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1 Charles University, Faculty of Mathematics and Physics,
Institute of Formal and Applied Linguistics, Prague, Czechia

{mnovak,nedoluzko,popel,straka,zabokrtsky,zeman}@ufal.mff.cuni.cz
2 University of West Bohemia, Faculty of Applied Sciences,

Department of Computer Science and Engineering, Pilsen, Czechia
{konopik,ondfa,sidoj}@kiv.zcu.cz

Abstract

The paper presents an overview of the fourth
edition of the Shared Task on Multilingual
Coreference Resolution, organized as part of
the CODI-CRAC 2025 workshop. As in the
previous editions, participants were challenged
to develop systems that identify mentions and
cluster them according to identity coreference.

A key innovation of this year’s task was the
introduction of a dedicated Large Language
Model (LLM) track, featuring a simplified
plaintext format designed to be more suitable
for LLMs than the original CoNLL-U repre-
sentation.

The task also expanded its coverage with three
new datasets in two additional languages, us-
ing version 1.3 of CorefUD – a harmonized
multilingual collection of 22 datasets in 17 lan-
guages.

In total, nine systems participated, including
four LLM-based approaches (two fine-tuned
and two using few-shot adaptation). While
traditional systems still kept the lead, LLMs
showed clear potential, suggesting they may
soon challenge established approaches in fu-
ture editions.

1 Introduction

Coreference is the phenomenon where multiple ex-
pressions in a text refer to the same real-world en-
tity. For example: “Beethoven was a revolutionary
artist. The German composer changed the course
of music, and he continues to inspire musicians
today.” Here, “Beethoven”, “the German com-
poser”, and “he” all point to the same individual.
The computational task of coreference resolution is

to automatically identify such links between men-
tions and group them into clusters that represent
entities. In the multilingual setting, the task is the
same, but complicated by the diversity of languages
and their grammatical and discourse conventions.

In this article, we present the overall setup and
results of the fourth edition of the shared task in
multilingual coreference resolution. For descrip-
tions of previous editions, as well as references to
the roots and predecessors of the series, see Novák
et al. (2024).

This year’s edition uses an improved and ex-
panded collection of coreference data, CorefUD 1.3
(Novák et al., 2025), currently spanning 17 lan-
guages from a few typologically different families.
However, the most important novelty in this edition
is the introduction of the Large Language Model
(LLM) track. Although non-LLM models were
still welcome, a dedicated LLM Track was intro-
duced to highlight and explore the capabilities of
LLM-based approaches. Hence, to accommodate
different modeling strategies and study their ef-
fects, we defined two shared-task tracks:

• LLM Track: Focused on solutions that pri-
marily rely on LLMs for coreference resolu-
tion. Allowed strategies include fine-tuning
LLMs, using in-context learning, designing
effective prompts, utilizing constrained de-
coding strategies, and building more complex
agentic systems.

• Unconstrained Track: Open to all other ap-
proaches, including non-LLM models and hy-
brid systems. This track allows the use of



96

El|[e22 conductor de el tren|[e5],e22] vio el|[e7 coche|e7]

en la|[e8 vía|e8] e intentó ##|[e22] frenar|[e23] .

Spanish:

Our serialization:

English transl.:

El conductor del tren vio el coche en la vía e intentó frenar.

The driver of-the train saw the car on the track and tried to brake.

Figure 1: Our plaintext serialization of a Spanish example sentence from es_ancora. For clarity, mention spans are
highlighted by colored underlining, where two coreferential entities share the same color. A zero mention labeled on
an empty node is greyed. Note that multi-word tokens are split in the plaintext format into syntactic words (e.g., the
Spanish “del” appears as “de el”); this conversion error was identified after the data release.

additional pre-existing coreference systems,
external tools, and extensive model modifica-
tions.

A major trend in NLP is the shift from tradi-
tional task-specific models to LLMs, which can
address a wide range of tasks with little fine-tuning
and are comparatively easy to deploy. This uni-
fication brings greater efficiency, flexibility, and
scalability, but also raises challenges such as bias,
computational cost, and privacy concerns. At the
same time, LLMs have shown strong performance
on tasks that require understanding of textual con-
text and relations, including question answering,
summarization, and commonsense reasoning.

A category of benchmarks that are commonly
used to test these coreference-related capabilities
are derivations of the Winograd Schema Chal-
lenge (Levesque et al., 2012), for instance KnowRef
(Emami et al., 2019), WinoGrande (Sakaguchi
et al., 2021), and recently WinoWhat (Gevers
et al., 2025). However, these benchmarks represent
an overly narrow view of coreference resolution.
They primarily focus on commonsense reasoning
through carefully crafted disambiguation scenarios,
while real-world coreference resolution involves a
much broader spectrum of phenomena.

Previous works on using LLMs for coreference
resolution show that they struggle with this task
and are not able to outperform systems specifically
tailored for coreference resolution (Le and Ritter,
2023; Vadász, 2023; Hicke and Mimno, 2024; Gan
et al., 2024; Saputa et al., 2024). One of the reasons
may be that the data used to model and test the task
is very heterogeneous due to practical difficulties
in clearly and precisely defining the elements that
coreference relations work with, specifically the
scope of mentions, the degree of zero reconstruc-
tion, and the typology of coreference and anaphoric
relations.

Still, the progress in LLMs is so rapid that it

seems just a matter of time before these LLM-based
systems will dominate also in this task. We see the
LLM track of this shared task as an opportunity to
test this hypothesis and encourage development in
this field, providing a platform for researchers to
explore the current boundaries and future potential
of LLM-based coreference resolution.

The step towards LLMs does not represent only
a technological change – it often requires rethink-
ing how we approach a particular task. Structured
(possibly pipelined) solutions are typically aban-
doned and replaced by processing “flat” sequences
of (sub)words. In the particular case of this shared
task, we replace the relatively richly structured
CoNLL-U format in which the encoding of coref-
erence relations is stored in the CorefUD collec-
tion with an encoding of coreference that could be
added directly into plain text.

Naturally, there are many possible ways to in-
sert coreference markup into text, and prior work
on LLMs for coreference has each used its own
prompt and format. So far, no widely accepted best
practices have emerged for encoding or prompting
coreference in plain text. We implement our own
conversion from CorefUD into a plaintext serial-
ization (example in Figure 1), but acknowledge that
our design choices may limit applicability and that
further optimization could improve LLM perfor-
mance.

The remainder of the paper is structured as fol-
lows. Section 2 discusses the changes in the data
compared to the previous (third) edition of the
shared task. Section 3 outlines the evaluation met-
rics used in the task, including both the primary
and supplementary scores. Section 4 details all par-
ticipating systems, both in the LLM track and in the
Unconstrained track. Section 5 presents a summary
of the results and discusses some differences be-
tween the performance of LLM and Unconstrained
systems. Section 6 provides the conclusion.
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2 Datasets

As in previous years, the shared task takes train-
ing and evaluation data from the public part of the
CorefUD collection (Nedoluzhko et al., 2022),1

now in its latest release (1.3).2 The public edi-
tion of CorefUD 1.3 consists of 24 datasets3 cov-
ering 17 languages from five language families.
Compared to CorefUD 1.2, used last year (Novák
et al., 2024), the release adds three new datasets and
two new languages including Korean, which rep-
resents a new language family. The new datasets
are French ANCOR, Hindi HDTB, and Korean
ECMT. In addition, several existing datasets from
CorefUD 1.2 were updated. The data span diverse
domains including news, fiction, Bible texts, and
Wikipedia articles. French ANCOR notably in-
troduces transcripts of originally spoken conversa-
tional data, which were previously only marginally
represented in CorefUD. Table 1 gives an overview
of the datasets and their sizes. See Appendix A for
references of the individual datasets.

One of the goals of the CorefUD project is to en-
courage research on coreference resolution in lan-
guages other than English, particularly those with
zero anaphora. Zero anaphora, or zero mentions,
occur when a referent (like a subject or object) is
implied but not explicitly stated. This is a common
feature of pro-drop languages, where verb conju-
gation often provides enough information to infer
the missing pronoun. In CorefUD, zero mentions
are represented as empty nodes that are artificially
inserted into Universal Dependencies (UD) trees.
This allows them to be grouped with other men-
tions in a coreference chain, just like any other
explicitly stated mention. Although the two newly
added languages, Korean and Hindi, are considered
pro-drop, the original datasets do not include zero
mention annotation. Therefore, the collection of
datasets with zero mentions remains the same as in
the previous edition.

Our shared task focuses exclusively on identity
coreference. The datasets in the CorefUD collec-
tion, however, may include annotations of other
relations, such as bridging. Similarly, phenomena
like event anaphora and abstract anaphora may be
annotated in some datasets but not in others. Be-
cause CorefUD is not fully harmonized in terms

1https://ufal.mff.cuni.cz/corefud
2http://hdl.handle.net/11234/1-5896
3For the shared task, we used only 22 of them (see Sec-

tion 2.3).

of annotation guidelines, the precise nature of an-
notated anaphoric phenomena may vary slightly
across corpora. In converting to the CorefUD for-
mat, we aim to isolate identity coreference4 while
largely preserving the original annotations.

2.1 New Resources

French ANCOR (fr_ancor; Muzerelle et al.,
2014) is a collection of three different corpora
of conversational speech (Accueil_UBS, OTG,
ESLO), annotated for coreference. Cross-sentence
mentions (caused e.g. by two speakers speaking
simultaneously) are ignored in the conversion from
TEI to CorefUD.

Hindi HDTB (hi_hdtb; Mujadia et al., 2016) is
based on the HDTB corpus (Palmer et al., 2009)
annotated with coreference and anaphoric relations
and corresponding to the namesake treebank in UD.
However, the coreference corpus does not consti-
tute a strict subset of the UD treebank, as approx-
imately 14% of its sentences are not included in
the UD release. Still, each coreference-annotated
document contains at least one sentence that ap-
pears in the treebank. Although the original anno-
tations distinguish PartOf relations, these are often
merged with identity coreference relations within
the same cluster, complicating the separation of
identity, bridging, and split-antecedent relations.
As a result, we currently treat all mentions within
a cluster as coreferential, without making finer dis-
tinctions. At present, we do not incorporate the
manually annotated morpho-syntactic information
from the UD treebank; instead, we replace it with
automatic parses produced by UDPipe 2.

Korean ECMT (ko_ecmt; Nam et al., 2020) is
a conversion of the dataset created for the paper
“Effective Crowdsourcing of Multiple Tasks for
Comprehensive Knowledge Extraction” (ECMT).
The original dataset is based on Korean Wikipedia
and KBox with crowdsourced annotations for four
information extraction tasks: (1) entity detection,
(2) entity linking, (3) coreference resolution, and
(4) relation extraction. The original dataset seems
to contain errors where distinct entities are incor-
rectly merged into a single coreference cluster. The
CorefUD conversion did not attempt to fix these
errors.

4We are aware that complete isolation is not possible due
to near-identity relations; see Recasens et al. (2010).

https://ufal.mff.cuni.cz/corefud
http://hdl.handle.net/11234/1-5896
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total number of entities mentions

document total per 1k length total per 1k length

docs sents words empty n. count words max avg. count words max avg.

Ancient_Greek-PROIEL 19 6,475 64,111 6,283 3,215 50 332 6.6 21,354 333 52 1.7
Ancient_Hebrew-PTNK 40 1,161 28,485 0 870 31 102 7.2 6,247 219 22 1.5
Catalan-AnCora 1,298 13,613 429,313 6,377 17,558 41 101 3.6 62,417 145 141 4.8
Czech-PCEDT 2,312 49,208 1,155,755 35,654 49,225 43 236 3.4 168,055 145 79 3.6
Czech-PDT 3,165 49,419 834,707 21,092 46,460 56 173 3.3 154,437 185 99 3.1
English-GUM 237 13,263 233,926 119 9,200 39 131 4.4 40,656 174 95 2.6
English-LitBank 100 8,560 210,530 0 2,164 10 261 10.8 23,340 111 129 1.6
English-ParCorFull 19 543 10,798 0 188 17 38 4.4 835 77 37 2.1
French-ANCOR 455 31,761 454,577 0 13,204 29 103 4.3 56,459 124 17 1.9
French-Democrat 126 13,057 284,883 0 7,162 25 895 6.5 46,487 163 71 1.7
German-ParCorFull 19 543 10,602 0 243 23 43 3.7 896 85 30 2.0
German-PotsdamCC 176 2,238 33,222 0 880 26 15 2.9 2,519 76 34 2.6
Hindi-HDTB 271 3,479 76,282 0 3,148 41 36 3.8 12,082 158 43 1.8
Hungarian-KorKor 94 1,351 24,568 1,569 1,122 46 41 3.6 4,091 167 42 2.2
Hungarian-SzegedKoref 400 8,820 123,968 4,857 4,769 38 36 3.2 15,165 122 36 1.6
Korean-ECMT 1,470 30,784 482,986 0 16,536 34 55 3.4 56,538 117 12 1.3
Lithuanian-LCC 100 1,714 37,014 0 1,087 29 23 4.0 4,337 117 19 1.5
Norwegian-BokmaalNARC 346 15,742 245,515 0 5,658 23 298 4.7 26,611 108 51 1.9
Norwegian-NynorskNARC 394 12,481 206,660 0 5,079 25 84 4.3 21,847 106 57 2.1
Old_Church_Slavonic-PROIEL 26 6,832 61,759 6,289 3,396 55 134 6.5 22,116 358 52 1.5
Polish-PCC 1,828 35,874 538,885 18,615 22,143 41 135 3.7 82,706 153 108 1.9
Russian-RuCor 181 9,035 156,636 0 3,515 22 141 4.6 16,193 103 18 1.7
Spanish-AnCora 1,356 14,159 458,418 8,112 19,445 42 110 3.6 70,663 154 101 4.8
Turkish-ITCC 24 4,732 55,358 11,584 4,019 73 369 5.4 21,569 390 31 1.1

Table 1: CorefUD 1.3 data sizes in terms of the total number of documents, sentences, words (i.e. non-empty
nodes), empty nodes (empty words), coreference entities (total count, relative count per 1000 words, average and
maximal length in number of mentions) and coreference mentions (total count, relative count per 1000 words,
average and maximal length in number of words). All the counts are excluding singletons and for the concatenation
of train+dev+test. Train/dev/test splits of these datasets roughly follow the 8/1/1 ratio. However, note that for the
shared task we used reduced versions of dev and test: mini-dev and mini-test, respectively.

2.2 Updated Resources

More data The English GUM corpus (en_gum)
is now in its version 11, which has approximately
10% more data. All the other datasets are the same
size as before (except for a few minor changes re-
sulting from annotation corrections).

New prediction of morphosyntax For datasets
that do not come with manual morphosyntactic an-
notation, the UD relations, tags and features were
predicted with newer models for UDPipe (based
on UD release 2.15 instead of 2.12). This involves
the following ten corpora: Czech PCEDT, English
LitBank, English ParCorFull, German ParCorFull,
German PotsdamCC, Hungarian KorKor, Hungar-
ian SzegedKoref, Lithuanian LCC, Polish PCC,
Russian RuCor.

Substantial changes Re-implementation of con-
version from non-CorefUD formats and/or ma-
jor revision of the annotation was applied to
Czech PDT (cs_pdt) and Hungarian KorKor
(hu_korkor). For Czech, the source dataset is now

the PDT part of PDT-C 2.0 (previously it was 1.0),
which has substantial improvements on the surface-
syntactic layer. Many other changes were done in
the PDT-to-UD conversion of morphology and syn-
tax; coreference annotation is unchanged, except
for a few corrections. For Hungarian, the conver-
sion from the native format was almost completely
rewritten. Empty copula nodes are now deleted as
required in UD. DROP empty nodes now receive
correct incoming dependency relations (nsubj,
obj, or nmod:att), and there are several other
small improvements.5

2.3 Data for the Shared Task

Compared to the public edition of CorefUD 1.3,
the data provided for the shared task participants
underwent slight adjustments.6

5More details on the changes can be found in the README
files of the individual corpora.

6Both the shared task data and submissions are available
at http://hdl.handle.net/11234/1-5987.

http://hdl.handle.net/11234/1-5987
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Data reduction Firstly, the English and German
ParCorFull datasets were excluded from this year’s
shared task. These datasets are the smallest (their
test sets contain less than 900 words, one third of
the next smallest test set) and exhibited the largest
variance, considerably influencing overall macro-
averaged scores.7

Secondly, the development and test sets were re-
duced to mini-dev and mini-test sets, respectively.
This change was introduced to lower the compu-
tational cost of evaluation while preserving high
discriminative power. Each dev and test set is now
capped at 25k words, achieved by randomly sam-
pling complete documents. The 25k threshold was
selected to cut the overall collection size by roughly
half, while affecting only a few of the largest cor-
pora and still ensuring reliable and representative
results.8

Plaintext format For the LLM track, we provide
a conversion to a simple plaintext format, along
with both the conversion tool and the converted
dataset files.

The plaintext format (see Figure 1) is a plain text
file in which each line represents a document, and
tokens are separated by spaces. Coreference an-
notations are appended to each token after the ‘|’
character. Each mention, including singletons, is
defined by its span boundaries, marked with open-
ing and closing square brackets concatenated with
the entity ID. Empty nodes are prefixed with ‘##’;
if an empty node has a form or lemma in the origi-
nal data, it is appended immediately after. Because
empty nodes are defined by their syntactic posi-
tion rather than linear order, each empty node is
placed directly after its syntactic parent. This for-
mat does not encode the dependency relation type
to the parent, which means it cannot distinguish
between multiple empty nodes dependent on the
same parent (see Section 3). While this limitation
may slightly affect evaluation results, we consider
the impact marginal and an acceptable trade-off for
preserving the simplicity of the format.

7Considering eight training runs of the last year’s win-
ning system differing in just random initialization, the stan-
dard deviation of the ParCorFull development results is more
than 10 times larger than the standard deviation of the overall
macro-averaged scores and 15 times larger than the standard
deviation of the largest dataset.

8Again considering eight training runs of the last year’s
winning system differing in just random initialization, capping
the large datasets to 25k words increase the standard devia-
tion of the overall macro-averaged percentage results on the
development sets by less than +0.03, from 0.296 to 0.324.

The plaintext format is intentionally less expres-
sive than CoNLL-U and lacks sufficient informa-
tion for some evaluation metrics (e.g., head match
requires mention heads derived from spans using
syntactic trees). To bridge this gap, we provide
a backwards conversion tool that restores plain-
text annotations to CoNLL-U format, as well as an
output cleaner.9

The cleaner addresses common issues caused
by LLM outputs, such as broken annota-
tion structure (e.g., unclosed mentions) or
added/removed/modified words. It first ensures
all mentions are properly opened and closed, then
uses word-level edit distance to align output doc-
uments to the original input. Empty nodes are ig-
nored in the edit-distance computation, as systems
are expected to insert them themselves. Once the
token sequences match exactly, the output anno-
tations can be safely mapped back to the original
CoNLL-U files.

Data variants and starting points In both
tracks, two main variants of the data are provided:
gold, and input data. In addition, participants of the
Unconstrained track can choose from three starting
points.

Gold data includes gold-standard annotations of
coreference and empty nodes, intended for fine-
tuning and evaluation. The data are consistent with
the CorefUD 1.3 release, retaining manually anno-
tated morpho-syntactic features (for datasets that
originally included them), gold empty nodes, and
gold coreference annotations. The only techni-
cal modification is the removal of empty nodes’
forms in order to align the data with the output of
the baseline empty node prediction, which does
not predict these forms (see Section 4.1). While
the gold train and mini-dev sets were available for
download, the gold test set remained secret and
were used internally in CodaLab for evaluation.

Input data was intended to be processed by par-
ticipants’ systems and subsequent submission. The
following preprocessing was thus performed only
on the mini-dev and mini-test sets. To better simu-
late a real-world scenario where no manual linguis-
tic annotation is available, we removed the forms
of empty nodes and replaced the original morpho-
syntactic features with the outputs of UD 2.15 mod-
els across all datasets, including those with origi-

9The conversion tool and cleaner are available as a single
application/Python library on GitHub: https://github.
com/ondfa/text2text-coref

https://github.com/ondfa/text2text-coref
https://github.com/ondfa/text2text-coref
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nally human-annotated features. Additionally, the
gold empty nodes and coreference annotations were
removed, forming the input data for the LLM track.
On the other hand, in line with the setup of the last
year’s edition, participants of the Unconstrained
track could choose from three different starting
points for entering the shared task, with varying de-
grees of work required: (1) Coreference and zeros
from scratch with no predictions of empty nodes
and coreference (practically identical to the LLM-
track variant), (2) Coreference from scratch with
baseline predictions of empty nodes, and (3) Re-
fine the baseline with baseline predictions of empty
nodes and coreference.

3 Evaluation Metrics

The systems participating in the shared task are
evaluated using the CorefUD scorer. In line with
previous editions, the primary evaluation score is
the CoNLL F1 score, computed with head men-
tion matching and excluding singletons. To align
zero mentions, no longer guaranteed to match one-
to-one due to the shift to a more realistic setup
introduced last year, we apply a dependency-based
matching method. In addition to the primary met-
ric, we also compute several supplementary scores
to support a more comprehensive comparison of
the shared task submissions.

Official scorer We evaluate participant submis-
sions using the CorefUD scorer10, specifically the
February 2025 version, which remains virtually un-
changed from the version used in the previous edi-
tion. The scorer builds on the Universal Anaphora
(UA) scorer 2.0 (Yu et al., 2023),11 adopting all
features relevant to the shared task, including im-
plementations of widely used coreference evalu-
ation metrics. In contrast to the UA scorer, the
CorefUD scorer also supports head matching and a
dependency-based method for aligning zero men-
tions.

The scorer takes two CoNLL-U files as input:
the gold file and the predicted file. Since our plain-
text format cannot capture all the information re-
quired for evaluation (e.g., mention heads), any
LLM output produced in this format must first be
restored into CoNLL-U before it can be properly

10https://github.com/ufal/
corefud-scorer

11The UA scorer 2.0 merges, reimplements, and extends
several earlier tools, including previous versions of the
CorefUD scorer.

evaluated.

Mention matching Due to the limitations of ex-
act and partial mention matching methods (see
Žabokrtský et al. (2023) for details), we have set-
tled on the head match strategy for the primary
evaluation metrics. In this approach, a gold and
predicted mention are considered a match if their
heads refer to the same token.12 Full mention spans
are ignored, except in cases where multiple men-
tions share the same head; in such instances, span
information is used to disambiguate them.

However, this approach is not applicable to
empty nodes, which frequently occur in zero
anaphora. Predicted counterparts of gold zero men-
tions may be missing, spurious, or appear at differ-
ent surface positions within a sentence, even if they
serve the same syntactic or semantic role. To han-
dle this, we devised a dependency-based method
last year (Novák et al., 2024). The method aligns
predicted and gold zero mentions within the same
sentence by maximizing their overlap in enhanced
dependency annotations. It formulates the task as a
one-to-one matching in a weighted bipartite graph,
where each candidate pair is scored based on how
well the predicted zero replicates the gold zero’s
dependencies. Matches that correctly assign both
the parent and the dependency type receive higher
weights, though the method remains robust even
when dependency types are not provided.

Primary score As is standard in coreference res-
olution, we use the CoNLL F1 score (Denis and
Baldridge, 2009; Pradhan et al., 2014) as the pri-
mary evaluation metric. This score is calculated
as the unweighted average of the F1 scores from
three widely used coreference evaluation measures:
MUC (Vilain et al., 1995), B3 (Bagga and Bald-
win, 1998), and CEAF-e (Luo, 2005). These met-
rics offer complementary perspectives: link-based,
mention-based, and entity-based, respectively. As
we aim to identify systems with stable performance
across all datasets, the final ranking of submissions
is determined by the macro-average of CoNLL F1

scores across all mini-test sets in the shared task
collection.13

12Gold mention heads in the CorefUD data are deter-
mined from the dependency tree using the Udapi block
corefud.MoveHead.

13The evaluation protocol with macro-averaging CoNLL
F1 scores was announced before the start of the development
phase and it was used also in previous versions of the shared
task. We think it is the fairest aggregation method. As alterna-
tives, one could average differences to the baseline or average

https://github.com/ufal/corefud-scorer
https://github.com/ufal/corefud-scorer
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Supplementary scores Beyond the primary
CoNLL F1 score, we report its alternative vari-
ants based on different mention matching strate-
gies: partial match14 and exact match. We also
compute the CoNLL score using head match for all
mentions, including singletons.

To provide a more comprehensive evaluation,
we report the individual coreference metrics com-
prising the CoNLL score (MUC, B3, and CEAF)
as well as other commonly used metrics such as
BLANC (Recasens and Hovy, 2011) and LEA
(Moosavi and Strube, 2016). Furthermore, we in-
clude the Mention Overlap Ratio (MOR) to assess
mention detection independently of coreference
clustering and the anaphor-decomposable score for
zero anaphora, both introduced in Žabokrtský et al.
(2022).

4 Participating Systems

4.1 Baseline

As in the previous edition, two baseline systems are
provided: one for predicting empty nodes as slots
for zero anaphora and another for coreference reso-
lution. Only participants in the Unconstrained track
are permitted to use or build upon these baseline
systems.

Empty nodes prediction baseline Empty node
prediction was introduced as an additional task in
last year’s shared task, and it is again part of the
shared task this year. To support participants who
wish to focus exclusively on coreference resolu-
tion, we again provide a baseline system for empty
nodes prediction. We release the source code,15 the
trained multilingual model,16 and the mini-dev and
mini-test data with predicted empty nodes.

The baseline model architecture is virtually un-
changed from last year. Each input sentence is
processed by a XLM-RoBERTa-large (Conneau
et al., 2020), generating embeddings for each input
word. Then, two candidate empty nodes are pre-
dicted for each word, and passed through three

ranks. The former yields the same final ranking as macro-
averaging, while the latter would lead to a single difference: in
the LLM track, the winner would be LLM-UWB, despite this
system not producing output for one dataset and not covering
zero anaphora in some datasets (see Sections 4.2 and 5).

14Partial match was used as the primary metric in the first
edition of the shared task (Žabokrtský et al., 2022).

15https://github.com/ufal/crac2025_
empty_nodes_baseline

16https://www.kaggle.com/models/
ufal-mff/crac2025_empty_nodes_baseline/

heads: (1) a binary classification head predict-
ing whether the candidate is really an empty node
or not, (2) a word-order prediction head imple-
mented using self-attention selecting the word after
which the empty node should be added, and (3) a
dependency relation prediction head, which first
concatenates the candidate representation and the
representation of the word most probable accord-
ing to the word-order prediction head, and then
predicts the dependency relation. A single model
is trained on a concatenation of all corpora with
empty nodes, sampling every sentence proportion-
ally to the square root of its corpora size. For a de-
tailed description and a visualization of the model
architecture, see Straka (2024).

We intrinsically evaluate the empty node pre-
diction baseline using precision, recall, and the F1
score, as shown in Table 2, where a prediction is
classified as correct only when all of its depen-
dency head, dependency relation, and word order
are correct. For comparison, we also include the
last year’s F1 score. This year’s results are very
consistent, with the exception of hu_korkor show-
ing an increase of nearly 20 percent points due
to improved conversion to the CorefUD format in
CorefUD 1.3 (see Section 2.2).

Coreference resolution baseline The corefer-
ence resolution baseline is the same as in the past
three years. It is based on the multilingual end-to-
end neural coreference resolution system by Pražák
et al. (2021), which adapts the original end-to-end
model of Lee et al. (2017). The model considers all
possible spans up to a predefined maximum length
and directly predicts an antecedent for each span.
Since it has no separate mention detection step, it
is well suited for datasets that do not annotate sin-
gletons. The baseline uses the mBERT base model
as its encoder.

Hereafter, we denote the combination of the two
baseline systems as BASELINE and the coreference
resolution baseline applied to gold empty nodes as
BASELINE-GZ.

4.2 System Submissions

This year, nine systems were submitted to the
shared task by six teams: UWB,17 PUXAI,18

17UWB = University of West Bohemia.
18PUXAI refers to the system by Nguyễn Xuân Phúc.

https://github.com/ufal/crac2025_empty_nodes_baseline
https://github.com/ufal/crac2025_empty_nodes_baseline
https://www.kaggle.com/models/ufal-mff/crac2025_empty_nodes_baseline/
https://www.kaggle.com/models/ufal-mff/crac2025_empty_nodes_baseline/
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Language Recall Precision F1 2024
F1

ca_ancora 91.1 91.9 91.5 91.7
cs_pcedt 61.4 77.1 68.4 67.8
cs_pdt 74.9 81.0 77.8 76.2
cu_proiel 79.0 81.0 80.0 80.2
es_ancora 93.4 92.9 93.2 92.0
grc_proiel 86.3 89.7 88.0 88.4
hu_korkor 83.3 85.5 84.4 66.7
hu_szeged 87.8 88.9 88.3 90.7
pl_pcc 91.9 89.0 90.4 89.5
tr_itcc 94.0 79.8 86.3 85.8

Table 2: Empty nodes prediction baseline performance
on the minidev sets of CorefUD 1.3 languages contain-
ing empty nodes. An empty node is considered correct
if it has the correct dependency head, dependency re-
lation, and word order. For comparison, we also show
results from the last year on CorefUD 1.2 dev sets.

GLaRef,19 NUST-SEECS,20 ÚFAL CorPipe,21 and
Stanford NLP Group.22 For clarity, we distinguish
the submissions to the LLM track with the ‘LLM-’
prefix in the following text.

LLM-UWB (hejmanj) The UWB team fine-
tunes a Llama-3.1-8B model on the official plain-
text export of the CoNLL-U files. Training is done
using QLoRA adaptation. The model is trained to
generate the fully tagged document text, includ-
ing empty nodes, by inserting them directly in the
output. For some datasets, they modify the input
format to use just a headword for mention repre-
sentation. Two variants of the model are trained: a
simple version using the provided format, but ig-
noring empty nodes, and an extended version with
empty nodes and headword mention representa-
tion. Versions for the final submission was selected
based on dev set results. The simple version is used
for: cs_pcedt, cs_pdt, es_ancora, grc_proiel,
hu_korkor, ko_ecmt, lt_lcc, and pl_pcc. For
hbo_ptnk, the model was not properly trained due
to very long sequences and inefficient tokenization,
and the system failed to meet the output format. In-

19GLaRef = Group Lattice for Reference. Two systems are
submitted under this name: GLaRef-CRAC25 and GLaRef-
Propp.

20NUST-SEECS = National University of Sciences and
Technology, School of Electrical Engineering and Computer
Science.

21ÚFAL CorPipe submitted three variants: CorPipeSingle,
CorPipeBestDev, and CorPipeEnsemble.

22Stanford NLP Group is the creator of the Stanza package.

put windows up to 4 096 tokens are used in training;
at inference time, contexts of 2 048 tokens and out-
puts of 4 096 tokens are typical, with occasional
extensions to 8 192/16 384. No additional data is
used.

LLM-PUXCRAC2025 (PuxAI) This system is
purely prompt-based, few-shot coreference resolver
combining two closed-source LLMs (Gemini-
Flash-2.0 and Grok-3). A difficulty-aware pipeline
selects three hardest examples per language, re-
ranks them by two semantic scores, and feeds them
plus the test document into the model. Output
chains are post-processed into CoNLL-U. No fine-
tuning or extra data is used; the system runs free of
charge on public tiers.

LLM-GLaRef-CRAC25 (oseminck) The au-
thors fine-tune google/gemma-3-12b-it in two
stages: a context-free end-to-end tagger, and a
context-aware variant that processes chunks of sen-
tences (8 or 10 at a time) with preceding con-
text of 500–700 characters. The best three runs
(context-free, 8sent_500char, 10sent_700char) are
combined for the final submission. Training fol-
lows QLoRA + prompt tuning + quantization over
plaintext inputs; no extra data are used.

LLM-NUST-FewShot (moizsajid) This system
applies few-shot in-context learning with Gem-
ini 2.5 Pro. Up to 300k tokens of input are al-
lowed; generation limits are defined by the task.
No fine-tuning or additional data are used. The
system demonstrates that performance scales with
the number of examples provided

GLaRef-Propp (antoine.bourgois) This work
is based on a multi-stage pipeline built on
google/mt5-xl. Empty nodes are detected first
(pro-drop languages only), then mentions with a
BiLSTM-CRF, followed by a mention-pair feed-
forward coreference scorer. Windows of up to 512
subwords are used, with sliding overlaps. The three
modules contain approximately 54 million train-
able parameters and are all fine-tuned solely on
CoNLL-U input.

CorPipeSingle (ÚFAL CorPipe) The system
utilizes a PyTorch re-implementation of CorPipe24
using google/umt5-xl. Mentions and links are pre-
dicted jointly, but empty nodes are taken from the
provided baseline. The model is trained multi-
lingually for 150k gradient updates over 15 epochs;
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batch sizes of 6–16 sentences with proportional
sampling yield the final selected checkpoint.

CorPipeBestDev (ÚFAL CorPipe) Same archi-
tecture as CorPipeSingle, but instead of one fixed
checkpoint, the best checkpoint per treebank (out
of 13 models trained with different seeds and sam-
pling) is selected on the mini-dev sets.

CorPipeEnsemble (ÚFAL CorPipe) An ensem-
ble of the top five out of the 13 multilingual umT5-
xl models from CorPipeSingle, averaging their pre-
dicted mention-pair probabilities.

Stanza (Stanford NLP Group) This work is
based on a head-joining efficient word-level con-
ference approach, built on the work of Dobrovol-
skii (2021); D’Oosterlinck et al. (2023); Liu et al.
(2024). Mentions are first linked by head words,
after which spans are resolved locally through a
CNN. Embeddings for mention resolution are ini-
tialized via XLM-RoBERTa large, with a sliding
window over the document 512 tokens wide.

4.3 System Comparison

Overview of tables Tables 3–5 provide a com-
prehensive comparison of all nine submissions. Ta-
ble 3 lists each system’s shared-task track, primary
pretrained backbone, and key methodological com-
ponents (e.g. fine-tuning, prompt tuning, few-shot
prompting, pipeline modules). Table 4 details each
model’s maximum input context length, maximum
new tokens generated at inference, and total number
of trainable parameters. Finally, Table 5 outlines
the training regimes: whether models were tuned
per language, the batch sizes used, the total number
of gradient updates, which hyperparameters were
tuned, and how empty nodes were handled.

Although all nine submissions share the same
official CoNLL-U training data and target format,
they diverge along four main dimensions: mod-
elling paradigm, context capacity, empty node han-
dling, and language- or treebank-specific adapta-
tion.

Modeling paradigms There are four contribu-
tions in the LLM track and five submissions
in the unconstrainted track. The four LLM-
track systems (LLM-UWB, LLM-PUXCRAC2025,
LLM-GLaRef-CRAC25, LLM-NUST-FewShot)
treat coreference as a text-generation or prompt-
answering task. LLM-UWB and LLM-GLaRef-
CRAC25 perform full fine-tuning (via QLoRA,

LoRA, quantization, or prompt tuning) of large
open-source models (Llama-3.1-8B, gemma-3-
12b-it), teaching them to output bracketed and
empty-node-annotated text. In contrast, LLM-
PUXCRAC2025 and LLM-NUST-FewShot use
purely few-shot or in-context prompting on closed-
source models (Gemini, Grok), with no parameter
updates.

Unconstrained-track submissions (GLaRef-
Propp, CorPipeSingle, CorPipeBestDev, Cor-
PipeEnsemble, Stanza) adopt a more traditional,
mention detection – mention-pair scoring pipeline.
These systems fine-tune XLM-RoBERTa, mT5-xl
or umT5-xl in a supervised manner and build
clusters via antecedent ranking and transitive
closure.

Context capacity and model scale The LLM-
track systems exploit the extended context windows
of modern LLMs: LLM-UWB up to 8 192 input
/ 16 384 output tokens, LLM-PUXCRAC2025 ef-
fectively unlimited (1 048 576), and LLM-NUST-
FewShot 300 000 tokens. LLM-GLaRef-CRAC25
similarly benefits from large-context inference. By
contrast, the Unconstrained track systems are lim-
ited by standard transformer lengths (512–2 560
subwords), relying on sliding windows or chunk-
ing to cover long documents. Model sizes range
from 54 M trainable parameters in GLaRef-Propp’s
BiLSTM-CRF modules to 12 B in gemma-3-12b-
it, with most systems clustering around 1.7 B–8 B
parameters.

Data usage All nine systems use only the official
CoNLL-U data, with no additional corpora. Most
train a single multilingual model rather than sep-
arate per-language models. The only exception is
the CorPipeBestDev system, which picks the best
checkpoint per treebank. In terms of computational
cost, only LLM-NUST-FewShot reports a non-zero
expense (about $234.7), while all other systems
either report zero cost or rely on university com-
puting resources.

Empty node handling Empty nodes are ad-
dressed in different ways: (1) predicted end-to-end
with a fine-tuned system (LLM-UWB and LLM-
GLaRef-CRAC25), (2) predicted end-to-end via in-
context learning (LLM-PUXCRAC2025 and LLM-
NUST-FewShot), (3) adopted from the shared
task’s baseline (CorPipe variants, Stanza), or (4)
predicted with a custom model (GLaRef-Propp).
The LLM-based systems relied on the serialized
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Name Track Techniques
LLM-UWB LLM FT, LoRA, QLoRA, quant.
LLM-PUXCRAC2025 LLM few-shot, re-rank
LLM-GLaRef-CRAC25 LLM FT, prompt-tune, QLoRA, quant.
LLM-NUST-FewShot LLM few-shot in-context
GLaRef-Propp Unconstr. BiLSTM-CRF + feedforward
CorPipeSingle Unconstr. FT multistage
CorPipeBestDev Unconstr. FT + per-treebank select
CorPipeEnsemble Unconstr. FT + ensemble
Stanza Unconstr. FT + LoRA

Table 3: System names, task tracks, and main techniques.

Name Model Input ctx. len. Output tok. len. #Params
LLM-UWB Llama-3.1-8B 8,192 16,384 8 B
LLM-PUXCRAC2025 Gemini-Flash-2.0

Grok-3 1,048,576 16,384 —

LLM-GLaRef-CRAC25 gemma-3-12b-it — — 12 B
LLM-NUST-FewShot Gemini 2.5 Pro 300,000 — —
GLaRef-Propp mt5-xl 512 — 54 M
CorPipeSingle umT5-xl 512/2,560 — 1.7 B
CorPipeBestDev umT5-xl 512/2,560 — 1.7 B
CorPipeEnsemble umT5-xl 512/2,560 — 8.6 B
Stanza XLM-RoBERTa-L 512 — 31M +

560M frozen

Table 4: Models: model name, maximum input context length, maximum new tokens generated, and model sizes.

Name Empty nodes Batch size Grad ups Tuned h-params
LLM-UWB predicted

ignored 1 ? ?

LLM-PUXCRAC2025 predicted few-shot 0 —
LLM-GLaRef-CRAC25 predicted ? ? ?
LLM-NUST-FewShot predicted few-shot 0 —
GLaRef-Propp predicted 16,000 mention pairs 1.26 M batch, epochs
CorPipeSingle baseline 6 sentences 150 k sampling mode
CorPipeBestDev baseline 6 sentences 150 k × 13 same as Single
CorPipeEnsemble baseline 6 sentences 150 k × 5 same as Single
Stanza baseline 10·512-token windows 367 k learning rate, warmup,

LoRA params, . . .

Table 5: Training configuration: empty-node handling, batch sizes, total gradient updates, and tuned hyperparame-
ters. GLaRef-Propp used batch size: 16 sentences for empty nodes prediction and mention detection and 16,000
mention pairs for coreference resolution.

format, which represents empty nodes using ‘##’
markers (see Figure 1). These varied approaches
reflect different assumptions about the importance
and difficulty of modeling zero-anaphora phenom-
ena.

Language/treebank specialization and ensem-
bling Most systems train a single multilin-
gual model for all languages (LLM-UWB,
LLM-PUXCRAC2025, GLaRef-CRAC25, NUST-

FewShot, GLaRef-Propp, CorPipeSingle, Stanza).
Only CorPipeBestDev and CorPipeEnsemble select
or combine checkpoints: CorPipeBestDev picks the
best of 195 (13 models · 15 epochs) multilingual
checkpoints for each corpus, while Ensemble av-
erages the top five multilingual models. Neither
LLM-UWB nor LLM-GLaRef-CRAC25 employ
per-language tuning, favoring a unified model. The
few-shot systems dynamically adapt to each input
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via prompt construction but do not explicitly retrain
per language.

In sum, the task saw a spectrum from
lightweight, prompt-only solutions on closed LLM
APIs to heavyweight, quantized fine-tuned open
models, and from end-to-end generation of annota-
tions to modular neural-pipeline architectures.

5 Results and Comparison

Main results The main results are summarized
in Table 6. LLM-GLaRef-CRAC25 and Cor-
PipeEnsemble are the top-performing systems in
the LLM and Unconstrained tracks, respectively,
outperforming all other submissions in their re-
spective tracks according to the primary metric.
Both systems also achieve the best results within
their track when evaluated with alternative mention
matching strategies: partial match, exact match,
and head match including singletons.

The LLM track exhibits tighter competition, with
performance differences between systems signif-
icantly smaller than in the Unconstrained track.
Excluding the baseline system, the standard devia-
tion of the head match score in the Unconstrained
track is 5.53, compared to just 1.27 in the LLM
track. This higher level of competition is also re-
flected in the progression of scores over time, as
shown in Figure 3 in Appendix D, which tracks
the evolution of primary scores for individual sub-
missions during the evaluation phase of the shared
task.

Comparing across the tracks, all LLMs could
beat the non-LLM baseline system. However, we
have to admit that in this shared task the best LLM
solution fell behind the best non-LLM system by
a large margin of almost 13 points. For simplicity,
we will be comparing the submissions from both
tracks jointly in the remainder of this section.

Secondary metrics The secondary metrics in Ta-
ble 7 reveal a similar trend as the primary met-
ric: the ÚFAL CorPipe system consistently out-
performs all other submissions. The most striking
pattern is the pronounced contrast between the Cor-
Pipe systems and the remaining entries, particu-
larly the LLM-based ones, in terms of the preci-
sion–recall balance across individual coreference
metrics. While CorPipe systems maintain relatively
small gaps between precision and recall, the other
systems consistently show much higher precision
than recall. This indicates that CorPipe systems
are substantially more effective at capturing and

following the coreference annotation guidelines re-
flected in the data.

Comparison across datasets Both Table 8 and
Figure 2 present CoNLL F1 scores of all systems
across the datasets. To make patterns more visi-
ble, the datasets in Figure 2 are ordered from left
to right by the decreasing performance of the top
system, CorPipeEnsemble. For roughly the lower-
performing half of the datasets, the performance
gap between CorPipe and the other systems tends
to be larger, and their scores are more varied, sug-
gesting that these datasets pose greater challenges
for coreference resolution.

Interestingly, CorPipeEnsemble was outper-
formed on two datasets: en_litbank by LLM-
UWB, and hbo_ptnk by LLM-NUST-FewShot.
The latter is particularly striking: on Ancient
Hebrew, LLM-NUST-FewShot surpassed Cor-
PipeEnsemble by 10 points, despite ranking among
the weakest systems on many other datasets. While
the exact cause of this anomaly remains unclear,
a closer analysis shows that LLM-NUST-FewShot
produced almost exactly the same number of non-
singleton mentions as in the gold data (2,327 vs.
2,312), whereas all other system produced less
mentions.

The zero score of LLM-UWB on hbo_ptnk is
in line with their fine-tuning failure described in
Section 4.2.

Performance on zero mentions Table 9 shows
system performance on datasets containing
zero mentions, evaluated using the anaphor-
decomposable score for zero anaphora. Two obser-
vations stand out.

First, LLM-UWB fails to predict any zero men-
tions for all but two of these datasets. This is likely
because several of these datasets substantially over-
lap with those for which the authors used an LLM
variant fine-tuned on data where empty nodes had
been excluded.

Second, on hu_korkor, both the winning sys-
tem and the baseline outperform their counterparts
from last year’s edition by 8 and 10 percentage
points, respectively. The winning system’s score is
now closer to its performance on the other Hungar-
ian dataset, hu_szeged. These gains are consis-
tent with the improved intrinsic performance of the
empty-node prediction baseline for this dataset (see
Section 4.1), resulting from fixes to its conversion
pipeline described in Section 2.2.
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Comparison over years Having organized this
shared task for the fourth consecutive year, it is
particularly interesting to examine how it has con-
tributed to advancing the state of the art in multi-
lingual coreference resolution. While the datasets
and certain aspects of the task have evolved each
year, one constant has been the coreference base-
line system, which is simply retrained annually on
the updated data. This stability allows us to track
progress by comparing the best-performing system
each year against the baseline.

The relative improvement over the baseline
showed a promising upward trend in previous edi-
tions: +21% in 2022, +31% in 2023, and +39%
in 2024 (Novák et al., 2024). This year, however,
the improvement stands at +35%, marking a slight
break in the upward trajectory. This drop is caused
by the exclusion of two very small datasets from
the test set, where the improvement over baseline
has been exceptionally high last year (+47% in
de_parcorfull and +108% in en_parcorful) perhaps
by chance. Still, the results show that systems con-
tinue to deliver strong performance even as the task
grows more diverse and challenging.

Further analysis Similarly to previous years, we
provide several additional tables in the appendices
to shed more light on the differences between the
submitted systems.

Tables 10–11 show results factorized accord-
ing to the different universal part of speech tags
(UPOS) in the mention heads.

Tables 12–15 show various statistics on the enti-
ties and mentions in a concatenation of all the test
sets. Note that such statistics are mostly influenced
by larger datasets.

Differences between LLM and Unconstrained
The main novelty in this year’s shared task setup
was the support for LLM approaches to corefer-
ence resolution. As mentioned in the Main Re-
sults above, the performance of the LLM par-
ticipating systems is worse than the best Uncon-
strained system (CorPipe) by a large margin (with
only two datasets where an LLM system out-
performs all Unconstrained systems). In addi-
tion, some LLM systems seem to be sensitive to
particular datasets: there are dramatic drops in
performance (see e.g. the performance declines
for grc_proiel, tr_itcc, hbo_ptnk, and
cu_proiel in Figure 2).

However, it would be premature to conclude that

LLMs are not a promising solution for coreference
resolution. First, this would contradict everyday
experience with public LLMs, which seem to han-
dle coreference-related phenomena relatively well.
Second, the best-performing CorPipe system has
been tuned for CorefUD over years, while LLM ap-
proaches had only a few months of testing. Third,
and perhaps most importantly, we are still at the
beginning of learning how to best provide LLMs
with coreference-annotated data and how to elicit
coreference reasoning, questions that clearly re-
quire further exploration.

6 Conclusions and Future Work

The paper summarizes the fourth edition of the
shared task on multilingual coreference resolution,
organized in 2025. Besides relatively conserva-
tive (though important too) updates with respect
to the previous editions, such as improved qual-
ity of the data integrated in CorefUD and the in-
creased number of languages, the major innovation
in this edition was the support for LLM-based so-
lutions. With only a few exceptions, LLM-based
solutions did not outperform CorPipeEnsemble,
the best Unconstrained system (from the same au-
thor as the winning submissions in the previous
editions). However, we believe that the lower per-
formance of the LLM solutions should be rather
attributed to our currently limited knowledge of
how coreference is handled internally in LLMs,
and that studying how to deal with coreference in
LLMs may – in a longer-term perspective – result
in rethinking how we should represent coreference
in NLP in general.
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excluding singletons with singletons

system head-match partial-match exact-match head-match

LLM-GLaRef-CRAC25 62.96 61.66 (-1.30) 58.98 (-3.98) 65.61 (+2.66)
LLM-NUST-FewShot 61.74 61.14 (-0.60) 56.34 (-5.40) 63.44 (+1.69)
LLM-PUXCRAC2025 60.09 59.68 (-0.41) 55.22 (-4.87) 54.77 (-5.32)
LLM-UWB 59.84 59.55 (-0.29) 38.81 (-21.03) 62.77 (+2.93)

CorPipeEnsemble 75.84 74.90 (-0.94) 72.76 (-3.08) 78.33 (+2.49)
CorPipeBestDev 75.06 74.08 (-0.98) 71.97 (-3.10) 77.63 (+2.57)
CorPipeSingle 74.75 73.74 (-1.01) 71.53 (-3.23) 77.43 (+2.68)
Stanza 67.81 67.03 (-0.78) 64.68 (-3.13) 70.64 (+2.83)
GLaRef-Propp 61.57 60.72 (-0.85) 58.43 (-3.14) 65.28 (+3.70)
BASELINE-GZ 58.18 57.75 (-0.42) 56.48 (-1.69) 49.88 (-8.29)
BASELINE 56.01 55.58 (-0.43) 54.24 (-1.77) 47.88 (-8.13)

WINNER-2023 74.90 73.33 (-1.57) 71.46 (-3.44) 76.82 (+1.91)
WINNER-2024 73.90 72.19 (-1.71) 69.86 (-4.04) 75.65 (+1.75)
BASELINE-2023 56.96 56.28 (-0.68) 54.75 (-2.21) 49.32 (-7.64)
BASELINE-2024 53.16 52.48 (-0.68) 51.26 (-1.90) 46.45 (-6.71)

Table 6: Main results: the CoNLL F1 score macro-averaged over all datasets. The table shows the primary metric
(head-match excluding singletons) and three alternative metrics: partial-match excluding singletons, exact-match
excluding singletons and head-match with singletons. A difference relative to the primary metric is reported in
parenthesis. The top section shows the LLM track, below is the Unconstrained track. The best score in each column
and each of these two sections is in bold. The systems are ordered by the primary metric. The last four rows showing
the winner and baseline results from CRAC 2023 and 2024 are copied from the last year Findings (Novák et al.,
2024), and thus are not directly comparable with the rest of the table because both the test and training data have
been changed (CorefUD 1.1 vs. 1.2 vs. 1.3). Similar notes apply to the following tables.

system MUC B3 CEAF-e BLANC LEA MOR

CorPipeEnsemble 81 / 82 / 82 73 / 75 / 74 74 / 70 / 72 72 / 75 / 73 70 / 73 / 71 81 / 82 / 81
CorPipeBestDev 81 / 81 / 81 72 / 74 / 73 73 / 70 / 71 72 / 74 / 73 70 / 71 / 70 81 / 81 / 81
CorPipeSingle 81 / 81 / 81 72 / 73 / 72 72 / 70 / 71 72 / 73 / 72 69 / 71 / 70 80 / 81 / 80
Stanza 72 / 80 / 76 62 / 70 / 65 62 / 64 / 63 61 / 70 / 64 59 / 67 / 62 70 / 83 / 75
LLM-GLaRef-CRAC25 67 / 76 / 71 55 / 67 / 60 55 / 61 / 58 54 / 67 / 59 51 / 64 / 56 64 / 79 / 71
LLM-NUST-FewShot 66 / 73 / 69 58 / 65 / 60 52 / 65 / 56 57 / 65 / 58 56 / 62 / 57 59 / 79 / 66
GLaRef-Propp 69 / 76 / 72 56 / 62 / 58 49 / 62 / 55 56 / 62 / 57 52 / 58 / 55 57 / 78 / 65
LLM-PUXCRAC2025 64 / 72 / 68 54 / 63 / 57 52 / 61 / 55 53 / 62 / 56 51 / 59 / 54 56 / 80 / 65
LLM-UWB 60 / 74 / 65 53 / 67 / 57 53 / 64 / 57 48 / 67 / 53 50 / 64 / 55 42 / 81 / 53
BASELINE-GZ 61 / 76 / 68 48 / 63 / 54 49 / 58 / 52 48 / 64 / 54 45 / 59 / 50 55 / 87 / 66
BASELINE 58 / 75 / 65 45 / 62 / 52 47 / 57 / 51 44 / 63 / 50 42 / 58 / 48 53 / 86 / 65

Table 7: Recall / Precision / F1 for individual secondary metrics. All scores macro-averaged over all datasets.
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CorPipeEnsemble 82.9 77.1 80.7 65.5 73.0 76.1 81.8 84.5 76.3 71.8 74.5 69.8 77.7 68.6 71.0 69.9 77.2 78.2 76.3 80.2 84.2 71.2
CorPipeBestDev 82.0 76.3 80.4 62.8 72.6 75.9 81.3 83.8 75.9 69.9 74.3 68.3 77.5 68.3 70.5 69.3 76.0 77.1 74.0 79.9 84.8 70.4
CorPipeSingle 82.5 76.2 80.1 63.0 72.8 75.2 80.8 84.1 75.8 70.3 74.4 66.1 76.5 67.3 69.7 68.9 75.8 76.2 73.6 79.4 84.2 71.6
Stanza 79.5 72.7 75.1 40.8 67.3 69.0 74.8 80.4 67.5 62.5 54.9 62.1 74.2 60.0 64.6 67.7 72.8 72.4 71.7 73.0 80.8 47.8
LLM-GLaRef-CRAC25 73.5 65.1 71.3 58.2 59.6 58.7 69.0 74.4 66.7 60.4 65.8 44.0 56.4 52.5 59.8 63.0 62.5 64.7 61.6 72.5 68.8 56.2
LLM-NUST-FewShot 60.9 51.4 54.3 58.5 48.7 69.8 70.4 61.8 71.9 57.6 57.9 80.2 71.3 43.5 52.3 66.0 59.2 72.8 68.9 70.8 71.4 39.0
GLaRef-Propp 68.1 61.7 66.6 39.1 61.2 61.9 70.0 69.1 65.1 66.1 51.3 58.8 69.5 50.9 60.1 60.6 57.6 67.1 66.3 68.0 71.5 44.3
LLM-PUXCRAC2025 68.0 56.9 63.0 43.7 57.4 61.7 69.1 70.5 63.8 61.5 47.9 45.3 66.8 50.6 61.6 50.3 65.3 65.2 63.0 66.5 67.6 56.1
LLM-UWB 79.2 61.0 68.2 25.3 67.6 73.6 84.0 73.6 58.6 49.1 47.6 0.0 75.8 38.9 67.3 68.3 63.4 73.8 72.0 64.5 80.1 24.3
BASELINE-GZ 68.8 69.5 67.9 29.5 55.7 61.6 66.0 71.0 63.8 55.0 29.4 31.0 66.8 47.1 54.3 64.3 65.3 62.5 63.0 68.1 67.6 51.7
BASELINE 68.0 56.9 63.0 26.3 55.7 61.7 66.0 70.5 63.8 55.0 28.5 31.0 66.8 43.2 54.5 50.3 65.3 62.5 63.0 66.5 67.6 45.9

Table 8: Results for individual languages in the primary metric (CoNLL F1).
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c
CorPipeEnsemble 91 / 87 / 89 82 / 86 / 84 61 / 79 / 69 77 / 80 / 79 93 / 92 / 92 87 / 87 / 87 65 / 81 / 72 85 / 73 / 78 93 / 84 / 89 84 / 83 / 84
CorPipeBestDev 90 / 87 / 88 82 / 85 / 84 60 / 77 / 68 76 / 79 / 78 93 / 91 / 92 87 / 88 / 88 66 / 82 / 73 83 / 70 / 76 93 / 84 / 88 84 / 82 / 83
CorPipeSingle 90 / 86 / 88 81 / 85 / 83 61 / 78 / 68 77 / 79 / 78 93 / 92 / 92 87 / 88 / 88 63 / 83 / 72 83 / 70 / 76 94 / 83 / 88 84 / 82 / 83
Stanza 87 / 86 / 86 77 / 88 / 82 52 / 84 / 65 63 / 69 / 66 91 / 91 / 91 80 / 84 / 82 59 / 83 / 69 74 / 70 / 72 91 / 81 / 86 57 / 83 / 67
LLM-GLaRef-CRAC25 81 / 84 / 82 75 / 81 / 78 56 / 67 / 61 77 / 79 / 78 83 / 89 / 86 85 / 87 / 86 52 / 68 / 59 66 / 65 / 65 84 / 83 / 84 75 / 75 / 75
LLM-NUST-FewShot 53 / 82 / 64 55 / 79 / 65 35 / 81 / 48 74 / 82 / 78 56 / 91 / 69 59 / 89 / 71 23 / 83 / 36 25 / 63 / 36 72 / 86 / 79 29 / 63 / 40
GLaRef-Propp 80 / 80 / 80 74 / 83 / 78 48 / 63 / 54 49 / 56 / 53 84 / 87 / 86 70 / 74 / 72 51 / 70 / 59 66 / 66 / 66 84 / 82 / 83 60 / 83 / 70
LLM-PUXCRAC2025 79 / 75 / 77 34 / 82 / 48 9 / 93 / 17 39 / 53 / 45 88 / 87 / 87 82 / 60 / 69 50 / 48 / 49 73 / 49 / 59 86 / 78 / 82 50 / 93 / 65
LLM-UWB 83 / 82 / 82 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 71 / 73 / 72 0 / 0 / 0 0 / 0 / 0
BASELINE-GZ 84 / 83 / 84 83 / 85 / 84 76 / 81 / 79 61 / 71 / 66 89 / 90 / 90 64 / 67 / 66 73 / 76 / 74 54 / 59 / 56 89 / 87 / 88 79 / 81 / 80
BASELINE 79 / 75 / 77 34 / 82 / 48 9 / 93 / 17 52 / 62 / 57 88 / 87 / 87 62 / 67 / 64 56 / 63 / 59 54 / 57 / 55 86 / 78 / 82 71 / 73 / 72

WINNER-2023 93 / 92 / 92 91 / 92 / 92 87 / 88 / 87 – 94 / 95 / 95 – 82 / 89 / 85 88 / 70 / 78 75 / 69 / 72 –
WINNER-2024 88 / 85 / 86 77 / 82 / 80 59 / 74 / 66 75 / 78 / 76 90 / 92 / 91 84 / 88 / 86 56 / 75 / 64 83 / 68 / 75 90 / 84 / 87 83 / 80 / 82
BASELINE-2023 82 / 82 / 82 81 / 84 / 82 77 / 81 / 79 – 87 / 88 / 87 – 60 / 68 / 64 61 / 57 / 59 50 / 80 / 62 –
BASELINE-2024 79 / 76 / 77 70 / 74 / 72 55 / 69 / 61 52 / 62 / 56 83 / 83 / 83 63 / 70 / 66 41 / 61 / 49 49 / 57 / 53 85 / 78 / 82 68 / 71 / 70

Table 9: Recall / Precision / F1 for anaphor-decomposable score of coreference resolution on zero anaphors across
individual languages. Only datasets containing anaphoric zeros are listed (en_gum excluded as all zeros in its
test set are non-anaphoric). Note that these scores are directly comparable to neither the CoNLL score nor the
supplementary scores calculated with respect to whole entities in Table 7.
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Figure 2: Plot with results for individual languages in the primary metric (CoNLL F1). This plot shows the same
information as Table 8, but languages are sorted according to the performance of the best system and LLM-based
systems are shown with dashed lines.
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dre Kåsen, Anders Nøklestad, Egil Rønningstad,
Per Erik Solberg, Erik Velldal, and Lilja Øvrelid.
2022. NARC–Norwegian Anaphora Resolution Cor-
pus. In Proceedings of the Fifth Workshop on Com-
putational Models of Reference, Anaphora and Coref-
erence, pages 48–60, Gyeongju, Korea. Association
for Computational Linguistics.

Nafise Sadat Moosavi and Michael Strube. 2016. Which
Coreference Evaluation Metric Do You Trust? A
Proposal for a Link-based Entity Aware Metric. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 632–642, Berlin, Germany. As-
sociation for Computational Linguistics.

Vandan Mujadia, Palash Gupta, and Dipti Misra
Sharma. 2016. Coreference Annotation Scheme and
Relation Types for Hindi. In Proceedings of the
Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 161–168,
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Zdeněk Žabokrtský, Miloslav Konopík, Anna
Nedoluzhko, Michal Novák, Maciej Ogrodniczuk,
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A CorefUD 1.3 Details

Ancient Greek PROIEL grc_proiel (Haug and Jøhndal, 2008)
Ancient Hebrew PTNK hbo_ptnk (Swanson et al., 2024)
Catalan AnCora ca_ancora (Taulé et al., 2008; Recasens and Martí, 2010)
Czech PCEDT cs_pcedt (Nedoluzhko et al., 2016)
Czech PDT cs_pdt (Hajič et al., 2020)
English GUM en_gum (Zeldes, 2017)
English LitBank en_litbank (Bamman et al., 2020)
English ParCorFull en_parcorfull (Lapshinova-Koltunski et al., 2018)
French ANCOR fr_ancor (Muzerelle et al., 2014)
French Democrat fr_democrat (Landragin, 2021)
German ParCorFull de_parcorfull (Lapshinova-Koltunski et al., 2018)
German PotsdamCC de_potsdam (Bourgonje and Stede, 2020)
Hindi HDTB hi_hdtb (Mujadia et al., 2016)
Hungarian KorKor hu_korkor (Vadász, 2022)
Hungarian SzegedKoref hu_szeged (Vincze et al., 2018)
Korean ECMT ko_ecmt (Nam et al., 2020)
Lithuanian LCC lt_lcc (Žitkus and Butkienė, 2018)
Norwegian Bokmål NARC no_bokmaalnarc (Mæhlum et al., 2022)
Norwegian Nynorsk NARC no_nynorsknarc (Mæhlum et al., 2022)
Old Church Slavonic PROIEL cu_proiel (Haug and Jøhndal, 2008)
Polish PCC pl_pcc (Ogrodniczuk et al., 2013, 2015)
Russian RuCor ru_rucor (Toldova et al., 2014)
Spanish AnCora es_ancora (Taulé et al., 2008; Recasens and Martí, 2010)
Turkish ITCC tr_itcc (Pamay and Eryiğit, 2018)

B CoNLL results by head UPOS

system NOUN PRON PROPN DET ADJ VERB ADV NUM

CorPipeEnsemble 71.78 71.67 78.11 52.58 47.92 37.36 32.03 37.40
CorPipeBestDev 71.07 71.13 77.69 49.22 48.35 36.62 27.62 38.22
CorPipeSingle 70.96 70.47 77.28 53.01 44.69 35.45 31.96 38.76
Stanza 62.55 64.24 70.94 41.78 32.77 21.73 21.89 29.58
LLM-GLaRef-CRAC25 58.81 61.23 64.30 41.83 29.26 23.08 20.90 34.52
LLM-NUST-FewShot 58.01 59.21 69.88 32.79 34.39 14.39 20.59 26.36
GLaRef-Propp 56.44 57.99 63.20 36.10 28.43 17.88 20.26 21.56
LLM-PUXCRAC2025 54.71 56.22 64.51 36.55 27.53 15.36 17.86 25.76
LLM-UWB 57.19 55.95 64.72 36.83 29.57 22.30 23.53 26.25
BASELINE-GZ 50.74 58.46 57.21 37.24 25.85 14.15 18.15 23.11
BASELINE 48.44 52.03 54.96 36.75 24.04 13.44 16.98 22.81

Table 10: CoNLL F1 score (head-match) evaluated only on entities with heads of a given UPOS. In both the gold
and prediction files we deleted some entities before running the evaluation. We kept only entities with at least one
mention with a given head UPOS (universal part of speech tag). For the purpose of this analysis, if the head node
had deprel=flat children, their UPOS tags were considered as well, so for example in “Mr./NOUN Brown/PROPN”
both NOUN and PROPN were taken as head UPOS, so the entity with this mention will be reported in both columns
NOUN and PROPN. Otherwise, the CoNLL F1 scores are the same as in the primary metric, i.e. an unweighted
average over all datasets, head-match, without singletons. Note that when distinguishing entities into events and
nominal entities, the VERB column can be considered as an approximation of the performance on events. One of
the limitations of this approach is that copula is not treated as head in the Universal Dependencies, so, e.g., phrase
She is nice is not considered for the VERB column, but for the ADJ column (head of the phrase is nice).
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system NOUN PRON PROPN DET ADJ VERB ADV NUM

CorPipeEnsemble 63.91 61.69 64.74 53.28 51.12 50.58 50.81 50.46
CorPipeBestDev 62.42 60.85 63.57 52.51 49.91 48.72 49.33 49.00
CorPipeSingle 62.91 60.69 64.05 52.66 49.98 49.66 49.92 49.72
Stanza 54.67 54.66 56.77 44.31 42.51 41.37 42.31 41.78
LLM-GLaRef-CRAC25 50.80 51.80 52.12 41.98 39.11 38.75 39.08 38.81
LLM-NUST-FewShot 52.16 52.84 54.26 42.09 40.05 39.47 40.28 39.96
GLaRef-Propp 47.57 48.85 49.46 36.41 33.83 33.37 34.09 33.58
LLM-PUXCRAC2025 47.37 46.07 49.09 34.88 33.11 31.91 32.71 32.48
LLM-UWB 51.82 47.99 53.14 40.23 37.45 36.91 37.44 36.99
BASELINE-GZ 42.44 49.49 45.96 33.76 31.16 30.43 31.05 30.61
BASELINE 40.99 42.45 44.50 31.94 29.42 28.58 29.17 28.80

Table 11: CoNLL F1 score (head-match) evaluated only on mentions with heads of a given UPOS. In both the gold
and prediction files we deleted some mentions before running the evaluation. We kept only mentions with a given
head UPOS (again considering also deprel=flat children). These results may be a bit misleading because e.g. the
PRON column does not consider all pronominal coreference, but only pronoun-to-pronoun coreference. An entity
with one pronoun and one noun mention is excluded from this table (because it becomes a singleton after deleting
noun or pronoun mentions and singletons are excluded from the evaluation in this table).

C Statistics of the submitted systems on concatenation of all test sets

The systems are sorted alphabetically in tables in this section.

entities distribution of lengths

system total per 1k length 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%]

gold 39,576 108 509 2.1 67.4 17.3 5.9 2.8 6.6
BASELINE 10,591 29 347 4.2 0.0 55.8 17.6 7.8 18.9
BASELINE-GZ 10,977 30 354 4.2 0.0 55.5 17.6 7.8 19.2
CorPipeBestDev 40,392 111 248 2.1 66.6 17.7 6.2 2.8 6.6
CorPipeEnsemble 40,615 111 461 2.0 66.5 17.8 6.3 2.9 6.5
CorPipeSingle 40,377 111 362 2.1 66.6 17.7 6.2 3.0 6.6
GLaRef-Propp 40,481 111 563 1.9 75.0 12.4 4.6 2.3 5.7
LLM-GLaRef-CRAC25 39,664 109 280 1.9 70.6 15.1 5.6 2.7 6.0
LLM-NUST-FewShot 35,703 98 393 2.0 71.1 13.5 5.5 2.8 7.1
LLM-PUXCRAC2025 19,896 55 545 2.9 44.3 29.4 10.1 4.8 11.5
LLM-UWB 35,542 97 317 1.9 70.0 15.6 5.6 2.8 6.0
Stanza 38,464 105 523 2.0 67.8 17.4 5.9 2.8 6.2

Table 12: Statistics on coreference entities. The total number of entities and the average number of entities per
1000 tokens in the running text. The maximum and average entity “length”, i.e., the number of mentions in the
entity. Distribution of entity lengths (singletons have length = 1). The two baselines and LLM-PUXCRAC2025
heavily undergenerate (i.e. predict less entities than in the gold data) and the baselines also predict on average longer
entities (i.e. with more mentions) than in the gold data. The remaining systems have the statistics similar to the gold
data, (although the CorPipe* systems and GLaRef-Propp slightly overgenerate, while LLM-NUST-FewShot and
LLM-UWB undergenerate).
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non-singleton mentions distribution of lengths

system total per 1k length 0 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%] [%]

gold 55,333 152 100 2.5 9.8 50.1 19.1 7.0 3.3 10.8
BASELINE 44,110 121 27 1.9 10.0 54.9 18.8 6.3 2.6 7.3
BASELINE-GZ 45,989 126 27 1.9 11.4 54.2 18.5 6.2 2.6 7.1
CorPipeBestDev 56,020 154 149 2.4 9.6 51.0 19.1 6.9 3.1 10.3
CorPipeEnsemble 55,668 153 149 2.4 9.6 51.0 19.0 6.9 3.1 10.2
CorPipeSingle 56,026 154 140 2.5 9.6 50.9 19.1 6.9 3.1 10.4
GLaRef-Propp 48,362 133 51 1.9 9.9 55.3 19.2 6.4 2.6 6.6
LLM-GLaRef-CRAC25 49,311 135 96 2.3 10.7 52.1 18.6 6.4 3.0 9.2
LLM-NUST-FewShot 47,681 131 104 2.0 6.9 58.0 19.1 6.2 2.6 7.2
LLM-PUXCRAC2025 48,593 133 27 1.8 8.4 57.8 18.4 5.9 2.5 6.9
LLM-UWB 42,852 117 58 1.8 1.2 80.6 8.3 2.9 1.4 5.6
Stanza 50,811 139 100 2.3 9.3 52.8 18.9 6.6 2.9 9.6

Table 13: Statistics on non-singleton mentions. The total number of mentions and the average number of mentions
per 1000 words of running text. The maximum and average mention length, i.e., the number of nonempty nodes
(words) in the mention. Distribution of mention lengths (zeros have length = 0). Only the CorPipe* systems generate
a similar number of non-singleton mentions as in the gold data, all other systems generate less mentions. The
average length of mentions predicted by LLM-UWB is notably lower than in the gold data because LLM-UWB
predicted single-word mentions only in most datasets. All other systems have the distribution of mention lengths
similar to the gold data, although no system predicts long mentions (4 and 5+ words) more frequently than in the
gold data, (but CorPipe* systems are near to the gold distribution).

singleton mentions distribution of lengths

system total per 1k length 0 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%] [%]

gold 26,661 73 81 3.0 0.7 39.4 24.0 12.2 6.3 17.3
BASELINE 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BASELINE-GZ 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CorPipeBestDev 26,919 74 112 3.1 0.7 38.1 24.8 12.7 6.4 17.3
CorPipeEnsemble 27,014 74 112 3.0 0.7 38.5 25.0 12.5 6.2 17.0
CorPipeSingle 26,885 74 85 3.1 0.7 38.5 24.9 12.6 6.3 17.1
GLaRef-Propp 30,343 83 33 2.3 2.4 40.4 27.7 13.0 6.1 10.5
LLM-GLaRef-CRAC25 28,021 77 80 2.9 0.9 40.5 25.1 12.2 5.8 15.5
LLM-NUST-FewShot 25,379 70 63 2.8 0.2 41.8 24.9 12.0 5.9 15.3
LLM-PUXCRAC2025 8,807 24 17 2.0 0.4 52.5 23.8 11.4 4.1 7.8
LLM-UWB 24,889 68 86 1.7 0.0 78.2 10.0 4.3 2.1 5.4
Stanza 26,060 71 100 2.9 1.4 40.2 24.5 11.8 6.1 16.0

Table 14: Statistics on singleton mentions. See the caption of Table 13 for details. The two baseline systems do
not attempt to predict singletons at all. LLM-PUXCRAC2025 heavily undergenerates singletons. GLaRef-Propp
overgenerates singletons (including zeros), but note that singletons are not annotated in all the (gold) datasets.
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mention type [%] distribution of head UPOS [%]

system w/empty w/gap non-tree NOUN PRON PROPN DET ADJ VERB ADV NUM _ other

gold 11.0 0.7 1.4 38.6 31.5 17.7 4.2 1.3 1.9 1.4 0.5 2.1 0.8
BASELINE 10.5 0.0 1.4 35.4 26.9 18.7 4.8 1.1 0.9 1.2 0.4 10.0 0.6
BASELINE-GZ 12.0 0.0 1.5 35.1 34.7 18.5 4.7 1.1 0.9 1.5 0.4 2.5 0.8
CorPipeBestDev 10.6 0.0 1.9 39.0 23.7 17.6 4.3 1.2 1.8 1.4 0.5 9.6 0.8
CorPipeEnsemble 10.6 0.0 1.8 39.0 23.8 17.7 4.3 1.2 1.7 1.4 0.5 9.6 0.8
CorPipeSingle 10.5 0.0 1.9 39.1 23.7 17.6 4.3 1.2 1.7 1.4 0.5 9.6 0.8
GLaRef-Propp 9.9 0.0 1.4 35.5 26.9 18.4 4.7 1.1 0.8 1.4 0.4 9.9 0.9
LLM-GLaRef-CRAC25 11.4 0.0 1.8 37.5 24.7 17.0 4.7 1.3 1.4 1.4 0.5 10.7 1.0
LLM-NUST-FewShot 7.1 0.0 1.3 39.4 25.9 18.6 3.5 1.2 1.5 1.5 0.5 6.9 1.1
LLM-PUXCRAC2025 8.9 0.0 1.4 37.2 25.7 18.7 4.1 1.3 2.0 1.3 0.5 8.4 0.8
LLM-UWB 1.2 0.0 0.8 42.9 24.6 20.9 4.8 1.3 1.1 1.7 0.5 1.2 1.0
Stanza 10.0 0.0 1.4 39.0 24.0 18.8 4.1 1.1 1.1 1.4 0.4 9.3 0.8

Table 15: Detailed statistics on non-singleton mentions. The left part of the table shows the percentage of: mentions
with at least one empty node (w/empty); mentions with at least one gap, i.e. discontinuous mentions (w/gap); and
non-treelet mentions, i.e. mentions not forming a connected subgraph (catena) in the dependency tree (non-tree).
Note that these three types of mentions may be overlapping. We can see that none of the systems attempts to
predict discontinuous mentions. LLM-UWB has a notably lower percentage (0.8%) of non-treelet mention spans,
but this is simply explained by its higher percentage (80%) of single-word mentions. The right part of the table
shows the distribution of mentions based on the universal part-of-speech tag (UPOS) of the head word. Note that
this distribution has to be interpreted with the total number of non-singleton mentions predicted (as reported in
Table 13) in mind. For example, 34.7% of non-singleton mentions predicted by BASELINE-GZ are pronominal
(head=PRON), while there are only 31.5% of pronominal non-singleton mentions in the gold data. However,
BASELINE-GZ predicts actually less pronominal non-singleton mentions (45,989× 34.7% ≈ 15,958) than in the
gold data (55,333 × 31.5% ≈ 17,430). Note that the same word may be assigned a different UPOS tag in the
predicted and gold data (in case of empty nodes or if the gold data includes manual annotation). The empty UPOS
tag (_) is present only in the empty nodes and none of the systems attempts to predict the actual UPOS tag of empty
nodes (they all keep the empty tag from the baseline predictor of empty nodes, although about 78% of the empty
nodes in the gold devset are pronouns).
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D Evolution of CodaLab Submissions
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Figure 3: Evolution of CodaLab Submissions in the evaluation phase. The submissions to the LLM and Uncon-
strained track are shown by using the dashed and solid lines, respectively. For clarity, all submissions of the ÚFAL
CorPipe team are represented by the scores of CorPipeEnsemble.


