.27 in the LLM track. This higher level of competition is also reflected in the progression of scores over time, as shown in Figure 3 in Appendix D, which tracks the evolution of primary scores for individual submissions during the evaluation phase of the shared task.

Comparing across the tracks, all LLMs could beat the non-LLM baseline system. However, we have to admit that in this shared task the best LLM solution fell behind the best non-LLM system by a large margin of almost 13 points. For simplicity, we will be comparing the submissions from both tracks jointly in the remainder of this section.

Secondary metrics The secondary metrics in Table 7 reveal a similar trend as the primary metric: the ÚFAL CorPipe system consistently outperforms all other submissions. The most striking pattern is the pronounced contrast between the CorPipe systems and the remaining entries, particularly the LLM-based ones, in terms of the precision—recall balance across individual coreference metrics. While CorPipe systems maintain relatively small gaps between precision and recall, the other systems consistently show much higher precision than recall. This indicates that CorPipe systems are substantially more effective at capturing and

following the coreference annotation guidelines reflected in the data.

Comparison across datasets Both Table 8 and Figure 2 present CoNLL F<sub>1</sub> scores of all systems across the datasets. To make patterns more visible, the datasets in Figure 2 are ordered from left to right by the decreasing performance of the top system, CorPipeEnsemble. For roughly the lower-performing half of the datasets, the performance gap between CorPipe and the other systems tends to be larger, and their scores are more varied, suggesting that these datasets pose greater challenges for coreference resolution.

Interestingly, CorPipeEnsemble was outperformed on two datasets: en\_litbank by LLM-UWB, and hbo\_ptnk by LLM-NUST-FewShot. The latter is particularly striking: on Ancient Hebrew, LLM-NUST-FewShot surpassed CorPipeEnsemble by 10 points, despite ranking among the weakest systems on many other datasets. While the exact cause of this anomaly remains unclear, a closer analysis shows that LLM-NUST-FewShot produced almost exactly the same number of non-singleton mentions as in the gold data (2,327 vs. 2,312), whereas all other system produced less mentions.

The zero score of LLM-UWB on hbo\_ptnk is in line with their fine-tuning failure described in Section 4.2.

**Performance on zero mentions** Table 9 shows system performance on datasets containing zero mentions, evaluated using the anaphordecomposable score for zero anaphora. Two observations stand out.

First, LLM-UWB fails to predict any zero mentions for all but two of these datasets. This is likely because several of these datasets substantially overlap with those for which the authors used an LLM variant fine-tuned on data where empty nodes had been excluded.

Second, on hu\_korkor, both the winning system and the baseline outperform their counterparts from last year's edition by 8 and 10 percentage points, respectively. The winning system's score is now closer to its performance on the other Hungarian dataset, hu\_szeged. These gains are consistent with the improved intrinsic performance of the empty-node prediction baseline for this dataset (see Section 4.1), resulting from fixes to its conversion pipeline described in Section 2.2.

Comparison over years Having organized this shared task for the fourth consecutive year, it is particularly interesting to examine how it has contributed to advancing the state of the art in multilingual coreference resolution. While the datasets and certain aspects of the task have evolved each year, one constant has been the coreference baseline system, which is simply retrained annually on the updated data. This stability allows us to track progress by comparing the best-performing system each year against the baseline.

The relative improvement over the baseline showed a promising upward trend in previous editions: +21% in 2022, +31% in 2023, and +39% in 2024 (Novák et al., 2024). This year, however, the improvement stands at +35%, marking a slight break in the upward trajectory. This drop is caused by the exclusion of two very small datasets from the test set, where the improvement over baseline has been exceptionally high last year (+47% in de\_parcorfull and +108% in en\_parcorful) perhaps by chance. Still, the results show that systems continue to deliver strong performance even as the task grows more diverse and challenging.

**Further analysis** Similarly to previous years, we provide several additional tables in the appendices to shed more light on the differences between the submitted systems.

Tables 10–11 show results factorized according to the different universal part of speech tags (UPOS) in the mention heads.

Tables 12–15 show various statistics on the entities and mentions in a concatenation of all the test sets. Note that such statistics are mostly influenced by larger datasets.

### Differences between LLM and Unconstrained

The main novelty in this year's shared task setup was the support for LLM approaches to coreference resolution. As mentioned in the Main Results above, the performance of the LLM participating systems is worse than the best Unconstrained system (CorPipe) by a large margin (with only two datasets where an LLM system outperforms all Unconstrained systems). In addition, some LLM systems seem to be sensitive to particular datasets: there are dramatic drops in performance (see e.g. the performance declines for grc\_proiel, tr\_itcc, hbo\_ptnk, and cu\_proiel in Figure 2).

However, it would be premature to conclude that

LLMs are not a promising solution for coreference resolution. First, this would contradict everyday experience with public LLMs, which seem to handle coreference-related phenomena relatively well. Second, the best-performing CorPipe system has been tuned for CorefUD over years, while LLM approaches had only a few months of testing. Third, and perhaps most importantly, we are still at the beginning of learning how to best provide LLMs with coreference-annotated data and how to elicit coreference reasoning, questions that clearly require further exploration.

#### 6 Conclusions and Future Work

The paper summarizes the fourth edition of the shared task on multilingual coreference resolution, organized in 2025. Besides relatively conservative (though important too) updates with respect to the previous editions, such as improved quality of the data integrated in CorefUD and the increased number of languages, the major innovation in this edition was the support for LLM-based solutions. With only a few exceptions, LLM-based solutions did not outperform CorPipeEnsemble, the best Unconstrained system (from the same author as the winning submissions in the previous editions). However, we believe that the lower performance of the LLM solutions should be rather attributed to our currently limited knowledge of how coreference is handled internally in LLMs, and that studying how to deal with coreference in LLMs may – in a longer-term perspective – result in rethinking how we should represent coreference in NLP in general.

### Acknowledgements

This work has been supported by Charles University Research Centre program No. 24/SSH/009, Ministry of Education, Youth, and Sports of the Czech Republic, Project No. LM2023062 LINDAT/CLARIAH-CZ and CZ.02.01.01/00/23 020/0008518, and the Grant 20-16819X (LUSyD) of the Czech Science Foundation (GAČR). We thank all the participants of the shared task for participating and for providing brief descriptions of their systems. We thank Kirill Milintsevich for the initial conversion of French-ANCOR into CorefUD, and Ian Porada for his assistance with the conversion of Korean-ECMT. We also thank anonymous reviewers for their useful remarks.

|                   | 1          | excluding singleto   | ons                  | with singletons      |
|-------------------|------------|----------------------|----------------------|----------------------|
| system            | head-match | partial-match        | exact-match          | head-match           |
| LLM-GLaRef-CRAC25 | 62.96      | <b>61.66</b> (-1.30) | <b>58.98</b> (-3.98) | <b>65.61</b> (+2.66) |
| LLM-NUST-FewShot  | 61.74      | 61.14 (-0.60)        | 56.34 (-5.40)        | 63.44 (+1.69)        |
| LLM-PUXCRAC2025   | 60.09      | 59.68 (-0.41)        | 55.22 (-4.87)        | 54.77 (-5.32)        |
| LLM-UWB           | 59.84      | 59.55 (-0.29)        | 38.81 (-21.03)       | 62.77 (+2.93)        |
| CorPipeEnsemble   | 75.84      | <b>74.90</b> (-0.94) | <b>72.76</b> (-3.08) | <b>78.33</b> (+2.49) |
| CorPipeBestDev    | 75.06      | 74.08 (-0.98)        | 71.97 (-3.10)        | 77.63 (+2.57)        |
| CorPipeSingle     | 74.75      | 73.74 (-1.01)        | 71.53 (-3.23)        | 77.43 (+2.68)        |
| Stanza            | 67.81      | 67.03 (-0.78)        | 64.68 (-3.13)        | 70.64 (+2.83)        |
| GLaRef-Propp      | 61.57      | 60.72 (-0.85)        | 58.43 (-3.14)        | 65.28 (+3.70)        |
| BASELINE-GZ       | 58.18      | 57.75 (-0.42)        | 56.48 (-1.69)        | 49.88 (-8.29)        |
| BASELINE          | 56.01      | 55.58 (-0.43)        | 54.24 (-1.77)        | 47.88 (-8.13)        |
| WINNER-2023       | 74.90      | 73.33 (-1.57)        | 71.46 (-3.44)        | 76.82 (+1.91)        |
| WINNER-2024       | 73.90      | 72.19 (-1.71)        | 69.86 (-4.04)        | 75.65 (+1.75)        |
| Baseline-2023     | 56.96      | 56.28 (-0.68)        | 54.75 (-2.21)        | 49.32 (-7.64)        |
| Baseline-2024     | 53.16      | 52.48 (-0.68)        | 51.26 (-1.90)        | 46.45 (-6.71)        |

Table 6: Main results: the CoNLL  $F_1$  score macro-averaged over all datasets. The table shows the primary metric (head-match excluding singletons) and three alternative metrics: partial-match excluding singletons, exact-match excluding singletons and head-match with singletons. A difference relative to the primary metric is reported in parenthesis. The top section shows the LLM track, below is the Unconstrained track. The best score in each column and each of these two sections is in bold. The systems are ordered by the primary metric. The last four rows showing the winner and baseline results from CRAC 2023 and 2024 are copied from the last year Findings (Novák et al., 2024), and thus are not directly comparable with the rest of the table because both the test and training data have been changed (CorefUD 1.1 vs. 1.2 vs. 1.3). Similar notes apply to the following tables.

| system            | MUC          | $\mathbf{B}^3$ | CEAF-e       | BLANC                      | LEA          | MOR                 |
|-------------------|--------------|----------------|--------------|----------------------------|--------------|---------------------|
| CorPipeEnsemble   | 81 / 82 / 82 | 73 / 75 / 74   | 74 / 70 / 72 | 72 / <b>75</b> / <b>73</b> | 70 / 73 / 71 | 81 / 82 / <b>81</b> |
| CorPipeBestDev    | 81 / 81 / 81 | 72 / 74 / 73   | 73 / 70 / 71 | <b>72</b> / 74 / 73        | 70 / 71 / 70 | <b>81</b> / 81 / 81 |
| CorPipeSingle     | 81 / 81 / 81 | 72 / 73 / 72   | 72 / 70 / 71 | 72 / 73 / 72               | 69 / 71 / 70 | 80 / 81 / 80        |
| Stanza            | 72 / 80 / 76 | 62 / 70 / 65   | 62 / 64 / 63 | 61 / 70 / 64               | 59 / 67 / 62 | 70 / 83 / 75        |
| LLM-GLaRef-CRAC25 | 67 / 76 / 71 | 55 / 67 / 60   | 55 / 61 / 58 | 54 / 67 / 59               | 51 / 64 / 56 | 64 / 79 / 71        |
| LLM-NUST-FewShot  | 66 / 73 / 69 | 58 / 65 / 60   | 52 / 65 / 56 | 57 / 65 / 58               | 56 / 62 / 57 | 59 / 79 / 66        |
| GLaRef-Propp      | 69 / 76 / 72 | 56 / 62 / 58   | 49 / 62 / 55 | 56 / 62 / 57               | 52 / 58 / 55 | 57 / 78 / 65        |
| LLM-PUXCRAC2025   | 64 / 72 / 68 | 54 / 63 / 57   | 52 / 61 / 55 | 53 / 62 / 56               | 51 / 59 / 54 | 56 / 80 / 65        |
| LLM-UWB           | 60 / 74 / 65 | 53 / 67 / 57   | 53 / 64 / 57 | 48 / 67 / 53               | 50 / 64 / 55 | 42 / 81 / 53        |
| BASELINE-GZ       | 61 / 76 / 68 | 48 / 63 / 54   | 49 / 58 / 52 | 48 / 64 / 54               | 45 / 59 / 50 | 55 / <b>87</b> / 66 |
| BASELINE          | 58 / 75 / 65 | 45 / 62 / 52   | 47 / 57 / 51 | 44 / 63 / 50               | 42 / 58 / 48 | 53 / 86 / 65        |

Table 7: Recall / Precision / F1 for individual secondary metrics. All scores macro-averaged over all datasets.

| system            | ca_ancora | cs_pcedt | cs_pdt | cu_proiel | de_potsdam | en_gum | en_litbank | es_ancora | fr_ancor | fr_democrat | grc_proiel | hbo_ptnk | hi_hdtb | hu_korkor | hu_szeged | ko_ecmt | lt_loc | no_bokmaalnarc | no_nynorsknarc | pcc_pcc | ru_rucor | tr_itcc |
|-------------------|-----------|----------|--------|-----------|------------|--------|------------|-----------|----------|-------------|------------|----------|---------|-----------|-----------|---------|--------|----------------|----------------|---------|----------|---------|
| CorPipeEnsemble   | 82.9      | 77.1     | 80.7   | 65.5      | 73.0       | 76.1   | 81.8       | 84.5      | 76.3     | 71.8        | 74.5       | 69.8     | 77.7    | 68.6      | 71.0      | 69.9    | 77.2   | 78.2           | 76.3           | 80.2    | 84.2     | 71.2    |
| CorPipeBestDev    | 82.0      | 76.3     | 80.4   | 62.8      | 72.6       | 75.9   | 81.3       | 83.8      | 75.9     | 69.9        | 74.3       | 68.3     | 77.5    | 68.3      | 70.5      | 69.3    | 76.0   | 77.1           | 74.0           | 79.9    | 84.8     | 70.4    |
| CorPipeSingle     | 82.5      | 76.2     | 80.1   | 63.0      | 72.8       | 75.2   | 80.8       | 84.1      | 75.8     | 70.3        | 74.4       | 66.1     | 76.5    | 67.3      | 69.7      | 68.9    | 75.8   | 76.2           | 73.6           | 79.4    | 84.2     | 71.6    |
| Stanza            | 79.5      | 72.7     | 75.1   | 40.8      | 67.3       | 69.0   | 74.8       | 80.4      | 67.5     | 62.5        | 54.9       | 62.1     | 74.2    | 60.0      | 64.6      | 67.7    | 72.8   | 72.4           | 71.7           | 73.0    | 80.8     | 47.8    |
| LLM-GLaRef-CRAC25 | 73.5      | 65.1     | 71.3   | 58.2      | 59.6       | 58.7   | 69.0       | 74.4      | 66.7     | 60.4        | 65.8       | 44.0     | 56.4    | 52.5      | 59.8      | 63.0    | 62.5   | 64.7           | 61.6           | 72.5    | 68.8     | 56.2    |
| LLM-NUST-FewShot  | 60.9      | 51.4     | 54.3   | 58.5      | 48.7       | 69.8   | 70.4       | 61.8      | 71.9     | 57.6        | 57.9       | 80.2     | 71.3    | 43.5      | 52.3      | 66.0    | 59.2   | 72.8           | 68.9           | 70.8    | 71.4     | 39.0    |
| GLaRef-Propp      | 68.1      | 61.7     | 66.6   | 39.1      | 61.2       | 61.9   | 70.0       | 69.1      | 65.1     | 66.1        | 51.3       | 58.8     | 69.5    | 50.9      | 60.1      | 60.6    | 57.6   | 67.1           | 66.3           | 68.0    | 71.5     | 44.3    |
| LLM-PUXCRAC2025   | 68.0      | 56.9     | 63.0   | 43.7      | 57.4       | 61.7   | 69.1       | 70.5      | 63.8     | 61.5        | 47.9       | 45.3     | 66.8    | 50.6      | 61.6      | 50.3    | 65.3   | 65.2           | 63.0           | 66.5    | 67.6     | 56.1    |
| LLM-UWB           | 79.2      | 61.0     | 68.2   | 25.3      | 67.6       | 73.6   | 84.0       | 73.6      | 58.6     | 49.1        | 47.6       | 0.0      | 75.8    | 38.9      | 67.3      | 68.3    | 63.4   | 73.8           | 72.0           | 64.5    | 80.1     | 24.3    |
| BASELINE-GZ       | 68.8      | 69.5     | 67.9   | 29.5      | 55.7       | 61.6   | 66.0       | 71.0      | 63.8     | 55.0        | 29.4       | 31.0     | 66.8    | 47.1      | 54.3      | 64.3    | 65.3   | 62.5           | 63.0           | 68.1    | 67.6     | 51.7    |
| BASELINE          | 68.0      | 56.9     | 63.0   | 26.3      | 55.7       | 61.7   | 66.0       | 70.5      | 63.8     | 55.0        | 28.5       | 31.0     | 66.8    | 43.2      | 54.5      | 50.3    | 65.3   | 62.5           | 63.0           | 66.5    | 67.6     | 45.9    |

Table 8: Results for individual languages in the primary metric (CoNLL F<sub>1</sub>).

| system            | ca_ancora    | cs_pdt              | cs_pcedt                   | cu_proiel           | es_ancora                  | grc_proiel                 | hu_korkor                  | hu_szeged    | bcc pcc             | tr_itcc             |
|-------------------|--------------|---------------------|----------------------------|---------------------|----------------------------|----------------------------|----------------------------|--------------|---------------------|---------------------|
| CorPipeEnsemble   | 91 / 87 / 89 | 82 / 86 / <b>84</b> | 61 / 79 / 69               | <b>77 / 80 / 79</b> | 93 / <b>92</b> / <b>92</b> | 87 / 87 / 87               | 65 / 81 / 72               | 85 / 73 / 78 | 93 / 84 / <b>89</b> | 84 / 83 / 84        |
| CorPipeBestDev    | 90 / 87 / 88 | 82 / 85 / 84        | 60 / 77 / 68               | 76 / 79 / 78        | <b>93</b> / 91 / 92        | <b>87</b> / 88 / <b>88</b> | 66 / 82 / 73               | 83 / 70 / 76 | 93 / 84 / 88        | 84 / 82 / 83        |
| CorPipeSingle     | 90 / 86 / 88 | 81 / 85 / 83        | 61 / 78 / 68               | 77 / 79 / 78        | 93 / 92 / 92               | <b>87</b> / 88 / 88        | 63 / <b>83</b> / 72        | 83 / 70 / 76 | <b>94</b> / 83 / 88 | 84 / 82 / 83        |
| Stanza            | 87 / 86 / 86 | 77 / <b>88</b> / 82 | 52 / 84 / 65               | 63 / 69 / 66        | 91/91/91                   | 80 / 84 / 82               | 59 / 83 / 69               | 74 / 70 / 72 | 91 / 81 / 86        | 57 / 83 / 67        |
| LLM-GLaRef-CRAC25 | 81 / 84 / 82 | 75 / 81 / 78        | 56 / 67 / 61               | 77 / 79 / 78        | 83 / 89 / 86               | 85 / 87 / 86               | 52 / 68 / 59               | 66 / 65 / 65 | 84 / 83 / 84        | 75 / 75 / 75        |
| LLM-NUST-FewShot  | 53 / 82 / 64 | 55 / 79 / 65        | 35 / 81 / 48               | 74 / <b>82</b> / 78 | 56 / 91 / 69               | 59 / <b>89</b> / 71        | 23 / 83 / 36               | 25 / 63 / 36 | 72 / 86 / 79        | 29 / 63 / 40        |
| GLaRef-Propp      | 80 / 80 / 80 | 74 / 83 / 78        | 48 / 63 / 54               | 49 / 56 / 53        | 84 / 87 / 86               | 70 / 74 / 72               | 51 / 70 / 59               | 66 / 66 / 66 | 84 / 82 / 83        | 60 / 83 / 70        |
| LLM-PUXCRAC2025   | 79 / 75 / 77 | 34 / 82 / 48        | 9 / <b>93</b> / 17         | 39 / 53 / 45        | 88 / 87 / 87               | 82 / 60 / 69               | 50 / 48 / 49               | 73 / 49 / 59 | 86 / 78 / 82        | 50 / <b>93</b> / 65 |
| LLM-UWB           | 83 / 82 / 82 | 0/0/0               | 0/0/0                      | 0/0/0               | 0/0/0                      | 0/0/0                      | 0/0/0                      | 71 / 73 / 72 | 0/0/0               | 0/0/0               |
| BASELINE-GZ       | 84 / 83 / 84 | <b>83</b> / 85 / 84 | <b>76</b> / 81 / <b>79</b> | 61 / 71 / 66        | 89 / 90 / 90               | 64 / 67 / 66               | <b>73</b> / 76 / <b>74</b> | 54 / 59 / 56 | 89 / <b>87</b> / 88 | 79 / 81 / 80        |
| BASELINE          | 79 / 75 / 77 | 34 / 82 / 48        | 9 / <b>93</b> / 17         | 52 / 62 / 57        | 88 / 87 / 87               | 62 / 67 / 64               | 56 / 63 / 59               | 54 / 57 / 55 | 86 / 78 / 82        | 71 / 73 / 72        |
| WINNER-2023       | 93 / 92 / 92 | 91 / 92 / 92        | 87 / 88 / 87               | _                   | 94 / 95 / 95               | _                          | 82 / 89 / 85               | 88 / 70 / 78 | 75 / 69 / 72        | _                   |
| Winner-2024       | 88 / 85 / 86 | 77 / 82 / 80        | 59 / 74 / 66               | 75 / 78 / 76        | 90 / 92 / 91               | 84 / 88 / 86               | 56 / 75 / 64               | 83 / 68 / 75 | 90 / 84 / 87        | 83 / 80 / 82        |
| BASELINE-2023     | 82 / 82 / 82 | 81 / 84 / 82        | 77 / 81 / 79               | _                   | 87 / 88 / 87               | _                          | 60 / 68 / 64               | 61 / 57 / 59 | 50 / 80 / 62        | _                   |
| Baseline-2024     | 79 / 76 / 77 | 70 / 74 / 72        | 55 / 69 / 61               | 52 / 62 / 56        | 83 / 83 / 83               | 63 / 70 / 66               | 41 / 61 / 49               | 49 / 57 / 53 | 85 / 78 / 82        | 68 / 71 / 70        |

Table 9: Recall / Precision / F1 for anaphor-decomposable score of coreference resolution on zero anaphors across individual languages. Only datasets containing anaphoric zeros are listed (en\_gum excluded as all zeros in its test set are non-anaphoric). Note that these scores are directly comparable to neither the CoNLL score nor the supplementary scores calculated with respect to whole entities in Table 7.

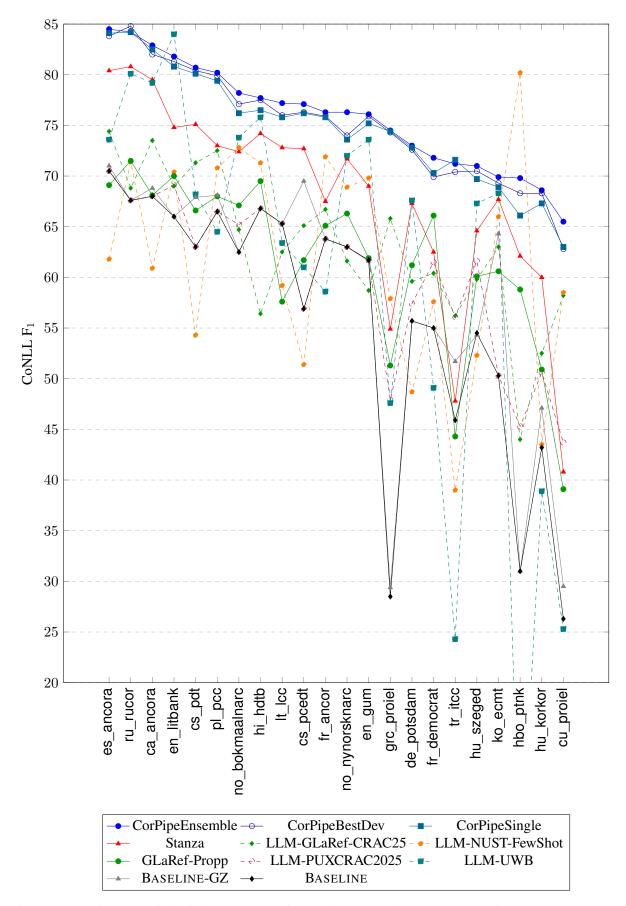


Figure 2: Plot with results for individual languages in the primary metric (CoNLL  $F_1$ ). This plot shows the same information as Table 8, but languages are sorted according to the performance of the best system and LLM-based systems are shown with dashed lines.

### References

- Amit Bagga and Breck Baldwin. 1998. Algorithms for Scoring Coreference Chains. In *Proceedings of The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference*, pages 563–566.
- David Bamman, Olivia Lewke, and Anya Mansoor. 2020. An Annotated Dataset of Coreference in English Literature. In *Proceedings of the Twelfth Language Resources and Evaluation Conference*, pages 44–54, Marseille, France. European Language Resources Association.
- Peter Bourgonje and Manfred Stede. 2020. The Potsdam Commentary Corpus 2.2: Extending Annotations for Shallow Discourse Parsing. In *Proceedings of the Twelfth Language Resources and Evaluation Conference*, pages 1061–1066, Marseille, France. European Language Resources Association.
- Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised Cross-lingual Representation Learning at Scale. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 8440–8451, Online. Association for Computational Linguistics.
- Pascal Denis and Jason Baldridge. 2009. Global joint models for coreference resolution and named entity classification. *Procesamiento del lenguaje natural*, 42.
- Vladimir Dobrovolskii. 2021. Word-Level Coreference Resolution. In *Proceedings of the 2021 Conference* on *Empirical Methods in Natural Language Process*ing, pages 7670–7675, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.
- Karel D'Oosterlinck, Semere Kiros Bitew, Brandon Papineau, Christopher Potts, Thomas Demeester, and Chris Develder. 2023. CAW-coref: Conjunction-Aware Word-level Coreference Resolution. In *Proceedings of the Sixth Workshop on Computational Models of Reference, Anaphora and Coreference (CRAC 2023)*, pages 8–14, Singapore. Association for Computational Linguistics.
- Ali Emami, Paul Trichelair, Adam Trischler, Kaheer Suleman, Hannes Schulz, and Jackie Chi Kit Cheung. 2019. The KnowRef Coreference Corpus: Removing Gender and Number Cues for Difficult Pronominal Anaphora Resolution. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 3952–3961, Florence, Italy. Association for Computational Linguistics.
- Yujian Gan, Massimo Poesio, and Juntao Yu. 2024. Assessing the Capabilities of Large Language Models in Coreference: An Evaluation. In *Proceedings of*

- the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 1645–1665, Torino, Italia. ELRA and ICCL.
- Ine Gevers, Victor De Marez, Luna De Bruyne, and Walter Daelemans. 2025. WinoWhat: A Parallel Corpus of Paraphrased WinoGrande Sentences with Common Sense Categorization. In *Proceedings of the 29th Conference on Computational Natural Language Learning*, pages 68–80, Vienna, Austria. Association for Computational Linguistics.
- Jan Hajič, Eduard Bejček, Jaroslava Hlaváčová, Marie Mikulová, Milan Straka, Jan Štěpánek, and Barbora Štěpánková. 2020. Prague Dependency Treebank -Consolidated 1.0. In Proceedings of the 12th International Conference on Language Resources and Evaluation (LREC 2020), pages 5208–5218, Marseille, France. European Language Resources Association.
- Dag Trygve Truslew Haug and Marius L. Jøhndal. 2008. Creating a Parallel Treebank of the Old Indo-European Bible Translations. In *Proceedings of the second workshop on language technology for cultural heritage data (LaTeCH 2008)*.
- Rebecca Hicke and David Mimno. 2024. [Lions: 1] and [Tigers: 2] and [Bears: 3], Oh My! Literary Coreference Annotation with LLMs. In *Proceedings of the 8th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2024)*, pages 270–277, St. Julians, Malta. Association for Computational Linguistics.
- Frédéric Landragin. 2021. Le corpus Democrat et son exploitation. Présentation. *Langages*, 224:11–24.
- Ekaterina Lapshinova-Koltunski, Christian Hardmeier, and Pauline Krielke. 2018. ParCorFull: a Parallel Corpus Annotated with Full Coreference. In *Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)*, Miyazaki, Japan. European Language Resources Association.
- Nghia T. Le and Alan Ritter. 2023. Are Large Language Models Robust Coreference Resolvers? ArXiv:2305.14489 [cs].
- Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer. 2017. End-to-end Neural Coreference Resolution. In *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pages 188–197, Copenhagen, Denmark. Association for Computational Linguistics.
- Hector J. Levesque, Ernest Davis, and Leora Morgenstern. 2012. The Winograd Schema Challenge. In *Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning*, KR'12, pages 552–561, Rome, Italy. AAAI Press.

- Houjun Liu, John Bauer, Karel D'Oosterlinck, Christopher Potts, and Christopher D. Manning. 2024. MSCAW-coref: Multilingual, Singleton and Conjunction-Aware Word-Level Coreference Resolution. In *Proceedings of the Seventh Workshop on Computational Models of Reference, Anaphora and Coreference*, pages 33–40, Miami. Association for Computational Linguistics.
- Xiaoqiang Luo. 2005. On Coreference Resolution Performance Metrics. In *Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing*, HLT 2005, pages 25–32. Association for Computational Linguistics.
- Petter Mæhlum, Dag Haug, Tollef Jørgensen, Andre Kåsen, Anders Nøklestad, Egil Rønningstad, Per Erik Solberg, Erik Velldal, and Lilja Øvrelid. 2022. NARC–Norwegian Anaphora Resolution Corpus. In *Proceedings of the Fifth Workshop on Computational Models of Reference*, Anaphora and Coreference, pages 48–60, Gyeongju, Korea. Association for Computational Linguistics.
- Nafise Sadat Moosavi and Michael Strube. 2016. Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 632–642, Berlin, Germany. Association for Computational Linguistics.
- Vandan Mujadia, Palash Gupta, and Dipti Misra Sharma. 2016. Coreference Annotation Scheme and Relation Types for Hindi. In *Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)*, pages 161–168, Portorož, Slovenia. European Language Resources Association (ELRA).
- Judith Muzerelle, Anaïs Lefeuvre, Emmanuel Schang, Jean-Yves Antoine, Aurore Pelletier, Denis Maurel, Iris Eshkol, and Jeanne Villaneau. 2014. ANCOR\_Centre, a large free spoken French coreference corpus: description of the resource and reliability measures. In *Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)*, pages 843–847, Reykjavik, Iceland. European Language Resources Association (ELRA).
- Sangha Nam, Minho Lee, Donghwan Kim, Kijong Han, Kuntae Kim, Sooji Yoon, Eun-kyung Kim, and Key-Sun Choi. 2020. Effective Crowdsourcing of Multiple Tasks for Comprehensive Knowledge Extraction. In *Proceedings of the Twelfth Language Resources and Evaluation Conference*, pages 212–219, Marseille, France. European Language Resources Association.
- Anna Nedoluzhko, Michal Novák, Silvie Cinková, Marie Mikulová, and Jiří Mírovský. 2016. Coreference in Prague Czech-English Dependency Treebank. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC

- 2016), pages 169–176, Portorož, Slovenia. European Language Resources Association.
- Anna Nedoluzhko, Michal Novák, Martin Popel, Zdeněk Žabokrtský, Amir Zeldes, and Daniel Zeman. 2022. CorefUD 1.0: Coreference Meets Universal Dependencies. In *Proceedings of the Thirteenth Language Resources and Evaluation Conference*, pages 4859–4872, Marseille, France. European Language Resources Association.
- Michal Novák, Barbora Dohnalová, Miloslav Konopik, Anna Nedoluzhko, Martin Popel, Ondrej Prazak, Jakub Sido, Milan Straka, Zdeněk Žabokrtský, and Daniel Zeman. 2024. Findings of the Third Shared Task on Multilingual Coreference Resolution. In Proceedings of the Seventh Workshop on Computational Models of Reference, Anaphora and Coreference, pages 78–96, Miami. Association for Computational Linguistics.
- Michal Novák, Martin Popel, Daniel Zeman, Zdeněk Žabokrtský, Anna Nedoluzhko, Kutay Acar, David Bamman, Peter Bourgonje, Silvie Cinková, Hanne Eckhoff, Gülşen Cebiroğlu Eryiğit, Jan Hajič, Christian Hardmeier, Dag Haug, Tollef Jørgensen, Andre Kåsen, Pauline Krielke, Frédéric Landragin, Ekaterina Lapshinova-Koltunski, Petter Mæhlum, M. Antònia Martí, Marie Mikulová, Kirill Milintsevich, Vandan Mujadia, Judith Muzerelle, Sangha Nam, Anders Nøklestad, Maciej Ogrodniczuk, Lilja Øvrelid, Tuğba Pamay Arslan, Ian Porada, Marta Recasens, Per Erik Solberg, Manfred Stede, Milan Straka, Daniel Swanson, Svetlana Toldova, Noémi Vadász, Erik Velldal, Veronika Vincze, Amir Zeldes, and Voldemaras Žitkus. 2025. Coreference in Universal Dependencies 1.3 (CorefUD 1.3). LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.
- Maciej Ogrodniczuk, Katarzyna Glowińska, Mateusz Kopeć, Agata Savary, and Magdalena Zawisławska. 2013. Polish Coreference Corpus. In Human Language Technology. Challenges for Computer Science and Linguistics 6th Language and Technology Conference (LTC 2013), Revised Selected Papers, volume 9561 of Lecture Notes in Computer Science, pages 215–226. Springer.
- Maciej Ogrodniczuk, Katarzyna Głowińska, Mateusz Kopeć, Agata Savary, and Magdalena Zawisławska. 2015. *Coreference in Polish: Annotation, Resolution and Evaluation*. Walter De Gruyter.
- Martha Palmer, Rajesh Bhatt, Bhuvana Narasimhan, Owen Rambow, Dipti Misra Sharma, and Fei Xia. 2009. Hindi syntax: Annotating dependency, lexical predicate-argument structure, and phrase structure. In *The 7th International Conference on Natural Language Processing*, pages 14–17.
- Tuğba Pamay and Gülşen Eryiğit. 2018. Turkish Coreference Resolution. In 2018 Innovations in Intelligent Systems and Applications (INISTA), pages 1–7.

- Sameer Pradhan, Xiaoqiang Luo, Marta Recasens, Eduard Hovy, Vincent Ng, and Michael Strube. 2014. Scoring Coreference Partitions of Predicted Mentions: A Reference Implementation. In *Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 30–35, Baltimore, Maryland. Association for Computational Linguistics.
- Ondřej Pražák, Miloslav Konopík, and Jakub Sido. 2021. Multilingual Coreference Resolution with Harmonized Annotations. In *Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)*, pages 1119–1123, Held Online. INCOMA Ltd.
- Marta Recasens, Eduard Hovy, and M. Antònia Martí. 2010. A Typology of Near-Identity Relations for Coreference (NIDENT). In *Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010)*, Valletta, Malta. European Language Resources Association.
- Marta Recasens and Eduard H. Hovy. 2011. BLANC: Implementing the Rand index for coreference evaluation. *Natural Language Engineering*, 17(4):485–510.
- Marta Recasens and M. Antònia Martí. 2010. AnCora-CO: Coreferentially Annotated Corpora for Spanish and Catalan. *Language Resources and Evaluation*, 44(4):315–345.
- Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2021. WinoGrande: An Adversarial Winograd Schema Challenge at Scale. Commun. ACM, 64(9):99–106.
- Karol Saputa, Angelika Peljak-Łapińska, and Maciej Ogrodniczuk. 2024. Polish Coreference Corpus as an LLM Testbed: Evaluating Coreference Resolution within Instruction-Following Language Models by Instruction—Answer Alignment. In *Proceedings of The Seventh Workshop on Computational Models of Reference, Anaphora and Coreference*, pages 23–32, Miami. Association for Computational Linguistics.
- Milan Straka. 2024. CorPipe at CRAC 2024: Predicting Zero Mentions from Raw Text. In *Proceedings of the Seventh Workshop on Computational Models of Reference*, Anaphora and Coreference, pages 97–106, Miami. Association for Computational Linguistics.
- Daniel G. Swanson, Bryce D. Bussert, and Francis Tyers. 2024. Towards Named-Entity and Coreference Annotation of the Hebrew Bible. In *Proceedings of the Third Workshop on Language Technologies for Historical and Ancient Languages (LT4HALA)* @ *LREC-COLING-2024*, pages 36–40, Torino, Italia. ELRA and ICCL.
- Mariona Taulé, M. Antònia Martí, and Marta Recasens. 2008. AnCora: Multilevel Annotated Corpora for Catalan and Spanish. In *Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC 2008)*, Marrakech, Morocco. European Language Resources Association.

- Svetlana Toldova, Anna Roytberg, Alina Ladygina, Maria Vasilyeva, Ilya Azerkovich, Matvei Kurzukov, G. Sim, D.V. Gorshkov, A. Ivanova, Anna Nedoluzhko, and Yulia Grishina. 2014. Evaluating Anaphora and Coreference Resolution for Russian. In Komp'juternaja lingvistika i intellektual'nye tehnologii. Po materialam ezhegodnoj Mezhdunarodnoj konferencii Dialog, pages 681–695.
- Noémi Vadász. 2022. Building a Manually Annotated Hungarian Coreference Corpus: Workflow and Tools. In *Proceedings of the Fifth Workshop on Computational Models of Reference*, Anaphora and Coreference, pages 38–47, Gyeongju, Korea. Association for Computational Linguistics.
- Noémi Vadász. 2023. Resolving Hungarian Anaphora with ChatGPT. In *Text, Speech, and Dialogue: 26th International Conference, TSD 2023, Pilsen, Czech Republic, September 4–6, 2023, Proceedings*, page 45–57, Berlin, Heidelberg. Springer-Verlag.
- Marc Vilain, John Burger, John Aberdeen, Dennis Connolly, and Lynette Hirschman. 1995. A Model-Theoretic Coreference Scoring Scheme. In Sixth Message Understanding Conference (MUC-6): Proceedings of a Conference Held in Columbia, Maryland, November 6-8, 1995.
- Veronika Vincze, Klára Hegedűs, Alex Sliz-Nagy, and Richárd Farkas. 2018. SzegedKoref: A Hungarian Coreference Corpus. In *Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)*, Miyazaki, Japan. European Language Resources Association.
- Juntao Yu, Michal Novák, Abdulrahman Aloraini, Nafise Sadat Moosavi, Silviu Paun, Sameer Pradhan, and Massimo Poesio. 2023. The Universal Anaphora Scorer 2.0. In Proceedings of the 15th International Conference on Computational Semantics, pages 183– 194, Nancy, France. Association for Computational Linguistics.
- Zdeněk Žabokrtský, Miloslav Konopík, Anna Nedoluzhko, Michal Novák, Maciej Ogrodniczuk, Martin Popel, Ondřej Pražák, Jakub Sido, and Daniel Zeman. 2023. Findings of the Second Shared Task on Multilingual Coreference Resolution. In *Proceedings of the CRAC 2023 Shared Task on Multilingual Coreference Resolution*, pages 1–18, Singapore. Association for Computational Linguistics.
- Zdeněk Žabokrtský, Miloslav Konopík, Anna Nedoluzhko, Michal Novák, Maciej Ogrodniczuk, Martin Popel, Ondřej Pražák, Jakub Sido, Daniel Zeman, and Yilun Zhu. 2022. Findings of the Shared Task on Multilingual Coreference Resolution. In Proceedings of the CRAC 2022 Shared Task on Multilingual Coreference Resolution, pages 1–17, Gyeongju, Korea. Association for Computational Linguistics.

Amir Zeldes. 2017. The GUM Corpus: Creating Multilayer Resources in the Classroom. *Language Resources and Evaluation*, 51(3):581–612.

Voldemaras Žitkus and Rita Butkienė. 2018. Coreference Annotation Scheme and Corpus for Lithuanian Language. In *Fifth International Conference on Social Networks Analysis, Management and Security, SNAMS 2018, Valencia, Spain, October 15-18, 2018*, pages 243–250. IEEE.

### A CorefUD 1.3 Details

| Ancient Greek       | PROIEL       | grc_proiel     | (Haug and Jøhndal, 2008)                       |
|---------------------|--------------|----------------|------------------------------------------------|
| Ancient Hebrew      | PTNK         | hbo_ptnk       | (Swanson et al., 2024)                         |
| Catalan             | AnCora       | ca_ancora      | (Taulé et al., 2008; Recasens and Martí, 2010) |
| Czech               | PCEDT        | cs_pcedt       | (Nedoluzhko et al., 2016)                      |
| Czech               | PDT          | cs_pdt         | (Hajič et al., 2020)                           |
| English             | GUM          | en_gum         | (Zeldes, 2017)                                 |
| English             | LitBank      | en_litbank     | (Bamman et al., 2020)                          |
| English             | ParCorFull   | en_parcorfull  | (Lapshinova-Koltunski et al., 2018)            |
| French              | ANCOR        | fr_ancor       | (Muzerelle et al., 2014)                       |
| French              | Democrat     | fr_democrat    | (Landragin, 2021)                              |
| German              | ParCorFull   | de_parcorfull  | (Lapshinova-Koltunski et al., 2018)            |
| German              | PotsdamCC    | de_potsdam     | (Bourgonje and Stede, 2020)                    |
| Hindi               | HDTB         | hi_hdtb        | (Mujadia et al., 2016)                         |
| Hungarian           | KorKor       | hu_korkor      | (Vadász, 2022)                                 |
| Hungarian           | SzegedKoref  | hu_szeged      | (Vincze et al., 2018)                          |
| Korean              | ECMT         | ko_ecmt        | (Nam et al., 2020)                             |
| Lithuanian          | LCC          | It_lcc         | (Žitkus and Butkienė, 2018)                    |
| Norwegian           | Bokmål NARC  | no_bokmaalnarc | (Mæhlum et al., 2022)                          |
| Norwegian           | Nynorsk NARC | no_nynorsknarc | (Mæhlum et al., 2022)                          |
| Old Church Slavonic | PROIEL       | cu_proiel      | (Haug and Jøhndal, 2008)                       |
| Polish              | PCC          | pl_pcc         | (Ogrodniczuk et al., 2013, 2015)               |
| Russian             | RuCor        | ru_rucor       | (Toldova et al., 2014)                         |
| Spanish             | AnCora       | es_ancora      | (Taulé et al., 2008; Recasens and Martí, 2010) |
| Turkish             | ITCC         | tr_itcc        | (Pamay and Eryiğit, 2018)                      |

# B CoNLL results by head UPOS

| system            | NOUN  | PRON  | PROPN | DET   | ADJ   | VERB  | ADV   | NUM   |
|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| CorPipeEnsemble   | 71.78 | 71.67 | 78.11 | 52.58 | 47.92 | 37.36 | 32.03 | 37.40 |
| CorPipeBestDev    | 71.07 | 71.13 | 77.69 | 49.22 | 48.35 | 36.62 | 27.62 | 38.22 |
| CorPipeSingle     | 70.96 | 70.47 | 77.28 | 53.01 | 44.69 | 35.45 | 31.96 | 38.76 |
| Stanza            | 62.55 | 64.24 | 70.94 | 41.78 | 32.77 | 21.73 | 21.89 | 29.58 |
| LLM-GLaRef-CRAC25 | 58.81 | 61.23 | 64.30 | 41.83 | 29.26 | 23.08 | 20.90 | 34.52 |
| LLM-NUST-FewShot  | 58.01 | 59.21 | 69.88 | 32.79 | 34.39 | 14.39 | 20.59 | 26.36 |
| GLaRef-Propp      | 56.44 | 57.99 | 63.20 | 36.10 | 28.43 | 17.88 | 20.26 | 21.56 |
| LLM-PUXCRAC2025   | 54.71 | 56.22 | 64.51 | 36.55 | 27.53 | 15.36 | 17.86 | 25.76 |
| LLM-UWB           | 57.19 | 55.95 | 64.72 | 36.83 | 29.57 | 22.30 | 23.53 | 26.25 |
| BASELINE-GZ       | 50.74 | 58.46 | 57.21 | 37.24 | 25.85 | 14.15 | 18.15 | 23.11 |
| BASELINE          | 48.44 | 52.03 | 54.96 | 36.75 | 24.04 | 13.44 | 16.98 | 22.81 |

Table 10: CoNLL  $F_1$  score (head-match) evaluated only on entities with heads of a given UPOS. In both the gold and prediction files we deleted some entities before running the evaluation. We kept only entities with at least one mention with a given head UPOS (universal part of speech tag). For the purpose of this analysis, if the head node had deprel=flat children, their UPOS tags were considered as well, so for example in "Mr./NOUN Brown/PROPN" both NOUN and PROPN were taken as head UPOS, so the entity with this mention will be reported in both columns NOUN and PROPN. Otherwise, the CoNLL  $F_1$  scores are the same as in the primary metric, i.e. an unweighted average over all datasets, head-match, without singletons. Note that when distinguishing entities into events and nominal entities, the VERB column can be considered as an approximation of the performance on events. One of the limitations of this approach is that copula is not treated as head in the Universal Dependencies, so, e.g., phrase *She is nice* is not considered for the VERB column, but for the ADJ column (head of the phrase is *nice*).

| system            | NOUN  | PRON  | PROPN | DET   | ADJ   | VERB  | ADV   | NUM   |
|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| CorPipeEnsemble   | 63.91 | 61.69 | 64.74 | 53.28 | 51.12 | 50.58 | 50.81 | 50.46 |
| CorPipeBestDev    | 62.42 | 60.85 | 63.57 | 52.51 | 49.91 | 48.72 | 49.33 | 49.00 |
| CorPipeSingle     | 62.91 | 60.69 | 64.05 | 52.66 | 49.98 | 49.66 | 49.92 | 49.72 |
| Stanza            | 54.67 | 54.66 | 56.77 | 44.31 | 42.51 | 41.37 | 42.31 | 41.78 |
| LLM-GLaRef-CRAC25 | 50.80 | 51.80 | 52.12 | 41.98 | 39.11 | 38.75 | 39.08 | 38.81 |
| LLM-NUST-FewShot  | 52.16 | 52.84 | 54.26 | 42.09 | 40.05 | 39.47 | 40.28 | 39.96 |
| GLaRef-Propp      | 47.57 | 48.85 | 49.46 | 36.41 | 33.83 | 33.37 | 34.09 | 33.58 |
| LLM-PUXCRAC2025   | 47.37 | 46.07 | 49.09 | 34.88 | 33.11 | 31.91 | 32.71 | 32.48 |
| LLM-UWB           | 51.82 | 47.99 | 53.14 | 40.23 | 37.45 | 36.91 | 37.44 | 36.99 |
| BASELINE-GZ       | 42.44 | 49.49 | 45.96 | 33.76 | 31.16 | 30.43 | 31.05 | 30.61 |
| BASELINE          | 40.99 | 42.45 | 44.50 | 31.94 | 29.42 | 28.58 | 29.17 | 28.80 |

Table 11: CoNLL  $F_1$  score (head-match) evaluated only on mentions with heads of a given UPOS. In both the gold and prediction files we deleted some mentions before running the evaluation. We kept only mentions with a given head UPOS (again considering also deprel=flat children). These results may be a bit misleading because e.g. the PRON column does not consider all pronominal coreference, but only pronoun-to-pronoun coreference. An entity with one pronoun and one noun mention is excluded from this table (because it becomes a singleton after deleting noun or pronoun mentions and singletons are excluded from the evaluation in this table).

### C Statistics of the submitted systems on concatenation of all test sets

The systems are sorted alphabetically in tables in this section.

|                   |        | entitie | es     |      | distribution of lengths |      |      |     |      |  |  |
|-------------------|--------|---------|--------|------|-------------------------|------|------|-----|------|--|--|
| system            | total  | per 1k  | length |      | 1                       | 2    | 3    | 4   | 5+   |  |  |
|                   | count  | words   | max    | avg. | [%]                     | [%]  | [%]  | [%] | [%]  |  |  |
| gold              | 39,576 | 108     | 509    | 2.1  | 67.4                    | 17.3 | 5.9  | 2.8 | 6.6  |  |  |
| BASELINE          | 10,591 | 29      | 347    | 4.2  | 0.0                     | 55.8 | 17.6 | 7.8 | 18.9 |  |  |
| Baseline-GZ       | 10,977 | 30      | 354    | 4.2  | 0.0                     | 55.5 | 17.6 | 7.8 | 19.2 |  |  |
| CorPipeBestDev    | 40,392 | 111     | 248    | 2.1  | 66.6                    | 17.7 | 6.2  | 2.8 | 6.6  |  |  |
| CorPipeEnsemble   | 40,615 | 111     | 461    | 2.0  | 66.5                    | 17.8 | 6.3  | 2.9 | 6.5  |  |  |
| CorPipeSingle     | 40,377 | 111     | 362    | 2.1  | 66.6                    | 17.7 | 6.2  | 3.0 | 6.6  |  |  |
| GLaRef-Propp      | 40,481 | 111     | 563    | 1.9  | 75.0                    | 12.4 | 4.6  | 2.3 | 5.7  |  |  |
| LLM-GLaRef-CRAC25 | 39,664 | 109     | 280    | 1.9  | 70.6                    | 15.1 | 5.6  | 2.7 | 6.0  |  |  |
| LLM-NUST-FewShot  | 35,703 | 98      | 393    | 2.0  | 71.1                    | 13.5 | 5.5  | 2.8 | 7.1  |  |  |
| LLM-PUXCRAC2025   | 19,896 | 55      | 545    | 2.9  | 44.3                    | 29.4 | 10.1 | 4.8 | 11.5 |  |  |
| LLM-UWB           | 35,542 | 97      | 317    | 1.9  | 70.0                    | 15.6 | 5.6  | 2.8 | 6.0  |  |  |
| Stanza            | 38,464 | 105     | 523    | 2.0  | 67.8                    | 17.4 | 5.9  | 2.8 | 6.2  |  |  |

Table 12: Statistics on coreference entities. The total number of entities and the average number of entities per 1000 tokens in the running text. The maximum and average entity "length", i.e., the number of mentions in the entity. Distribution of entity lengths (singletons have length = 1). The two baselines and LLM-PUXCRAC2025 heavily undergenerate (i.e. predict less entities than in the gold data) and the baselines also predict on average longer entities (i.e. with more mentions) than in the gold data. The remaining systems have the statistics similar to the gold data, (although the CorPipe\* systems and GLaRef-Propp slightly overgenerate, while LLM-NUST-FewShot and LLM-UWB undergenerate).

|                   | non-s  | singleton | mentio       | ons  | distribution of lengths |      |      |     |     |      |  |  |
|-------------------|--------|-----------|--------------|------|-------------------------|------|------|-----|-----|------|--|--|
| system            | total  | per 1k    | er 1k length |      | 0                       | 1    | 2    | 3   | 4   | 5+   |  |  |
|                   | count  | words     | max          | avg. | [%]                     | [%]  | [%]  | [%] | [%] | [%]  |  |  |
| gold              | 55,333 | 152       | 100          | 2.5  | 9.8                     | 50.1 | 19.1 | 7.0 | 3.3 | 10.8 |  |  |
| BASELINE          | 44,110 | 121       | 27           | 1.9  | 10.0                    | 54.9 | 18.8 | 6.3 | 2.6 | 7.3  |  |  |
| BASELINE-GZ       | 45,989 | 126       | 27           | 1.9  | 11.4                    | 54.2 | 18.5 | 6.2 | 2.6 | 7.1  |  |  |
| CorPipeBestDev    | 56,020 | 154       | 149          | 2.4  | 9.6                     | 51.0 | 19.1 | 6.9 | 3.1 | 10.3 |  |  |
| CorPipeEnsemble   | 55,668 | 153       | 149          | 2.4  | 9.6                     | 51.0 | 19.0 | 6.9 | 3.1 | 10.2 |  |  |
| CorPipeSingle     | 56,026 | 154       | 140          | 2.5  | 9.6                     | 50.9 | 19.1 | 6.9 | 3.1 | 10.4 |  |  |
| GLaRef-Propp      | 48,362 | 133       | 51           | 1.9  | 9.9                     | 55.3 | 19.2 | 6.4 | 2.6 | 6.6  |  |  |
| LLM-GLaRef-CRAC25 | 49,311 | 135       | 96           | 2.3  | 10.7                    | 52.1 | 18.6 | 6.4 | 3.0 | 9.2  |  |  |
| LLM-NUST-FewShot  | 47,681 | 131       | 104          | 2.0  | 6.9                     | 58.0 | 19.1 | 6.2 | 2.6 | 7.2  |  |  |
| LLM-PUXCRAC2025   | 48,593 | 133       | 27           | 1.8  | 8.4                     | 57.8 | 18.4 | 5.9 | 2.5 | 6.9  |  |  |
| LLM-UWB           | 42,852 | 117       | 58           | 1.8  | 1.2                     | 80.6 | 8.3  | 2.9 | 1.4 | 5.6  |  |  |
| Stanza            | 50,811 | 139       | 100          | 2.3  | 9.3                     | 52.8 | 18.9 | 6.6 | 2.9 | 9.6  |  |  |

Table 13: Statistics on non-singleton mentions. The total number of mentions and the average number of mentions per 1000 words of running text. The maximum and average mention length, i.e., the number of nonempty nodes (words) in the mention. Distribution of mention lengths (zeros have length = 0). Only the CorPipe\* systems generate a similar number of non-singleton mentions as in the gold data, all other systems generate less mentions. The average length of mentions predicted by LLM-UWB is notably lower than in the gold data because LLM-UWB predicted single-word mentions only in most datasets. All other systems have the distribution of mention lengths similar to the gold data, although no system predicts long mentions (4 and 5+ words) more frequently than in the gold data, (but CorPipe\* systems are near to the gold distribution).

|                   | sin    | gleton m | entions |      | distribution of lengths |      |      |      |     |      |  |  |
|-------------------|--------|----------|---------|------|-------------------------|------|------|------|-----|------|--|--|
| system            | total  | per 1k   | length  |      | 0                       | 1    | 2    | 3    | 4   | 5+   |  |  |
| count word        |        | words    | max     | avg. | [%]                     | [%]  | [%]  | [%]  | [%] | [%]  |  |  |
| gold              | 26,661 | 73       | 81      | 3.0  | 0.7                     | 39.4 | 24.0 | 12.2 | 6.3 | 17.3 |  |  |
| BASELINE          | 0      | 0        | 0       | 0.0  | 0.0                     | 0.0  | 0.0  | 0.0  | 0.0 | 0.0  |  |  |
| BASELINE-GZ       | 0      | 0        | 0       | 0.0  | 0.0                     | 0.0  | 0.0  | 0.0  | 0.0 | 0.0  |  |  |
| CorPipeBestDev    | 26,919 | 74       | 112     | 3.1  | 0.7                     | 38.1 | 24.8 | 12.7 | 6.4 | 17.3 |  |  |
| CorPipeEnsemble   | 27,014 | 74       | 112     | 3.0  | 0.7                     | 38.5 | 25.0 | 12.5 | 6.2 | 17.0 |  |  |
| CorPipeSingle     | 26,885 | 74       | 85      | 3.1  | 0.7                     | 38.5 | 24.9 | 12.6 | 6.3 | 17.1 |  |  |
| GLaRef-Propp      | 30,343 | 83       | 33      | 2.3  | 2.4                     | 40.4 | 27.7 | 13.0 | 6.1 | 10.5 |  |  |
| LLM-GLaRef-CRAC25 | 28,021 | 77       | 80      | 2.9  | 0.9                     | 40.5 | 25.1 | 12.2 | 5.8 | 15.5 |  |  |
| LLM-NUST-FewShot  | 25,379 | 70       | 63      | 2.8  | 0.2                     | 41.8 | 24.9 | 12.0 | 5.9 | 15.3 |  |  |
| LLM-PUXCRAC2025   | 8,807  | 24       | 17      | 2.0  | 0.4                     | 52.5 | 23.8 | 11.4 | 4.1 | 7.8  |  |  |
| LLM-UWB           | 24,889 | 68       | 86      | 1.7  | 0.0                     | 78.2 | 10.0 | 4.3  | 2.1 | 5.4  |  |  |
| Stanza            | 26,060 | 71       | 100     | 2.9  | 1.4                     | 40.2 | 24.5 | 11.8 | 6.1 | 16.0 |  |  |

Table 14: Statistics on singleton mentions. See the caption of Table 13 for details. The two baseline systems do not attempt to predict singletons at all. LLM-PUXCRAC2025 heavily undergenerates singletons. GLaRef-Propp overgenerates singletons (including zeros), but note that singletons are not annotated in all the (gold) datasets.

|                   | ment    | mention type [%] distribution of head UPOS [%] |          |      |      |       |     |     |      |     |     |      |       |
|-------------------|---------|------------------------------------------------|----------|------|------|-------|-----|-----|------|-----|-----|------|-------|
| system            | w/empty | w/gap                                          | non-tree | NOUN | PRON | PROPN | DET | ADJ | VERB | ADV | NUM | _    | other |
| gold              | 11.0    | 0.7                                            | 1.4      | 38.6 | 31.5 | 17.7  | 4.2 | 1.3 | 1.9  | 1.4 | 0.5 | 2.1  | 0.8   |
| BASELINE          | 10.5    | 0.0                                            | 1.4      | 35.4 | 26.9 | 18.7  | 4.8 | 1.1 | 0.9  | 1.2 | 0.4 | 10.0 | 0.6   |
| BASELINE-GZ       | 12.0    | 0.0                                            | 1.5      | 35.1 | 34.7 | 18.5  | 4.7 | 1.1 | 0.9  | 1.5 | 0.4 | 2.5  | 0.8   |
| CorPipeBestDev    | 10.6    | 0.0                                            | 1.9      | 39.0 | 23.7 | 17.6  | 4.3 | 1.2 | 1.8  | 1.4 | 0.5 | 9.6  | 0.8   |
| CorPipeEnsemble   | 10.6    | 0.0                                            | 1.8      | 39.0 | 23.8 | 17.7  | 4.3 | 1.2 | 1.7  | 1.4 | 0.5 | 9.6  | 0.8   |
| CorPipeSingle     | 10.5    | 0.0                                            | 1.9      | 39.1 | 23.7 | 17.6  | 4.3 | 1.2 | 1.7  | 1.4 | 0.5 | 9.6  | 0.8   |
| GLaRef-Propp      | 9.9     | 0.0                                            | 1.4      | 35.5 | 26.9 | 18.4  | 4.7 | 1.1 | 0.8  | 1.4 | 0.4 | 9.9  | 0.9   |
| LLM-GLaRef-CRAC25 | 11.4    | 0.0                                            | 1.8      | 37.5 | 24.7 | 17.0  | 4.7 | 1.3 | 1.4  | 1.4 | 0.5 | 10.7 | 1.0   |
| LLM-NUST-FewShot  | 7.1     | 0.0                                            | 1.3      | 39.4 | 25.9 | 18.6  | 3.5 | 1.2 | 1.5  | 1.5 | 0.5 | 6.9  | 1.1   |
| LLM-PUXCRAC2025   | 8.9     | 0.0                                            | 1.4      | 37.2 | 25.7 | 18.7  | 4.1 | 1.3 | 2.0  | 1.3 | 0.5 | 8.4  | 0.8   |
| LLM-UWB           | 1.2     | 0.0                                            | 0.8      | 42.9 | 24.6 | 20.9  | 4.8 | 1.3 | 1.1  | 1.7 | 0.5 | 1.2  | 1.0   |
| Stanza            | 10.0    | 0.0                                            | 1.4      | 39.0 | 24.0 | 18.8  | 4.1 | 1.1 | 1.1  | 1.4 | 0.4 | 9.3  | 0.8   |

Table 15: Detailed statistics on non-singleton mentions. The left part of the table shows the percentage of: mentions with at least one empty node (w/empty); mentions with at least one gap, i.e. discontinuous mentions (w/gap); and non-treelet mentions, i.e. mentions not forming a connected subgraph (catena) in the dependency tree (non-tree). Note that these three types of mentions may be overlapping. We can see that none of the systems attempts to predict discontinuous mentions. LLM-UWB has a notably lower percentage (0.8%) of non-treelet mention spans, but this is simply explained by its higher percentage (80%) of single-word mentions. The right part of the table shows the distribution of mentions based on the universal part-of-speech tag (UPOS) of the head word. Note that this distribution has to be interpreted with the total number of non-singleton mentions predicted (as reported in Table 13) in mind. For example, 34.7% of non-singleton mentions predicted by BASELINE-GZ are pronominal (head=PRON), while there are only 31.5% of pronominal non-singleton mentions in the gold data. However, BASELINE-GZ predicts actually less pronominal non-singleton mentions ( $45,989 \times 34.7\% \approx 15,958$ ) than in the gold data  $(55.333 \times 31.5\% \approx 17,430)$ . Note that the same word may be assigned a different UPOS tag in the predicted and gold data (in case of empty nodes or if the gold data includes manual annotation). The empty UPOS tag (\_) is present only in the empty nodes and none of the systems attempts to predict the actual UPOS tag of empty nodes (they all keep the empty tag from the baseline predictor of empty nodes, although about 78% of the empty nodes in the gold devset are pronouns).

# D Evolution of CodaLab Submissions

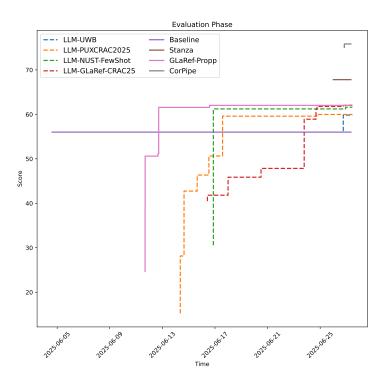


Figure 3: Evolution of CodaLab Submissions in the evaluation phase. The submissions to the LLM and Unconstrained track are shown by using the dashed and solid lines, respectively. For clarity, all submissions of the ÚFAL CorPipe team are represented by the scores of CorPipeEnsemble.