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Message from the Program Chairs

If you are one of the staunch supporters of CRAC, you should probably know that this is the 8th edition
of CRAC (and the 10th edition if you also count the two CORBON workshops), Following the CRAC
tradition, we requested that CRAC 2025 be co-located with the EMNLP conference. At the time of
proposal submission, the location of EMNLP 2025 had not been finalized. It was only after we were
notified of the acceptance of the proposal that we knew that EMNLP would take place in China, which
was certainly a pleasant surprise to us. This will be the third time CRAC takes place in Asia, after
CRAC 2022 in South Korea and CRAC 2023 in Singapore.

What is special about this year’s workshop is that this is the first time CRAC is held jointly with CODI
(Workshop on Computational Approaches to Discourse, Context and Document-Level Inferences)
despite the fact that the two workshops organized two shared tasks together in 2021 and 2022. The
organizing committee of the joint workshop is composed of the organizers from CRAC and CODI, who
worked on the timeline for the workshop, the call for papers, the list of potential invited speakers, and
the program schedule. The two workshops, however, had separate program committees, submission
sites, and proceedings, and made acceptance decisions independently of each other.

This year, CRAC received 15 submissions, including nine research papers and six shared task papers.
Each research paper was rigorously reviewed by three program committee members, and each shared
task paper was reviewed by two. Based on their recommendations, we accepted all of the shared task
papers, and among the nine research papers, we accepted six, conditionally accepted two, and rejected
one. The two conditionally accepted papers were eventually accepted to the workshop after we made
sure that the authors adequately addressed the reviewers’ comments in the final camera-ready version.

This year we continued to partner with our colleagues at Charles University, Prague and hosted the
shared task on Multilingual Coreference Resolution for the fourth time at CRAC. The shared task
allowed researchers who did not participate in the workshop to disseminate their work to a smaller and
more focused audience which should promote interesting discussions. Following what we did last year,
we similarly merged the shared task proceedings with the CRAC workshop proceedings this year. In
other words, you can enjoy both the workshop papers and the shared task papers in this proceedings.

As you can imagine, fitting two invited talks, two shared tasks (the Multilingual Coreference Resolution
shared task and the DISRPT shared task), and a large number of presentations of papers accepted to
CODI and CRAC to a one-day program is by no means an easy task. In the end, the organizing
committee decided to have two poster sessions (one in the morning and one in the afternoon) where the
majority of the papers will be presented, selecting only a small number of papers for oral presentations.
Even so, it has been logistically challenging for us to arrange for virtual paper presentations during the
poster sessions.

We are grateful to the following people, without whom we could not have assembled an interesting
program for the joint workshop. First, we are indebted to the CRAC program committee members. This
year the average reviewing load was the equivalent of two long papers per reviewer. All of our program
committee members did the incredible job of completing their reviews in a short reviewing period.
Second, we thank Tanya Goyal and Nancy F. Chen, who are established researchers in Discourse, for
accepting our invitation to be this year’s invited speakers. Finally, we would like to thank the workshop
participants for joining us.

We hope you will enjoy the workshop and Suzhou as much as we do!

— Maciej Ogrodniczuk, Michal Novák, Massimo Poesio, Sameer Pradhan, and Vincent Ng
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Invited Talk 1

From Speech to Sense: The Art of Listening in Artificial Intelligence

Nancy F. Chen

Abstract
Unlike sight, which we can shut off with a blink, sound is inescapable. We are always listening, even
when we wish not to. Hearing comes naturally, but understanding what we hear requires learning,
knowledge, focus, and interpretation. Yet it is sound — be it the quiet drone of an air conditioner, a
lover’s tender whisper, or the distant rush of a waterfall — that anchors us to our physical surroundings,
social connections, and the present moment.

In this talk, I will share our experience in modelling the audio signal in multimodal generative AI to drive
translational impact across domain applications. In particular, we exploit the audio modality to strengthen
contextualization, reasoning, and grounding. Cultural nuances and multilingual peculiarities add another
layer of complexity in understanding verbal interactions. Examples include our generative AI efforts in
Singapore’s National Multimodal Large Language Model Programme has led to MERaLiON
(Multimodal Empathetic Reasoning and Learning In One Network), the first multimodal large language
model developed for Southeast Asia context. Such endeavors complement North American centric
models to make generative AI more widely deployable for localized needs. Another case in point is
SingaKids AI Tutor, which enables young children to learn ethnic languages such as Malay, Mandarin
and Tamil. We are currently expanding applications to embodied agentic AI, aviation, and healthcare.

Speaker Bio
Nancy F. Chen is an ISCA Fellow (2025), AAIA Fellow (2025), and A*STAR Fellow (2023), and was
recognized with the Asian Women Tech Leaders Award (2025). She is also a 2025 inductee of IEEE Eta
Kappa Nu (HKN), the honor society of IEEE recognizing outstanding engineers.

At A*STAR, Dr. Chen leads the Multimodal Generative AI group and the AI for Education Programme.
Dr. Chen is a serial best paper award winner across major conferences - including ICASSP, ACL, EMNLP,
MICAAI, COLING, APSIPA, SIGDIAL and EACL – her research spans applications in education,
healthcare, neuroscience, social media, security and forensics. Dr. Chen’s multimodal, multilingual
technologies have led to commercial spin-offs and adoption by Singapore’s Ministry of Education.
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Invited Talk 2

Climbing the Right Hill: On Benchmarking Progress
in Long-Form Text Processing

Tanya Goyal

Abstract
Large Language Models (LLMs) are now functionally capable of ingesting very long documents as input,
but can they truly process and reason over these massive contexts? In this talk, I will discuss our efforts at
answering this question through the lens of long narrative summarization, a setting that naturally requires
information synthesis and reasoning over long range dependencies. In the first part, I will describe our
work highlighting shortcomings of current models along two key summary quality axes - coherence and
factuality - and discuss challenges in automating their evaluation. Next, I will present NoCha, our
methodology for constructing realistic and uncontaminated benchmarks for long context narrative
reasoning. I will discuss results that show that NoCha is challenging for frontier LLMs; GPT-5 reports
<30% worse performance compared to humans, and provide a recipe for building the next generation of
robust long context benchmarks.

Speaker Bio
Tanya Goyal is an assistant professor in the Computer Science department at Cornell University.

Her research interests include building reliable and sustainable evaluation frameworks for large language
models (LLMs) as well as understanding LLM behaviors as a function of training data and/or alignment
strategies. Previously, she was a postdoctoral scholar at Princeton Language and Intelligence Center
(2023-2024). Tanya completed her Ph.D. in Computer Science at UT Austin in 2023 where her thesis was
awarded UTCS’s Bert Kay Dissertation award. Her research is supported by NSF and a gift from Google.
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Information-Theoretic and Prompt-Based Evaluation of Discourse Connective Edits
in Instructional Text Revisions
Berfin Aktas and Michael Roth

Joint Modeling of Entities and Discourse Relations for Coherence Assessment
Wei Liu and Michael Strube

Towards Adding Arabic to CorefUD
Dima Taji and Daniel Zeman

Exploring Coreference Resolution in Glosses of German Sign Language
Yuzheng Bao and Haixia Chai

12:00–13:30 Lunch Break

Invited Talk 2

13:30–14:20 Climbing the Right Hill: On Benchmarking Progress in Long-Form Text Processing
Tanya Goyal

xii



14:20–15:30 Poster Session 2

Long Context Benchmark for the Russian Language
Igor Churin, Murat Apishev, Maria Tikhonova, Denis Shevelev, Aydar S. Bulatov,
Yuri Kuratov, Sergei A. Averkiev and Alena Fenogenova

Enhancing the Automatic Classification of Metadiscourse in Low-Proficiency
Learners’ Spoken and Written English Texts Using XLNet
Wenwen Guan, Marijn Alta and Jelke Bloem

Stance Detection on Nigerian 2023 Election Tweets Using BERT: A Low-Resource
Transformer-Based Approach
Mahmoud Said Ahmad and Habeebah A. Kakudi

"Otherwise" in Context: Exploring Discourse Functions with Language Models
Guifu Liu, Bonnie Webber and Hannah Rohde

On the Role of Context for Discourse Relation Classification in Scientific Writing
Stephen Wan, Wei Liu and Michael Strube

Automated Conspiracy Narrative Detection Across Social Media Platforms
Calvin Yixiang Cheng and Mohsen Mosleh

Zero-Shot Belief: A Hard Problem for LLMs
John Murzaku and Owen Rambow

Probing the Limits of Multilingual Language Understanding: Nepali Proverbs as
LLM Benchmark for AI Wisdom
Surendrabikram Thapa, Kritesh Rauniyar, Hariram Veeramani, Surabhi Adhikari,
Imran Razzak and Usman Naseem

Measuring Sexism in US Elections: A Comparative Analysis of X Discourse from
2020 to 2024
Anna Fuchs, Elisa Noltenius, Caroline Weinzierl, Bolei Ma and Anna-Carolina
Haensch

EmbiText: Embracing Ambiguity by Annotation, Recognition and Generation of
Pronominal Reference with Event-Entity Ambiguity
Amna Sheikh and Christian Hardmeier

Human and LLM-based Assessment of Teaching Acts in Expert-led Explanatory
Dialogues
Aliki Anagnostopoulou, Nils Feldhus, Yi-Sheng Hsu, Milad Alshomary, Henning
Wachsmuth and Daniel Sonntag

Multi-token Mask-filling and Implicit Discourse Relations
Meinan Liu, Yunfang Dong, Xixian Liao and Bonnie Webber

Consistent Discourse-level Temporal Relation Extraction Using Large Language
Models
Yi Fan and Michael Strube

Coreference in simplified German: Linguistic features and challenges of automatic
annotation
Sarah Jablotschkin, Ekaterina Lapshinova-Koltunski and Heike Zinsmeister

Mention detection with LLMs in pair-programming dialogue
Cecilia Domingo, Paul Piwek, Svetlana Stoyanchev and Michel Wermelinger

The Elephant in the Coreference Room: Resolving Coreference in Full-Length
French Fiction Works
Antoine Bourgois and Thierry Poibeau

xiii



14:20–15:30 Poster Session 2 (continued)

Referential ambiguity and clarification requests: comparing human and LLM be-
haviour
Chris Madge, Matthew Purver and Massimo Poesio

Revisiting the Givenness Hierarchy. A Corpus-Based Evaluation
Christian Chiarcos

15:30–16:00 Coffee break

Oral Session

16:00–16:15 Unpacking Ambiguity: The Interaction of Polysemous Discourse Markers and Non-
DM Signals
Jingni Wu and Amir Zeldes

16:15–16:30 Impact of ASR Transcriptions on French Spoken Coreference Resolution
Kirill Milintsevich

16:30–16:45 GLaRef@CRAC2025: Should we transform coreference resolution into a text gen-
eration task?
Olga Seminck, Antoine Bourgois, Yoann Dupont, Mathieu Dehouck and Marine
Delaborde

16:45–17:00 Entity Tracking in Small Language Models: An Attention-Based Study of
Parameter-Efficient Fine-Tuning
Sungho Jeon and Michael Strube

17:00–17:15 Corpus-Oriented Stance Target Extraction
Benjamin David Steel and Derek Ruths

17:15–17:30 Bridging Discourse Treebanks with a Unified Rhetorical Structure Parser
Elena Chistova

Closing Remarks

17:30–17:45 Closing the workshop with Best Paper Awards
Maciej Ogrodniczuk, Michal Novák, Michael Strube and Janet Liu

xiv



Proceedings of the Eighth Workshop on Computational Models of Reference, Anaphora and Coreference (CRAC 2025), pages 1–11
Suzhou, China, November 9, 2025. ©2025 Association for Computational Linguistics

Referential ambiguity and clarification requests: comparing human and
LLM behaviour

Chris Madge, Matthew Purver and Massimo Poesio
Queen Mary University of London

{c.j.madge,m.purver,m.poesio}@qmul.ac.uk

Abstract
In this work we examine LLMs’ ability to
ask clarification questions in task-oriented dia-
logues that follow the asynchronous instruction-
giver/instruction-follower format. We present a
new corpus that combines two existing annota-
tions of the Minecraft Dialogue Corpus — one
for reference and ambiguity in reference, and
one for SDRT including clarifications — into a
single common format providing the necessary
information to experiment with clarifications
and their relation to ambiguity. With this cor-
pus we compare LLM actions with original
human-generated clarification questions, exam-
ining how both humans and LLMs act in the
case of ambiguity. We find that there is only
a weak link between ambiguity and humans
producing clarification questions in these dia-
logues, and low correlation between humans
and LLMs. Humans hardly ever produce clari-
fication questions for referential ambiguity, but
often do so for task-based uncertainty. Con-
versely, LLMs produce more clarification ques-
tions for referential ambiguity, but less so for
task uncertainty. We question if LLMs’ ability
to ask clarification questions is predicated on
their recent ability to simulate reasoning, and
test this with different reasoning approaches,
finding that reasoning does appear to increase
question frequency and relevancy.

1 Introduction

Large Language Models (LLM) are much maligned
for their tendency to act presumptively, “halluci-
nating” in the absence of knowledge. Until the
recent advent of reasoning orientated LLMs (i.e.
models deliberately fine tuned with reasoning as
an objective such as DeepSeek-R1 (Guo et al.,
2025)), models struggled asking clarification ques-
tions and rarely proactively sought missing infor-
mation (Deng et al., 2023; Li et al., 2022, 2024).
Prior works have tested how LLMs respond to un-
certainty, and proposed benchmarks (Zhang et al.,
2024). However, this remains a challenge.

This is perhaps further complicated as clarifica-
tion is a conversational strategy applied sparingly
by humans (Purver et al., 2003; Rodríguez and
Schlangen, 2004; Rieser and Moore, 2005). Certain
situations promote greater clarification question us-
age; for example, situations in which information
is asymmetric, and which concerns a task requiring
information seeking. This happens to be a popu-
lar paradigm for tasks created with the objective
of soliciting dialogue (sometimes referred to as in-
struction giver/instruction follower) and also, in
recent years, for studying clarification questions
(Chi et al., 2020; Madureira and Schlangen, 2023a;
Testoni and Fernández, 2024; Shen and Lourent-
zou, 2023). In this work we look at the Minecraft
Dialogue Corpus (Narayan-Chen et al., 2019), a
task orientated, grounded corpus that follows this
paradigm. We select this corpus as it has benefited
from multiple separate annotation efforts (Thomp-
son et al., 2024; Madge et al., 2025) that extend
its already richly structured offering, with useful
supplemental information that can inform the ex-
periments undertaken in this work.

We focus on one particular area of linguistic un-
certainty, referential ambiguity. There has been a
long standing interest in reference, with ambiguity
featuring as an interest in the first popular corpora
(Pradhan et al., 2012). Our first contribution of this
work is combining prior annotation efforts provid-
ing annotations for clarification questions (Thomp-
son et al., 2024) and reference (Madge et al., 2025)
into a single aligned corpus in the MMAX format
(described in Section 3).

This annotation supports our next contribution,
a comparison of how LLMs and humans resolve
uncertainty. We ask, “does referential ambiguity
really trigger clarification requests from humans,
and is this different for LLMs?”. We look at both
the annotated instances of linguistic ambiguity, and
the original clarification questions, as posed by
human interlocutors for correlation. We test both
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against different LLM based approaches.
One proposed approach to improving clarifica-

tion questions with LLMs is through adding further
reasoning capabilities with variations on the Chain
of Thought approach (Deng et al., 2023). Despite
extensive testing in epistemic, aleatoric, linguistic
uncertainty (Ortega-Martín et al., 2023) and pro-
posed benchmarks (Zhang et al., 2024), it remains
somewhat unclear how effective LLMs are in iden-
tifying uncertainty and even more so how LLMs
may consistently generate the relevant questions to
address it.

For our second research question, we ask if the
ability to ask a useful clarification question, or in-
deed judge when to ask a question, is based on a
model’s ability to simulate reasoning. We test this
hypothesis with an experiment, comparing models
that were trained to include reasoning and prompt
engineering strategies for inducing reasoning at test
time against ordinary models/methods.

For our final contribution, we look further into
human reasoning and its constituent parts, with a
discussion on how these may affect LLMs seem-
ingly emergent ability to ask some clarification
questions, and liken this to human reasoning.

2 Related Work

2.1 Clarification Questions

There has been a great interest in clarification ques-
tions in the literature on dialogue systems going
back at least twenty years (Purver et al., 2003;
Schlangen, 2004; Gabsdil, 2003). More recently,
there has been extensive work in modern Natu-
ral Language Processing modelling clarification
question generation or indeed when to ask them
(Majumder et al., 2021; Aliannejadi et al., 2019;
Kiseleva et al., 2022). This section will primarily
focus on prior works that target clarification ques-
tion with overlap to our specific goals (i.e. task
orientated dialogue with situated and/or embodied
agents). Previous works have gathered or annotated
datasets in situated dialogue with clarification ques-
tions. For example, (Gervits et al., 2021) gather a
corpus (HuRDL - Human-Robot Dialogue Learn-
ing) and annotate clarification questions in a dia-
logue gathered from human participants in a robot
situated tool gathering task. (Gella et al., 2022)
annotate dialogue acts in the TEACh (Task-driven
Embodied Agents that Chat) dataset (Padmakumar
et al., 2022); the product of a task that has human
participants collaborating to perform household

tasks in a virtual house environment.
A particularly popular task/dataset for this is Co-

Draw (Kim et al., 2017). The CoDraw task (Kim
et al., 2017) is similar to the previously discussed
Minecraft task, in that an instruction giver com-
municates with an instruction follower to collab-
oratively reach a goal. As opposed to construct-
ing a 3D voxel based structure, they recreate a
scene formed of clipart images. (Madureira and
Schlangen, 2023b) annotate this dataset with clari-
fication questions.

Previous works have also compared when hu-
mans and models would ask clarification questions
(Testoni and Fernández, 2024) use the aforemen-
tioned CoDraw dataset to investigate this the re-
lationship between model uncertainty, and human
clarification questions based on task properties (e.g.
size, orientation, position etc.). The presence of a
clarification question is used as the measure of mea-
sure uncertainty, and they use logistic regression to
see if they can predict this.

The Minecraft Dialogue Corpus (Narayan-Chen
et al., 2019) used in this work is different, in that
rather than referencing direct objects, continuously
changing abstract shapes are created and manip-
ulated during the dialogue. We expand on this
further in the following section. There has been
other work using Minecraft-like environments as
a test-bed for the study of clarification questions
in dialogue. However, this was prior to LLMs and
looked at clarification question production as a task
of ranking available clarification questions, rather
than their generation (Kiseleva et al., 2022)

Several works have investigated the use of LLMs
for clarification question generation, with methods
including: fine tuning on question data (Andukuri
et al., 2024); uncertainty estimation over multiple
samples (Pang et al., 2024; Zhang and Choi, 2023)
and multi turn prompting strategies (Kuhn et al.,
2022; Li et al., 2023). To our knowledge, none
of these are primarily concerned with reference
or situated dialogue settings. There is however
evidence to suggest LLMs can successfully resolve
reference with performance similar to, or in some
cases superior to, reference specific models (Hicke
and Mimno, 2024; Le and Ritter, 2023).

2.2 MDC and its extensions
The Minecraft Dialogue Corpus (Narayan-Chen
et al., 2019) is a collection of conversations among
human participants performing the Minecraft Col-
laborative Building Task.This follows the typical

2



instruction giver, instruction follower paradigm,
where the Architect, who has full observability
over the target environment but is unable to act, in-
structs the Builder, to manipulate the environment
to meet that target structure. The world is a 3D
voxel based 11× 9× 11 Minecraft like world, orig-
inally provided by project Malmo (Johnson et al.,
2016). This results in a 509 multi turn situated
dialogues with rich linguistic phenomena including
reference and clarification.

Various annotation efforts have extended MDC,
including variations of AMR (Bonn et al., 2020;
Bonial et al., 2021), reference (Madge et al., 2025)
and Segmented Discourse Representation Theory
(SDRT, Thompson et al., 2024). We focus on the
latter two as they are directly used in this work.

SDRT provides a macrostructure of intercon-
nected logical discourse forms, linking narrative
arcs and discourse relations (e.g. clarification ques-
tions, corrections, confirmations, acknowledge-
ments etc., see Asher and Lascarides, 2003; Las-
carides and Asher, 2007). Thompson et al. (2024)
exhaustively annotated MDC with SDRT in their
Minecraft Structured Dialogue Corpus (MSDC).

MDC-R (Madge et al., 2025) consists of a sub-
set of 100 dialogues from MDC with reference ex-
pert annotated according to the ARRAU guidelines
(Poesio et al., 2024). The dynamically changing
environment and instruction based two-party dia-
logue gives rise to various types of reference, much
of which, beyond the discourse, is linked directly
to the objects in the virtual world. This results
in some interesting and challenging examples of
ambiguity for a dialogue system to resolve.

2.3 Reasoning in Large Language Models
Chain of Thought (COT, Wei et al., 2022) simu-
lates reasoning at inference time by encouraging
the model to think through the answer step by step.
In implementation, this can take one of two com-
mon forms. The model is either provided an ex-
ample of thinking through a problem step by step
as part of a one-shot/few-shot prompt, or a zero-
shot approach that simply prefaces the prompt with
something like “Let’s think this through, step by
step...”. The core benefits of the COT approach are
given to be: problem decomposition; some explain-
ability/insight into how results are reached; log-
ical problem solving/symbolic manipulation and
ease of application to existing models. Previous
work has observed an improvement in applying
this method when addressing Minecraft orientated

Figure 1: Referential Ambiguity Annotation Example
in MMAX

tasks (Madge and Poesio, 2024). Following Chain
of Thought, several models have been trained or
aligned explicitly to follow this process (e.g. Gem-
ini 2.5; Version 3 of the Qwen model (Yang et al.,
2024); DeepSeek-R1 (Guo et al., 2025)).

3 Adding MSDC information to MDC-R

In this section we will motivate and describe our
effort to add MSDC information to MDC-R to pro-
duce a new version of the corpus combining both
types of annotation.

We identify two types of utterances or phrases
may provoke clarification requests. Firstly, utter-
ances that have been annotated as the subject of a
clarification or confirmation request in the dialogue
(typically related to task orientated uncertainty ,
and secondly instances of referential ambiguity.

To support our experimentation, and investiga-
tion of any possible relationship between the two,
we present a corpus that merges two existing cor-
pora that identifies these. This is a combination
of the previously discussed MDC-R (Madge et al.,
2025) (providing reference annotations for MDC),
and MSDC corpora (Thompson et al., 2024) (pro-
viding clarification questions for MDC), permit-
ting convenient examination of reference and more
specifically types of referential ambiguity aligned
with clarification questions. We automated the
merge of these two corpora, through use of a script
that operated at token level to produce a common
method of addressing and aligning the respective
segments in each.

We add a new MMAX1 layer, referred to as
SDRT. Each MMAX markable in this layer rep-
resents an Elementary Discourse Unit and the re-
lations between those markables are represented
by a to attribute on each markable, with the related
markables unique ID. Crucially, these relationships

1https://mmax2.net/
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Figure 2: Clarification Question Annotation Example
in MMAX

describe links between utterances and their clarifi-
cation questions.

This combined format allows parsing and exam-
ination of adjacent reference in MMAX (shown in
Figure 1) and clarification (shown in Figure 2).

Reference annotation has many parameters, with
each relationship holding many attributes. Whilst
the SDRT annotations exhaustively cover all of
the original MDC dataset (Narayan-Chen et al.,
2019), MDC-R covers a subset of 100 dialogues
(some more detailed descriptive statistics taken
from MDC-R (Madge et al., 2025) are given in
Table 1). As such, our corpus will be limited to the
same 100 dialogues.

Statistic Count Statistic Count
Documents 101 Tokens 29,174
Utterances 3,343 Actions 5,793
Markables 7,600 Discourse old 1960

Bridging 1,053 Object 500
Plural 24 Ambiguous 149

Table 1: MDC-R Corpus Statistics (Madge et al., 2025)

Using the combined corpus, we have counted
instances of utterances exhibiting certain attributes
that may motivate a question. Firstly, using an-
notations originating from MSDC, we look at the
counts of confirmation questions and clarification
questions occurring in the original human dialogue.
Secondly, we count specific instances of referen-
tial ambiguity, using annotations originating from
MDC-R. These are instances of discourse deixis

- relating to parts of the discourse (e.g. “as I said
earlier”), and spatial deixis in a real world space -
typically our voxel world environment (e.g. “next
to that block”).

Table 2 shows the frequency of these different
instances of utterances that may motivate a question
as a percentage of all utterances in the selected
subset of the corpus.

Type Instances %
confirmation question 218 3.7%
clarification question 182 3.1%

discourse deixis 24 0.4%
spatial deixis 16 0.3%

Table 2: Frequency of instances as a percentage of utter-
ances

77% of dialogues contain a clarification question
and 75% a confirmation question.

The SDRT annotations of the complete corpus
found in MSDC had 999 confirmation questions
and 960 clarification questions over 547 dialogues.
We can see from the relative quantity of questions,
that the selected dialogues do appear to be repre-
sentative of the corpus as a whole, with respect to
question quantity.

To give some overview, the most common
phrases for discourse deixis are: “that” (8); “this”
(7) and “it” (3). Spatial deixis has 3 instances of
“this”, but referents while still ambiguous, tend do
be more literal (e.g. “the red end”). We expand fur-
ther on this in a discussion of reoccurring patterns
in Section 5.1.

The corpus is available at https://github.
com/arciduca-project/MDC-R/tree/sdrt.

4 Methodology

To test how LLMs perform clarification questions,
we first discover points in the conversation
that may require clarification, then we sample
from various LLMs with different approaches,
feeding the context of the conversation up to the
appropriate point. Examples of our prompts are
given in the Appendix (see Section A.1). A system
prompt describes the nature of environment and
it’s constraints. This differs slightly between
architects and builders, in that architects can
see the target structure, and the builder’s system
prompt specifies the required JSON response
format necessary to encode their resultant actions
or expect the world state (this experiment is text
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only, with the world state/actions encoded in JSON
- no images are used). For the chain-of-thought
treatments, we supplement these system prompts
as follows. The zero-shot chain-of-thought
approach simply adds, “Think step by step” to the
system prompt. The one-shot approach follows
the system prompt with an example exchange
that incorporates thinking.These approaches
are deliberately selected to compare reasoning
based models (e.g. llama3.2, DeepSeek-R1
(Guo et al., 2025)) and sampling methods
(llama2:13b-COTZERO, llama2:13b-COTONE) vs.
non-reasoning (llama2:13b). We compare the
approach taken by LLMs to the approach originally
taken by humans.

There are three characteristics of the instances
that we identify to test against. Firstly, the sub-
ject of any clarification and confirmation ques-
tion as originally annotated in SDRT. Second and
thirdly, linguistic ambiguities. We select any ref-
erent that has two or more antecedents, whether
they be discourse deixis (part of the discourse), or
spatial deixis (in reference to objects in the envi-
ronment. That is to say, in the MDC-R MMAX
format, for discourse deixis the phrase in ques-
tion, would have the following attributes specified
segment_phrase_antecedent_2, and for spatial
deixis, object2 specified.

We also check for correlation between clarifi-
cation questions, and the instances of linguistic
ambiguity, as permitted by using our new merged
corpus (described in Section 3),

We measure the tendency of different approaches
to ask a question and use a single human coder to
examine specific instances of ambiguity and their
responses to attempt to quantify the number of rel-
evant questions asked when applying each method.
Prior to quantifying responses to instances we con-
duct a thorough example driven investigation.

5 Results

In the first section we look at how LLMs and hu-
mans respond to instances of referential linguistic
ambiguity, including whether humans pose clari-
fication questions when they encounter linguistic
ambiguity. In the second section we look at the
original clarification questions as posed by humans,
to see how LLMs respond. Finally, we perform a
quantitative evaluation, counting the tendency of
different approaches to ask questions, and a count
of question relevancy under one specific condition.

5.1 Linguistic Ambiguities

Do humans ask clarification questions when
there is ambiguity? In many cases, where lin-
guistic ambiguity exists, it appears deliberately un-
derspecified in the interest of brevity, and where
expanding more literally or verbosely would not
have any further positive effect on task completion.
Here, we see two common patterns emerge.

The first common pattern is in the communica-
tion of approval. The exact target of approval is
unspecified, and arguably redundant if correct, as
no further intervention is required. This appears to
be used as a signal to indicate objective completion
and generally precede new instruction. Examples
include: “oh that is magnificent builder”; “... that
is great”; “...that’s perfect”; “...let ’s see what
we can do about that”; “yeah, that’s fine”; “good
job”, “yes like that”.

These seem closely related to the second com-
monly appearing pattern in sources of linguistic
ambiguity, which occur in clarification questions
themselves and appear to be used as a polite con-
versational device to invite architect interruption to
general correction and indicate the builder believes
the prior instruction to be addressed. Examples
include: “like this?”; “is this good?”; “this right?”,
where “this” and “that” do not have clear referrents.
Again, exact specification of what “this” refers to is
somewhat redundant, as any corrective instruction
may follow. Examining the context an interpreting
more explicitly, these would appear to be more se-
mantically equivalent to: “I believe I’ve completed
all instructions, I’m ready for the next instruction
or correction”.

The first finding of this paper is that linguistic
ambiguities are rarely the target of clarification
questions directly in our corpus. We only discov-
ered a single instance in which a discourse deixis
referential ambiguity is in the vicinity of the sub-
ject of a latter clarification question. In the case of
linguistic ambiguity, it seems humans prefer to act
presumptively, in this setting.

Do LLMs ask clarification questions when there
is ambiguity? Unresolved linguistic ambiguities,
left unchecked, do propagate, resulting in the ne-
cessity for clarification or confirmation later in the
conversation. Whilst human participants do not ad-
dress these immediately, LLMs sometimes do. We
show two examples here. In the following example,
“the previous one” has an ambiguous referent in the
context of the conversation and current world state.
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This is not immediately resolved at the time by the
human builder, who acts presumptively, and takes
action. Having taken the incorrect action, and then
been required to perform a revision, the builder
then uses a confirmation question, “like that?”. In
contrast, the LLM however, does ask a question to
directly disambiguate, “the previous one” by of-
fering the two possible interpretations (see Figure
3).

Architect then place one on each side of
the previous one

Builder (model vs. original human dialogue):
Model Are the blocks to be placed on each side of

the green block at [-2,0,0] or in relation to
the vertical stacking process near the center?

Human takes action
Architect not the one you just placed

Builder revisits with corrective action
Builder like that?

Figure 3: Excerpt from B4-A19-C4-1522882189483
demonstrating propagation of referential ambiguity

Similarly, in Figure 4, the human builder does
not clarify the ambiguous statement, “the same
thing”, but proceeds to take action, to discover a
lot of work must then be mirrored. Conversely, an
LLM asks, about which plane the blocks should be
mirrored, to first discover the correct approach.

Builder builder takes action
Architect now the same thing on the other side
Builder (model vs. original human dialogue):

Model Does ‘the same thing on the other side’ mean
mirroring the blocks symmetrically with re-
spect to the y-z plane at x=0?

Human builder takes further action
Architect that but on the other side

Builder builder carries out extensive revision
Architect there

Figure 4: Excerpt from B35-A34-C118-1524004322117
demonstrating direct and immediate clarification of lin-
guistic ambiguity from LLM

We show here in this section that whilst linguistic
ambiguities rarely trigger direct human clarifica-
tion, despite the fact they may translate to uneco-
nomical task action, LLMs can and do sometimes
respond with targeted clarification questions.

5.2 Clarification/Confirmation Questions
Having shown in the previous section, there is not
a strong correlation between linguistic ambiguity
and clarification questions, this section looks, at
under what circumstances clarification questions
are asked by human participants, and how this be-
haviour compares with how LLMs respond.

A common repeated pattern by human builders
is the use of questions such as, “like that?”, as pre-
viously discussed, and others that are potentially
more specific, such “is this right?” and “how’s
that”, with contextually evident reference to spe-
cific actions. This is not a behaviour employed by
the LLMs tested here. As such, these clarification
questions are unique to human participants.

Another clarification question approach exhib-
ited uniquely by humans, is that of interrupting a
set of instructions to proactively anticipate a pos-
sible pattern that they have observed to potentially
reduce further instruction. For example: “Are we
repeating the structure?”; “Are we repeating the
pattern with orange and yellow?”; “both sides or
just this one?”; “are we going to repeat what we
did on the other side?”; “same design? just blue?”;

“repeat here?”.
Clarification questions typically occur not di-

rectly around linguistic ambiguity, but rather am-
biguity in relation to the task objectives (e.g. prop-
erties). In the following example, the architect
specifies colour and quantity, but does not specify
orientation, leading to similar, albeit more concise
on part of the human, questions from human and
LLM (Figure 5). Similarly, for individual block
position in Figure 6.

Architect then to the right of the one you just put down
place 2 orange blocks

Builder (model vs. original human dialogue):
Model What is the current orientation of the blocks

that have been placed so far? Are they form-
ing a diagonal line from north to south or
from east to west?

Human how should they be oriented

Figure 5: Excerpt from B19-A36-C118-
1524093668453 showing the subject of a clarification
request in relation to orientation uncertainty

Architect great now one orange below that one
Builder (model vs. original human dialogue):

Model Is it correct to assume ’now one orange below
that one’ means in the same diagonal direc-
tion as ’now one red block down along the
diagonal

Human diagonally or nah?

Figure 6: Excerpt from B16-A29-C144-
1524067263550 showing the subject of a clarification
request in relation to individual position uncertainty

There are several examples in relation to col-
lective, individual, absolute and relative property.
LLMs seem to also approach these well. Another
common example is colour (shown in Figure 7).
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Again, the LLM reaches a fair clarification ques-
tion.

Architect on the yellow block touching the orange , add
two blocks to either side of it . making a t.

Builder (model vs. original human dialogue):
Model What color are the new blocks to form the T

shape and do you want me to remove or re-
place any existing blocks at [-4,1,0], [-3,0,0],
[-2,1,0]?

Human what color blocks ?

Figure 7: Excerpt from B37-A23-C102-1523629957597
showing the subject of a clarification request in relation
to the colour property

5.3 Quantitative Analysis

In this section we aim to quantify the differences
between approaches and how they respond to situa-
tions that may benefit from clarification. Primarily,
we are interested in each individual approaches ten-
dency to generate a question (Table 3), particularly
a relevant questions. (Table 4)

Table 3 looks at the number of questions asked
in each reply. In this first case, we do not assess
question relevance, but simply the tendency to re-
ply with a question. We see a lower tendency to ask
a question in the previous generation models that
did not feature reasoning (i.e. llama2). However,
later models that do feature reasoning (e.g. llama3
and deepseek-r1), or previous generation models
supplemented with chain-of-thought prompts (e.g.
llama2:13b-COTZERO and llama2:13b-COTONE)
that attempt to simulate reasoning, perform compa-
rably with a greater tendency to question.

Approach Questions Asked
llama2:13b 276

llama2:13b-COTZERO 303
llama2:13b-COTONE 327

deepseek-r1:8b 354
llama3.2:3b 278

llama3.3:70b 383

Table 3: Number of questions asked in different ap-
proaches

To provide some notion of relevancy, Table 4
looks specifically at the number of questions asked
that target the instance of expert annotated ambigu-
ity compared with the actions of the original human
participant in the conversation. These are counted
solely for instances of spatial deixis, as these are
very literal and therefore the easiest to objectively

assess. For example, in “now a tower of five or-
anges on top of the red end”, Llama3.3:70b’s re-
sponse of “Which end of the red blocks is consid-
ered the ’red end’, the one at coordinates [3, 0, 1]
or [0, 0, 1]?”, is considered to target the ambiguity.

We see that the previous generation models, not
trained for reasoning, but with Chain of Thought
prompting, perform comparably to modern reason-
ing orientated models, in this regard. Human partic-
ipants did not choose to disambiguate these phrases
direct at the time, but rather acted presumptively.
This approach does not measure the final utility of
asking the question, or any impact it may have on
the conversation.

Approach Spatial Deixis
Human participant 0

llama2:13b 0
llama2:13b-COTZERO 1

llama2:13b-COTONE 3
deepseek-r1:8b 3

llama3.2:3b 2
llama3.3:70b 5

Table 4: Number of relevant spatial deixis questions
asked by approach

Another limitation to our experiment. It’s chal-
lenging to communicate a sense of perspective to
the LLMs. As a consequence, some instructions
do not make sense, e.g.: “A: can you come to the
side of the structure so you have a side view”; “B:
left or right”; “B: forward to my right or in front
of me?”; “B: this perspective ?”.

6 Reasoning and Clarification

Our experiments would appear to show that the
recent advent of reasoning in models has the emer-
gent benefit of allowing models to ask clarification
questions. In this section, following our hypothesis
that clarification is dependent on an ability to rea-
son, we look at clarification questions in relation to
reasoning through the lens of human psychology,
and where available, assessments of LLM abili-
ties to perform the required components of related
human reasoning abilities

Examining the role of reasoning in clarification,
knowing when to ask a question, requires reflection
on the gaps in ones own knowledge, or a higher
order of thought, referred to in human psychology
as Metacognition (Flavell, 1979). LLMs origi-
nally lacked any awareness of gaps in their knowl-
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edge, acting presumptively, leading to “hallucina-
tion” where, albeit often grammatically valid, a
model’s output would be factually incorrect or pos-
sibly nonsensical. This is most commonly due to
a lack of knowledge (Zhang et al., 2023), or per-
haps the inability to reason when knowledge is ab-
sent. Metacognition is the ability to reflect on held
knowledge by self questioning. The Metacognitive
capabilities of LLMs have been explored in previ-
ous works in relation to reasoning (Didolkar et al.,
2024). Metacognitive prompting that, self ques-
tions to enhance reasoning (Wang and Zhao, 2023)
has been explored in LLMs, as has self-questioning
with the goal of reducing hallucination (Dhuliawala
et al., 2023). A model knowing whether it has
the applicable knowledge or skill to proceed, or
whether to direct its process to clarification, could
be seen as metacognitive regulation.

When an agent is working in collaboration with
other interlocutors, clarification may be dependent
on discovering other parties knowledge, abilities or
attitudes and approach to a task. This crucial com-
ponent, in psychology, is an aspect of reasoning
known as Theory of Mind (Premack and Woodruff,
1978), which relates to reasoning about other par-
ticipants belief states. There is some evidence to
suggest, as a consequence of simulated reasoning
ability, LLMs may now be able to simulate this
also (Kosinski, 2023). This has been explored with
LLMs in Mindcraft, which is a collaborative task in
which the players have separate skills and must ne-
gotiate to reach a common goal (Bara et al., 2021).
This is particularly important for LLMs in referen-
tial communication (Sidera et al., 2018)

7 Conclusion

To conclude, we find that in our conversations hu-
man participants do not commonly ask a clarifica-
tion question when language is ambiguous. In the
majority of these cases of linguistic ambiguity, the
ambiguity appear deliberate in the interest of con-
versational efficiency. Consequently, there may be
little utility to asking a question in many of those
situations. (The resultant utility of a clarification
question is not examined in this work, and may be
the subject of a future work. ) We did however
identify one situation in which that uncertainty did
propagate to create future issues. Regardless of
conversational efficiency, we do find that LLMs,
particularly reasoning orientated ones, are capa-
ble of asking relevant clarification questions under

those circumstances.
On the topic of the originally posed human clari-

fication questions, we found they largely followed
a specific pattern and strategy not adopted by the
LLMs. That was, to perform actions then use a
clarification question to verify they were correct.
These instances of human clarification questions
largely relate to task based ambiguity rather than
linguistic ambiguity.

Across all instances, we find a greater tendency
of reasoning orientated approaches to pose clarifi-
cation questions and find that this can be somewhat
matched at test time, with methods such as COT.
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A Appendix

A.1 System Prompts
Architect You are an agent in a voxel world,
where the most northernly point is 0,0,-5; the most
westerly point -5,0,0; the most eastern point is
5,0,0; the most southern 0,0,5 and the y-axis is
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up and down, with y=0 being the minimum. Your
task is deliver instructions and respond to ques-
tions where necessary, to achieve a target world
state []. The current world state is []. They should
be easy to understand instructions, Do not ask for
specific coordinates and do not accept them. Omit
any pleasantries. You may ask questions

Builder You are an agent in a voxel world, using
the following coordinate system, where the center
on the ground is [0,0,0], [0,9,0] is the highest point
in the air, the most northernly point is [0,0,-5]; the
most westerly point [-5,0,0]; the most eastern point
is [5,0,0]; the most southern [0,0,5]. Describe the
coordinates of the blocks their colours (must be one
of: blue, yellow, green, orange, purple, red) and
whether the action is to add or remove them. You
MUST include a question if the instruction is poten-
tially unclear or ambiguous and you MUST follow
the final JSON format: "add": [[x,y,z,"color"], ...],
"remove": [[x,y,z,"color"], ...], "confidence": 0.0,
"question": "...". The current world state is []. Give
your final response in JSON only, without addi-
tional dialog. You may ask questions

A.2 COTONE
user • builder: hi, let’s start

• architect: place three blue blocks in a
row in the center. Place a red block on
top of the blue block

assistant • architect: Thinking: let’s think.
we know three blue blocks need to go
in the center. The center is [0,0,0], so
to place three blue blocks would be [-
1,0,0,"blue"],[0,0,0,"blue"],[1,0,0,"blue"].
Now we need to place a red block on top
of the blue block. Wait, they didn’t tell
us which blue block, there are three. We
must ask a question also. “Which of the
three blue blocks would you like the red
block placed on?”. We need to formulate
this response in the given JSON format.

• Response: builder: {"add": [[-1, 0,
0, "blue"], [0, 0, 0, "blue"], [1, 0, 0,
"blue"]], "confidence": 0.5, "question":
"Which of the three blue blocks would
you like the red block placed on?"}
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Abstract

In this paper, we analyse coreference annota-
tion of the German language, focussing on the
phenomenon of simplification, that is, the ten-
dency to use words and constructions that are
assumed to be easier perceived, understood, or
produced. Simplification is one of the tools
used by language users in order to optimise
communication effectively. We are interested
in how simplification is reflected in coreference
in two different language products exposed to
the phenomena of simplification: simultane-
ous interpreting and Easy German. For this,
we automatically annotate simplified texts with
coreference. We then evaluate the outputs of
automatic annotation. In addition, we also look
into quantitative distributions of some corefer-
ence features. Our findings show that although
the language products under analysis diverge
in terms of simplification driving factors, they
share some specific coreference features. We
also show that this specificity may cause an-
notation errors in simplified language, e.g. in
non-nominal or split antecedents.

1 Introduction

This paper focuses on coreference phenomena in
different variants of simplified German. Simplifica-
tion is one of the means used by language users in
order to optimise communication effectively. Con-
centrating on linguistic means, we understand sim-
plification as the tendency to use words and con-
structions that are assumed to be ‘easier’.1 In par-
ticular, we analyse Easy German (e.g. Maaß et al.,
2021) and simultaneous interpreting (e.g. He et al.,
2016). Although both language products are known
to be simplified, the driving forces of the optimi-
sation process differ: Easy German (hereafter EG)
is simplified to be better perceived and understood
by the target audience, i.e. the receiver side. At the

1Non-linguistic means of simplification are, for example,
layout and formatting for written communication, gestures
and body languages for spoken communication.

same time, simultaneous interpreting (hereafter SI)
is simplified due to the production constraints on
the producer side, i.e. the interpreter who optimises
the output to reduce their own cognitive load.

Following a linguistic approach, coreference de-
scribes the reference of two or more expressions
(i.e., mentions) to one and the same entity in the
extralinguistic context, also called discourse entity
in contrast to extralinguistic entities (e.g., Jurafsky
and Martin, 2025, chap. 23).2 Accordingly, the
goal of coreference resolution is to identify corefer-
ent mentions and explicitely link them, so that they
can be interpreted as equivalent irrespective of their
surface forms, thereby forming an equivalence set.
In example (1), four mentions are underlined that
all refer to the same discourse entity, a plural entity
that consists of two events taking place in the city
of Hamburg. In addition to marking the mention
spans, the syntactic heads are printed in bold face,
which are relevant for further analyses.

(1) Two major events are taking place in Ham-
burg this weekend. These are a music fes-
tival and a sporting event. Both are taking
place in St. Pauli. A lot of people are com-
ing to these two events.3

Annotating the mentions in example (1) results in
the equivalence set (2).

(2) {Two major events, These, Both, these two
events}

We are interested in how coreference is expressed

2We emphasise the conceptual discourse space as reference
point, to distinguish coreference resolution from the related
task of entity linking. The latter task goes beyond textual-
conceptual resolution by mapping mentions of named entities
to real world entities encoded in knowledge bases such as
Wikidata (https://www.wikidata.org/).

3The example is fictitious, created by ‘normalizing’ the
Easy German example (4) with DeepLwrite (https://www.
deepl.com/de/write) and translating it into English with
DeepL (https://www.deepl.com/).
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in the introduced simplified variants of German and
aim to detect coreference features specific to these
variants. For this, we annotate simplified (and Stan-
dard) texts with coreference using an automatic
tool and evaluate a small output sample of the sim-
plified texts manually. In this paper, we address the
following research questions (RQs):

RQ1 What challenges occur in automatic and man-
ual annotation of coreference in simplified
German?

RQ2 How are the annotation divergences linked to
the linguistic specificities of simplified Ger-
man?

RQ3 Which coreference phenomena are specific for
the evaluated variants of simplified German?

We report on the problems of both automatic and
manual annotation, employing a state-of-the-art
coreference resolver and manual correction of sam-
ple annotations. In a qualitative error analysis of
a small sample set, we explore to what extent an-
notation divergences can be explained by features
of simplified German. Finally, we present quanti-
tative distributions of coreference features in two
corpora of simplified German, which are prelimi-
nary because they are biased by the challenges of
automatic annotation that we detected in the state-
of-the-art coreference resolver and analysed in the
qualitative study.

We believe that our findings are helpful for de-
veloping better annotation tools for simplified lan-
guages, and also for deriving linguistic hypotheses
about the expression of mentions and coreference
relations in different variants of simplified German.

2 Background

2.1 Notion of coreference

Coreference is an important component of dis-
course coherence and contributes to comprehen-
sibility and readability of texts. As introduced in
Section 1, coreference is achieved by linguistic
means that represent the same discourse entity in a
text. These mentions can be realised by a variety
of linguistic devices such as proper names or typ-
ically definite noun phrases (the event), pronouns
(it) and adverbs (there) if they pick up an already
introduced entity, or indefinite noun phrases, verb
phrases or even sentences if they introduce a new
entity. There are also language-specific means,

such as pronominal adverbs (dabei ‘at it’) in Ger-
man.4 For comprehensive descriptions of differ-
ent mention types see, e.g., Hirst (1981); Mitkov
(2002); Ng (2010); Poesio et al. (2016); Kolhatkar
et al. (2018).

2.2 Coreference and Cognition

At least for humans, it is assumed that the sur-
face form of a mention serves as processing signal
for the reader to facilitate identification of refer-
ents (e.g. Ariel, 2019; Kunz, 2010; Gundel et al.,
1993). For example in English and German, defi-
nite noun phrases typically signal that the referent
has already been introduced into the discourse or
is inferrable from the linguistic or extra-linguistic
context. Some forms, such as pronouns, can only
refer to highly accessible referents which are very
prominent in the current discourse. In addition,
there are cues for discourse newness such as in-
definite noun phrases. In terms of an accessibility
hierarchy these referents are least accessible. In
interaction with mention form, syntactic function,
such as subject, object and nominal modifier is as-
sumed to influence the probability of a mention
being taken up again as an antecedent or being
part of a coreference chain in general, cf., e.g.,
Centering Theory for English (Grosz et al., 1995).
For German, this effect is less pronounced: Strube
and Hahn (1999) found stronger influence of the
mentions’ information status, i.e. their familiarity,
than their syntactic function. However, also in Ger-
man subjects are highly prominent and preferred
as coreferential antecedents at least for personal
pronoun mentions (Portele and Bader, 2016).

2.3 Coreference resolution

The task of automatic coreference resolution con-
sists of two subtasks, which are often done holis-
tically in recent end-to-end approaches (Jurafsky
and Martin, 2025, chap. 23): first mention detec-
tion and, second, coreference linking. In the step
of mention detection, all referring candidate strings
are marked. In the step of coreference linking, all
mentions that refer to the same entity are grouped
together.

There are various metrics for coreference resolu-
tion evaluation. The official score of the CoNLL-
2011/2012 shared tasks on coreference resolution,

4Coreference can also be implicit in languages that do
not require to express verbal arguments in the text, which is
modeled as ‘zero anaphora’. This phenomenon goes beyond
the scope of our paper.
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which was intended to provide a standardised eval-
uation metric, is the arithmetic mean of three other
scores: MUC, B³ and CEAFe (Pradhan et al., 2014,
30). However, as discussed in Moosavi and Strube
(2016), each of these metrics has their shortcom-
ings: While MUC is the least discriminative one,
B³, CEAF (as well as BLANC) show a mention
identification effect, meaning that the score im-
proves notably if a mention is identified and the
detection of coreference links has a much smaller
impact on the scores. To overcome this bias in
favour of mention detection, Moosavi and Strube
(2016) propose LEA, a link-based entity-aware met-
ric.

2.4 Annotated resources

There exist a number of corpora for German anno-
tated with coreference chains. However, none of
them contains simultaneous interpreting, and only
the small LeiKo corpus (Jablotschkin and Zins-
meister, 2020, 2024) contains Easy German with
an annotation layer for coreference. For the for-
mer, resources containing spoken language pro-
duction could be of relevance. For instance, Par-
CorFull (Lapshinova-Koltunski et al., 2018) and
ParCorFull2.0 (Lapshinova-Koltunski et al., 2022)
contain transcripts of TED talks annotated with
coreference chains. The German texts in this cor-
pus represent written translations of the English
transcripts. The corpus GECCo (Kunz et al., 2021)
contains coreference annotation of spoken parts
as well, e.g. academic speeches, transcribed inter-
views, transcripts of TV talkshows in English and
German. They are all original spoken text produc-
tion and there is interpreting available. Studies
show that interpreting possesses a number of lin-
guistic characteristics that set it apart as a unique
language product, different from other types of
spoken production (see e.g. Lapshinova-Koltunski
et al., 2021). German translations annotated with
coreference are also contained in the corpus de-
scribed in Grishina and Stede (2015). However,
no simplified texts are included. Further corpora
with coreference annotation of written Standard
German include the richly annotated Potsdam Com-
mentary Corpus (PCC, Stede and Neumann, 2014;
Bourgonje and Stede, 2020) containing newspa-
per commentaries and the TüBa-DZ treebank (Hin-
richs et al., 2004; Naumann, 2006) based on diverse
newspaper articles from die tageszeitung.

2.5 Variation in coreference features

As already introduced above, coreference chains
contain linked mentions of the same entities
throughout a text. These mentions are realised
by nominal phrases, pronouns and other linguis-
tic means. Previous studies show that various text
types—genres or registers—may have preferences
for certain types of linguistic devices (Lapshinova-
Koltunski and Kunz, 2020). Knowledge on these
preferences is important, as they may impact per-
formance of coreference resolution systems.

There are studies showing that register and
mode have an impact on anaphora prediction mod-
els (Zeldes, 2018). Hence, knowledge of genre-
or mode-dependent differences in coreference phe-
nomena is useful for coreference resolution that
requires domain adaptation (Poesio et al., 2024;
Roesiger and Teufel, 2014; Uryupina and Poesio,
2012; Yang et al., 2012; Apostolova et al., 2012).

Dealing with specific types of texts, we expect
to identify specific coreference features typical for
either Easy German or simultaneous interpreting.
Additionally, we expect to find coreference features
that are common in both of these language products
as they are both prone to linguistic simplification.

2.6 Coreference in simplified German

There is only very limited work on coreference in
simplified language. Wilkens and Todirascu (2020)
and Wilkens et al. (2020) analyse coreference in
simplified French texts. They report a rich set
of corpus statistics on a small parallel corpus of
French narrative texts simplified for dyslexic chil-
dren. An important finding is that the simplified
texts have more coreference chains with lexical
noun phrases than with pronouns (p. 96).5

Switching to simultaneous interpreting in Ger-
man, as can be seen from example (3), the English
source contains the chain the practice of sandblast-
ing – which – jeans sandblasted with mentions
filled with a relative pronoun and a full lexical
phrase. At the same time, the interpreting into Ger-
man contains a demonstrative pronoun (das) and
an adverb (so) instead. From the lexical point of
view, the means of referring are simpler in the in-
terpreted output. In contrast, the coreference chain
in the Easy German example (4) contains no pro-

5Based on their analyses, the authors write simplification
guidelines and create another corpus with manual simplifica-
tions, on which they then evaluate a rule-based system. We
would like to thank the reviewer who pointed out this relevant
work to us.
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forms, but lexical repetitions as a simplification
strategy. In addition, the anaphors are highlighted
by being positioned sentence-initially.

(3) Original: In particular, I want to draw atten-
tion to the practice of sandblasting of jeans
which happens more in Bangladesh than
anywhere else in the world. Up to one
hundred million pairs of jeans sandblasted
a year being export from Bangladesh.
SI: Aber was dort in Bangladesch passiert,
ist weiter eine Bedrohung für die Gesund-
heit der Arbeitnehmer, insbesondere die
Sandstrahlmethode für Jeans. Das wird
in Bangladesch vor allen Dingen durchge-
führt. Einhundert Millionen Jeans werden
so hergestellt und exportiert pro Jahr.

(4) In Hamburg sind am Wochen·ende
2 große Veranstaltungen. Diese 2 großen
Veranstaltungen sind: • Ein Musik·fest.
• Und eine Sport·veranstaltung.
Die 2 großen Veranstaltungen sind
in St. Pauli. [. . . ] Und die 2 großen
Veranstaltungen sind [. . . ] Zu
diesen 2 großen Veranstaltungen kom-
men sehr viele Menschen. (There are
2 big events in Hamburg this weekend.
These 2 big events are: - A music festival.
- And a sports event. The 2 big events are
in St. Pauli. [. . . ] And the 2 big events
are [. . . ] A lot of people come to
these 2 big events.)

Overall, we expect to find more accessible forms,
i.e., subjects and direct objects, as well as demon-
strative pronouns in both simplified variants of Ger-
man if compared to Standard German. However,
we also expect to find differences across the two
variants. In Easy German, we expect to find fewer
personal pronouns and more lexicalised subjects,
due to the achievement of ease in perception for
the readers (e.g. Bock and Pappert, 2023; Bredel
and Maaß, 2016; Netzwerk Leichte Sprache, 2022).
In simultaneous interpreting, instead, we expect to
find more personal pronouns and fewer lexicalised
subjects, as pronouns are shorter and easier to pro-
duce (e.g. He et al., 2016).

3 Methodology

3.1 Data

For our analyses, we use two different sets of data:
first, texts in Easy German and Standard German
from DE-Lite v1 (Jablotschkin et al., 2024), which
covers a number of online text genres. Second, tran-
scribed texts of (spoken) German that were simul-
taneously interpreted from English into German
extracted from EPIC-UdS (Przybyl et al., 2022),
a multilingual parallel and comparable corpus of
simultaneous interpreting of political speeches held
by members of the European Parliament. The in-
terpreted speeches were manually transcribed.

The automatic annotation was performed on a
sample of about 4,700 texts from DE-Lite v1. This
subcorpus contains about 1.2 million tokens. More-
over, DE-Lite also comprises comparable texts in
Standard German, about 800 texts and 1.1 million
tokens. For simultaneous interpreting, we used a
sample of 137 texts of German interpreting from
English extracted from EPIC-UdS.

For the manual correction, we identified eight au-
tomatically annotated texts of similar length (four
text in Easy German from different genres and four
text of simultaneous interpreting).

3.2 Automatic annotation

To analyse coreference, we annotated the data
with the state-of-the-art coreference resolver Cor-
Pipe (Straka, 2023a) that won the CRAC 2023
shared task on multilingual coreference resolu-
tion (Žabokrtský et al., 2023). CorPipe is a sys-
tem for multilingual coreference resolution that
was trained on all corpora available in CorefUD
1.1 (Nedoluzhko et al., 2022). The underlying
training data for German include two corpora: Par-
CorFull (Lapshinova-Koltunski et al., 2022) and
PCC (Bourgonje and Stede, 2020) (see also Sec-
tion 2.4). Both corpora contain manual annotations
of coreference chains. However, their annotations
differ in their definitions of certain structures. One
striking difference is the definition of the mention
span. While the PCC implements the principle of
maximum mention span, which includes, for exam-
ple, leading prepositions such as in the span wegen
seiner Situation (‘because of his situation’),6 Par-
CorFull restricts the mention span in such cases

6This is a residual of the syntactic annotation in the Tiger
corpus which opted for ‘flat’ prepositional phrases without a
hierarchically embedded noun phrase, see e.g. the discussion
in Dipper and Kübler (2017).
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to the nominal core (here: seiner Situation) (see
Nedoluzhko et al. 2021 for a detailed description
of the annotation regimes of all CorefUD 1.1 cor-
pora). CorPipe performs coreference resolution
in two steps: mention detection and coreference
linking. Unlike end-to-end resolution systems, this
approach makes it possible to detect singletons
(Straka, 2023b, 41).

Since CorPipe requires tokenization and morpho-
syntax supplied by UDPipe 2 (Straka, 2018), the
outputs in our corpus contain annotations of not
only coreference chains, but also syntactic func-
tions and parts of speech based on Universal De-
pendencies (UD) and Universal POS tags (UPOS),
see Nivre et al. (2020) for more details. We use
this information to analyse linguistic features of
annotated mentions that are members of entity sets
in both simplified variants and also in a subcorpus
of written Standard German, see Section 4.3.

3.3 Annotation study

In order to get insights into the quality of automatic
annotation and into typical features of simplified
language products that are not captured satisfacto-
rily by automatic annotation, we conducted an an-
notation study:7 Two student annotators performed
manual correction on a small subset of the auto-
matically annotated data (four Easy German texts
and four interpreted texts, cf. Section 3.1) using
CorefAnnotator (Reiter, 2018), a tool for man-
ual coreference annotation. Correction steps in-
cluded adjustment, deletion or addition of mention
spans and reorganisation of mentions into appro-
priate equivalence sets (i.e., entities). We analysed
annotation divergences with respect to both anno-
tators, focusing on mention detection and saving
a deeper investigation of coreference linking for
future work.

We also calculated inter-annotator agreement
(IAA, see details in Section 4.1 below) which will
help us analyse annotation problems and some of
the specificity of simplified language. We lever-
age these system measures also to report human
inter-annotator agreement. We do not state chance-
corrected values, such as weighted α (Passonneau,
2006), since their interpretability and comparabil-
ity for measuring agreement of manual coreference
annotation are open to doubt (cf. Paun et al., 2022,
pp. 66-70).

7Our annotation guidelines in German are available here:
https://www.fdr.uni-hamburg.de/record/17944.

4 Results

4.1 RQ1: Evaluation of Coreference
Annotation

We start by analysing the manual correction of a
small subset of eight automatically annotated texts
by two student annotators (four EG texts and four
SI texts with about 48.5 mentions per text detected
by CorPipe on average [median]), see also sec-
tion 3.1, and calculating inter-annotator agreement.

Table 1 and Table 2 report automatic annotation
quality in terms of mention detection as well as
all of the scores mention in Section 2.3 against
the manual corrections of annotator 1 and annota-
tor 2, respectively. Instead of performing adjudica-
tion and creating a gold annotation we scored the
automatic annotation against both manual annota-
tion sets individually. The scores were calculated
with the Reference Coreference Scorer (Pradhan
et al., 2014) and the CoVal Scorer (Moosavi et al.,
2019). Both scorers take CoNLL files as input,
not CoNLL-U files. This means that no syntactic
information, such as head token, is stored in the
evaluated files and only exact matches are consid-
ered matches.

Recall Precision F1
mentions 74.95 90.18 81.87
MUC 63.75 87.43 73.73
B³ 64.73 87.11 74.27
CEAFm 69.82 84.01 76.26
CEAFe 71.26 77.13 74.08
BLANC 55.07 84.86 66.77
LEA 59.61 77.97 67.56
CoNLL score – – 74.03

Table 1: CorPipe vs. annotator 1

In Table 1 all F1 scores are higher than in Table 2.
This shows that the automatic annotation set and

Recall Precision F1
mentions 66.98 81.05 73.35
MUC 57.20 80.33 66.82
B³ 55.55 76.03 64.20
CEAFm 60.45 73.28 66.25
CEAFe 58.86 63.24 60.97
BLANC 48.33 72.53 57.96
LEA 49.56 65.72 56.51
CoNLL score – – 64.00

Table 2: CorPipe vs. annotator 2
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the manually corrected version of annotator 1 are
more similar to each other than the automatic an-
notation and the manually corrected version of an-
notator 2. Moreover, in all of the scores Precision
is higher than Recall, meaning that the annotators
added more mentions and links than they deleted.
We therefore provide a qualitative analysis of False
Negative mentions in Section 4.2.

In the CRAC 2023 shared task, CorPipe achieved
a CoNLL score of 72.12 % for the ParCorFull test
set and 71.09 % for the PCC test set (Straka, 2023b).
These results are slightly lower than our result com-
pared to annotator 1, which was 74.03 % (see Ta-
ble 1). However, the original results are much bet-
ter than our result compared to annotator 2 (64.00
%, see Table 2). To understand the quality of the
coreference linking and its relation to phenomena
of simplification, further analysis is required.

While Table 1 and Table 2 provide overall scores
for the annotated data, Figure 1 allows a more fine-
grained analysis: By calculating F1 scores of men-
tion identification for the individual texts, we show
that automatic annotation quality differs consider-
ably across texts. While the score lies between 76
(text 2) and 86 (text 5) for annotator 1, the span for
annotator 2 is even greater and lies between 60 for
text 4 and 88 for text 1. Inter-annotator agreement
in terms of F1 of mention identification is lowest
for text 6 (63) and highest for text 1 (92). Numbers
for comparing annotator 1 and annotator 2 directly
can be found in Table 3 and Table 4 in the appendix.

Some of the deviations between human annota-
tors and model performance is due to the fact that
the model was trained on different corpora based
on partly diverging guidelines. Hence the model’s
training data consisted of diverging annotations
which leads to seemingly inconsistent model deci-
sions, e.g., with respect to the yield of mentions by
including/excluding prepositions (cf. Section 3.2).

4.2 RQ2: Specific Annotation Problems of
Simplified German

By qualitatively analysing divergences between au-
tomatic and manually corrected annotations, we
were able to identify some coreference features
that are related to simplification and that are not
(systematically) captured by automatic coreference
resolution. Even though we did not perform adjudi-
cation to create a gold annotation set, the categories
presented in this section repeatedly appeared in the
two annotators’ corrections. Due to the costly pro-
cess of manual data creation and the resulting small

sample size, the findings presented here can barely
be analysed statistically and mainly serve as a basis
for further hypotheses and exploration. Further-
more, since annotators added more mentions than
they deleted (see Section 4.1), we focus on False
Negatives of the automatic annotation.

First of all, we detected a frequent use of demon-
strative pronouns and pronominal adverbs in both
simplified language products. While they are pri-
marily used to reduce syntactic complexity in Easy
German, they are also a typical feature of inter-
preted language. They have a short form and al-
low for packing and wrapping larger information
pieces into smaller units, and are therefore fre-
quent in interpreted texts (cf. example (3)). In
our data, a relevant proportion of automatically
detected singletons constituted demonstrative pro-
nouns or pronominal adverbs. In the course of man-
ual correction, the annotators identified correspond-
ing antecedents which often were verb phrases or
whole sentences but could also be (complex) nomi-
nal phrases. Non-nominal antecedents are one of
the most frequent categories of False Negatives in
our automatically annotated data.

(3) Genau wie die Vorsitzende des Ausschusses
habe ich große Sympathie für Kommissar
Kovács [wegen seiner schwierigen Situation]1.
[Er versucht jetzt diese Besteuerungsregelung
da durch die Maschinerie der Gemeinschaft
zu bringen]1. Und [dafür]1 braucht er größt-
möglichen politisches Taktgefühl wegen der
Einstimmigkeit.

(SI_EN_DE_029: Like the chair person of our
committee I would like to sympathise with
the Commissioner with Commissioner Kovács
[because of his difficult situation]1. [He is now
trying to get this taxation regulation through
the Community machinery]1. And [for this]1
he needs the greatest possible political tact
because of the unanimity.)

(4) [Einige Züge]1 fallen am späten Abend aus.

Und [einige Züge]2 fallen am frühen Morgen
aus.

Wir wissen nicht: Wie lange fallen [die
Züge]1,2 aus?

(m_3045_easy: [Some trains]1 late at night
are being cancelled. And [some trains]2 early
in the morning are being cancelled. We don’t
know: How long are [the trains]1,2 being can-
celled?)
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Figure 1: Agreement scores (F1) of mention detection per manually corrected text (Text 1-4: EG; Text 5-8: SI)

(5) Und da müssen wir uns jetzt wirklich einmal
darauf konzentrieren auch [diese praktische
Hilfe]1,2,3 zu leisten. [Geld]1 [Trinkwasser]2
[Strom]3.

(SI_EN_DE_114: And we really have to fo-
cus there now on also giving [this practi-
cal help]1,2,3. [money]1 [drinking water]2
[electricity]3.)

(6) 27 Länder in Europa haben sich [zu einer
Gruppe]1 zusammen-geschlossen.

[Die Gruppe]1 heißt: Europäische Union.

[Dazu]1 kann man auch kurz sagen: EU.

Die Länder [in der EU]1 wollen zusammen
politisch und wirtschaftlich stärker sein.

(p_806_easy: 27 countries in Europe have
formed [a group]1. [The group]1 is called:
European Union. A shorter name [for this]1 is:
EU. Together, the countries [in the EU]1 want
to be politically and economically stronger.)

(7) Deshalb brauchen wir auch mehr
[Auszubildende]1.

[Auszubildende]1 sind junge Menschen.

[Diese jungen Menschen]1 lernen einen Beruf.

(m_3045_easy: That is why we also need
more [trainees]1. [Trainees]1 are young peo-
ple. [These young people]1 learn a profes-
sion.)

The automatic annotation also didn’t capture
split antecedents, which are frequent in Easy Ger-

man text because they allow for syntactic and con-
tent simplification. In example (4), the sentence
segment Einige Züge fallen [...] aus is repeated.
This way, it’s possible to avoid coordination ellip-
sis. At the same time, the discourse model of the
reader is only slowly enriched with information
and the meaning of the discourse segment is made
more explicit. However, reference resolution be-
comes more complex because in the last sentence,
two expressions that originally establish reference
separately from each other have to be subsumed
under the broader reference of the expression die
Züge.

Split antecedents also occur in the interpreting
data where they have an argumentative function. In
example (5), the speaker emphasises the necessity
to provide practical help by splitting up the vague
term help into smaller and more concrete measures
in order to specify what kind of help is needed.
The help measures are listed asyndetically, which
is another source of false negatives in our data: In
lists, CorPipe usually overlooks some or even all
mention spans. Lists are frequent in Easy German
as well where they are typically used to present
information in a syntactically simple way or to
specify concepts that are not considered part of the
readers’ background knowledge.

In example (6), different terms are used in or-
der to refer to the same concept, namely the Euro-
pean Union. For Easy German, it is usually recom-
mended to avoid using different terms for the same
concept. However, as can be seen in example (6),
lexical substitution also occurs as part of concept
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explanations. The same holds true for example (7),
where both Auszubildende and diese jungen Men-
schen refer to trainees. Concept explanations are
necessary in Easy German because potential read-
ers are not expected to have large background and
world knowledge, and consequentially we hypothe-
sise lexical substitution to be frequent in Easy Ger-
man as well. However, lexical substitution, which
occurs in our interpreted as well as Easy German
data, often isn’t detected by automatic coreference
resolution.

Example (7) presents another typical feature of
Easy German which is neither captured by most
coreference guidelines for German nor by auto-
matic coreference resolution: The quantified nomi-
nal phrase mehr Auszubildende and the bare plural
Auszubildende do not refer to an individual ref-
erent. Instead, as part of a concept explanation,
they generically refer to a category of referents.
According to the annotation guidelines, generic
expressions should not be annotated as referring
expressions However, since we were aware that
they play an important role in Easy German texts,
we specifically instructed the annotators to look
out for them. Even though not all indefinite noun
phrases are generic, in our data they constitute a
frequent category of false negatives.

4.3 RQ3: Coreference features in simplified
German

Finally, based on the syntactic functions of their
heads, we selected a subset of automatically de-
tected mentions in 4,700 Easy German texts, 800
Standard German texts, and 137 simultaneously
interpreted texts (see Section 3.1). We analysed the
proportions of the following UD labels (Nivre et al.,
2020) with regard to all mentions (see Figure 2):
nsubj, nsubj:pass, nmod, obj, obl and obl:arg.
These labels were selected based on the assump-
tion that their proportions reflect differences in the
expression of accessibility in the respective subcor-
pora (see Section 2.2). In a second step, we anal-
ysed the distribution of POS labels (STTS, Schiller
et al., 1999) among the pre-selected dependency
labels (see Figure 3).

As seen from Figures 2 and 3, we observed simi-
lar tendencies in the distribution of both syntactic
functions and parts-of-speech in both variants of
simplified German. Interestingly, both simplified
variants use more subjects as compared to standard
German (see Figure 2). However, they differ in
terms of the form of the subject mention: While

Easy German prefers to use common nouns, per-
sonal pronouns are used in simultaneous interpret-
ing. These findings confirm our assumptions about
the distribution of more accessible forms, see Sec-
tion 2.6 above.

However, our manual pilot analysis in Section
4.2 revealed that certain types of mentions remain
undetected by CorPipe. That is why the quantita-
tive distributions of syntactic functions and parts of
speech among the syntactic heads of mentions only
provide a first glimpse of morphosyntactic features
of mentions in the respective subcorpora. Based
on our manual analysis, we assume that there is
also a considerable amount of verb phrases or even
larger units of text that constitute antecedents of
demonstrative pronouns (cf. ex. (3)) and that the
numbers of mentions with nominal head must be
even higher than depicted in Figure 3 due to struc-
tures like split antecedents, lexical substitution and
generic coreference that are not captured by Cor-
Pipe (see examples (4) to (7)).

In addition, since we only analysed mention
heads, we cannot make conclusive remarks about
the accessibility of mentions, which is often de-
termined by modifiers, articles or attributes (see
Section 2.2). For example, mentions with a nom-
inal head (NN) preceded by a definite article are
more accessible than mentions with a nominal head
preceded by an indefinite or no article.

5 Conclusion and Discussion

In this study, we use automatic coreference annota-
tion to detect coreference chains in two variants of
simplified German. Although these language prod-
ucts diverge in terms of simplification driving fac-
tors (producer’s vs. receiver’s perspective), we find
some similarities in their linguistic features. We
also show that the specificity of simplified language
may cause annotation errors, especially in case of
non-nominal antecedents and split reference. We
manually explore these errors to find out that the
main reason for their occurrence is the linguistic
specificity of simplified texts: most frequent errors
are observed in the linguistic constructions that
are typical for both Easy German and interpreting.
This points to the need for dedicated resources that
are specifically trained on simplified German. This
underlines the need for domain adaptation in coref-
erence resolution on the data for less-ressourced
and less-researched language products.
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Figure 2: Syntactic functions (UD labels) of mention heads. Total: All automatically detected mentions

Figure 3: POS (STTS) of mention heads. Total: Automatically detected mentions with one of the following UD
labels: nsubj, nsubj:pass, nmod, obj, obl, obl:arg

Limitations

One of the limitation of our study is that the we
look into the annotation errors rather exploratively
without providing statistical analysis on the errors
types. Also, the overall dataset for simultaneous
interpreting is relatively small. We also understand
that the two variants of simplified German are not
entirely comparable. So, we are aware of the genre
effect that may have an impact on our results. To
validate this, we would need to compare our results
with the distributions in spoken German too, which
remains beyond the scope of this paper. Also, we
do not perform any comparison with annotation
errors in standard German. However, we know that
CorPipe performs slightly better on commentary
texts than on spoken data, as reported by Straka
(2024, 2023a), which may have an impact on our
results too. Another problem is that we have some
errors in the pre-processing that also impact the
automatic divergences. For instance, segmentation
errors in the automatic pipeline that introduce er-
roneous sentence boundaries affect mention detec-
tion, because mention spans never cross a sentence
boundary.
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A Appendix

Recall Precision F1
mentions 74.57 74.15 74.36
MUC 67.33 66.15 66.73
B³ 64.64 64.55 64.59
CEAFm 67.87 67.35 67.61
CEAFe 62.45 62.91 62.68
BLANC 58.92 60.54 59.71
LEA 57.61 57.09 57.35
CoNLL score – – 64.67

Table 3: Annotator 1 vs. Annotator 2

Recall Precision F1
mentions 74.15 74.57 74.36
MUC 66.15 67.33 66.73
B³ 64.55 64.64 64.59
CEAFm 67.35 67.87 67.61
CEAFe 62.91 62.45 62.68
BLANC 60.54 58.92 59.71
LEA 57.09 57.61 57.35
CoNLL score – – 64.67

Table 4: Annotator 2 vs. Annotator 1
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Abstract

The Givenness Hierarchy (GH) models how
speakers signal cognitive statuses of referents
in discourse, playing a key role in computa-
tional models of situated communication and
in applied linguistics. We present an empiri-
cal method to evaluate the Givenness Hierar-
chy using large corpora with coreference an-
notations. Our findings confirm predicted as-
sociations between cognitive statuses and re-
ferring expressions across multiple languages,
while also highlighting limitations, notably dif-
ficulties to approximate the cognitive status
UNIQUE and to account for demonstrative
noun phrases. Additionally, we demonstrate
how coreference data can be used to bootstrap
GH annotations, facilitating automatic labelling
of cognitive statuses and advancing discourse-
aware NLP. Finally, we provide conversion
scripts to transform Japanese and Korean cor-
pora into CorefUD-compatible formats, sup-
porting broader multilingual research despite
current annotation and licensing constraints.
Our work bridges theoretical linguistics and
practical computational methods, offering a
scalable framework to study givenness across
diverse languages.

1 Background and Motivation

Effective reference – whether by humans or dia-
logue systems – requires contextually appropriate
expressions. As illustrated by variations in transla-
tion, language offers multiple ways to express the
same referent: While Challoner (1749-1752 (revi-
sion) translated 1Ki, 11,28 with pronoun and eli-
sion (Solomon seeing him (...), Ø made him chief
...), Darby (1890) used a definite NP and a pronoun
(Solomon saw the young man (...), and he made
him ruler ...). To account for the functional dimen-
sion of this flexibility, various theories of informa-
tion status (Prince, 1981; Givón, 1983; Ariel, 1990;
Chafe, 1994) posit hierarchies or scales mapping
referential forms to degrees of ‘salience’, ‘acces-

sibility’, or ‘givenness’, but while they agree on
broad trends – pronouns denote high degrees of
givenness, full NPs low – they differ in terminol-
ogy and granularity. From the set of prominent
theories, we adopt the Givenness Hierarchy (GH)
by Gundel et al. (1993) for three reasons: (1) It
is a relatively detailed theory in that it accounts
not only for pronominal, nominal, definite and in-
definite forms, but also for different qualities of
demonstrative pronouns and demonstrative NPs, as
well as for possible deviations from the expected
encoding of the statuses it proposes; (2) unlike any
other of the aforementioned theories, it comes with
explicit, and practical annotation guidelines;1 and
(3) the theory and its annotation guidelines have
been applied to a considerable number of typolog-
ically diverse languages.2 Moreover, the GH is
while widely cited in technical contexts (Han et al.,
2022; Pal et al., 2021; Spevak et al., 2022; Hig-
ger and Williams, 2024; Daigler et al., 2024),3 as
well as in applied linguistics (Gundel and John-

1There are other annotation guidelines for information sta-
tus, e.g., Nissim et al. (2004); Ritz et al. (2008); Baumann and
Riester (2013); Dyer et al. (2024), but these aim to generalize
over multiple theories and are thus not directly comparable.
In particular, they cannot be directly used to evaluate specific
claims of Gundel et al.’s theory if the underlying theories
did not share the same predictions, esp., regarding the use of
demonstratives.

2Aside from the major languages considered here and by
Gundel et al. (1990, 1993), this also includes Breton (Hedberg
and Schapansky, 1996), Yapese (Ballantyne, 2004), Kumyk
(Humnick, 2005), Irish (Mulkern, 2008), Kaqchikel Maya
(Hedberg, 2010), Eegimaa, Ojibwe (Gundel et al., 2010), Farsi
(Khormaee and Skrouchi, 2015), Luo (Omondi, 2016) and
American Sign Language (Swabey, 2011), among others.

3In the era of LLMs, many of the challenges that theories
of information status such as the Givenness Hierarchy account
for – reordering constituents, anaphor resolution and genera-
tion, prediction and interpretation of non-canonical structures,
lexicalizing frames, and handling grammatical voice – may
be solved to some extent in practice, but only for major lan-
guages and but without any insight into the underlying pro-
cesses and their actual effects on the interlocutors, thus not
directly applicable for low-resource languages or in controlled
and vulnerable settings such as in human-robot dialog.
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son, 2013; Kim, 2016; Velnic, 2018; Krüger, 2018).
At the same time, however, its empirical basis re-
mains limited. Early support came from elicita-
tion experiments (Gundel et al., 1990, 1993), but
few annotated corpora are publicly available, the
limiting replicability and application. Here, we
provide a technical operationalization of the Given-
ness Hierarchy on the basis of existing corpora with
coreference annotation for all languages originally
considered by Gundel et al. (1990, 1993) to mo-
tivate and develop their theory (English, Arabic,
Chinese, Japanese, Korean, Russian, and Spanish),
with the goal of to evaluate the theory, to test and
confirm its predictions, and to develop a method for
bootstrapping language-specific givenness hierar-
chies for other languages from existing coreference
annotation.

Gundel et al. (1993) postulate a hierarchy of
six cognitive statuses and their alignment with pro-
totypical expressions. Below, these ranked from
most to least accessible

1. in focus: referent is the current focus of atten-
tion and highly prominent in the local context
(∼ he, she).

2. activated: referent is present in the local con-
text (∼ this/that, this man).

3. familiar: referent is known to both speaker
and hearer from prior discourse (∼ that man).

4. unique: the referent is uniquely identifiable
to hearer and speaker (∼ the man).

5. referential: the speaker refers to a specific
but possibly unknown entity (∼ this guy).

6. type (type identifiable): hearer can identify
the category of a referent (∼ a man).

Unlike other theories, this is an implicative hier-
archy, i.e., a status higher in the hierarchy entails
all lower statuses, so, it can be referred to with
their forms – and speakers may use such devia-
tions to convey implicatures (e.g., using a definite
NP for an in-focus entity to emphasize contrast).
Gundel et al. (1990,1993) provide predictions for
English, Arabic, Chinese, Japanese, Korean, Rus-
sian, and Spanish and evaluate these in elicitation
experiments. However, no annotations seem to
be publicly available, and the numbers they (and
many later papers) report do not always reach the
levels of statistical significance. Table 1 replicates
their English data and adds Pearson correlation
and binary χ2 significance scores for each pair-
ing of referring expressions and statuses, and this
reassessment confirms key GH assumptions: sig-

nificant positive correlation between in focus and
pronouns, unique and definite NPs, type and in-
definite NPs. It also shows negative correlations
where expected. However, data on demonstratives
and emphatic pronouns remain sparse, indicating
a potential weak spot in theory – but, ironically,
these are the very predictions that distinguish GH
from competing theories: While the general pattern
of pronoun > definite NP > indefinites is generally
accepted, its fine-grained distinctions, especially re-
garding demonstratives, remain controversial. Sid-
dharthan et al. (2011) argue that GH conflates di-
mensions, and psycholinguistic experiments such
as Xu and Xiang (2021) failed to confirm some
predicted effects. The status of demonstratives is
particularly contested: In direct opposition to Gun-
del et al. (1993), Sgall et al. (1986) claimed that
demonstrative pronouns rank higher than personal
pronouns, and Ariel (1991) saw demonstrative NPs
as lower than definites.

To address data sparsity and controversies – but
also potential biases of annotators who are aware
that certain forms indicate certain categories –,
we propose a new approach: extrapolating cogni-
tive status from existing corpora with coreference
annotation, which substantially exceed the tradi-
tional elicitation experiments in scale. In the last
years, this approach has become feasible due to
the increased availability of corpora with coref-
erence annotation, covering now all original GH
languages. In comparison with earlier elicitation
methods, these offer higher coverage – hundreds
or thousands of tokens per referential form – and
reduce circularity risks. We replicate the original
GH setup by focusing on the same referential ex-
pressions,4 to the extent they are annotated.5 By
grounding the evaluation of the Givenness Hierar-
chy in independently created coreference corpora,
we aim to reassess its predictions and offer a scal-
able, reproducible methodology to support or re-
vise its theoretical foundations. We are specifically
interested in debated GH claims that are not suffi-

4This is particularly important for calculating totals. In
particular, we do not evaluate against all referring expressions,
but only against (the total of) those considered by Gundel et
al., so that certain categories, e.g., first- and second-person
anaphora, pronominal adverbs, quantified NPs and proper
names are excluded.

5Some corpora have an annotation bias, e.g., we have
no annotation of zero anaphora (Ø) for Korean and Russian,
and some corpora, in particular, OntoNotes (Pradhan and
Xue, 2009), only provide annotations for specific referents,
effectively neglecting the type category. No corpus we worked
with has annotations of event anaphora.
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Table 1: Cognitive statuses and referential expressions in English (Gundel et al., 1993), with correlation and χ2

significance, Gundel et al.’s absolute numbers are provided in Tab. 7

ciently substantiated by earlier empirical analyses,
in particular, the relative givenness of demonstra-
tives in comparison to pronouns and definite NPs.

2 Experimental Setup

We provide an operationalization of the Givenness
Hierarchy on the basis of the original annotation
guidelines (Gundel et al., 2006). These instruct an-
notators to assign the highest applicable cognitive
category according to the following overview. In
addition to the original instructions, we indicate
whether a criterion is directly implementable (✓),
can be heuristically approximated ((✓)), or not op-
erationalizable (?). We also provide approximation
criteria, but only operate with those that do not in-
troduce dependencies from surface forms. These
are marked by (✓∗).
Given a referring expression e and referent r:

• annotate in focus if
✓ r is subject of the preceding utterance (∼

nsubj)
✓ r mentioned earlier in same utterance
✓ r mentioned in both of the two previous

utterances
(✓) r is the event of the preceding utterance

(∼ neuter weak pronouns without an-
tecedent)

? r is a discourse topic inferred but not overtly
mentioned

• activated (if not in focus and):
✓ r is mentioned in one of the two previous

utterances
(✓∗) r evoked by gesture or gaze (n/a, we

operate with written text)
? r is an associated proposition or speech act

• familiar (if not activated or in focus and):
✓ r previously mentioned
? r known from shared background

• unique (if not familiar, etc):
(✓∗) e contains sufficient lexical material to

create a unique referent (∼ by the use of
more than 3 content words)

(✓) r linked via lexical association to acti-
vated referent (∼ possessive pronouns)

• referential (if not unique, etc.):
✓ r mentioned later in discourse
(✓) r linguistically marked for discourse

prominence
• type (if not referential, etc.):

(✓∗) e encodes interpretable conceptual con-
tent (∼ anything subject to coreference
annotation)

Out of 15 criteria, 6 are directly implemented, 6
can be approximated, and 3 not covered. By includ-
ing surface criteria, we can cover up to 80% of the
original protocol – although, here, we decided to
remain agnostic about surface forms to avoid circu-
lar reasoning and operate only with (approxiations
for) 9 criteria (60%). While this introduces some
noise, we assume it will not preclude meaningful
generalizations if statistically significant patterns
emerge. Additional design decisions include equat-
ing ‘utterance’ with sentences (based on provided
parse or produced by a parser), and the definition
of ‘mentioned in’ as ‘having an anaphor/antecedent
annotated in’. For pro-drop languages without Ø
annotation (Russian, Korean), this leads to an un-
derrepresentation of in focus and activated. As
none of our corpora systematically annotates event
anaphora; such cases may be wrongly treated as
discourse-new.

Aside from Gundel et al. (2006), there are alter-
native GH operationalizations that reflect language-
specific needs or annotation trade-offs,6 but mostly

6Alternative operationalizations of the GH include Hen-
schel et al. (2000), who redefine in focus as subject of last
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represent simplifications. We operate with Gun-
del et al. (2006) to order to follow Gundel et al.’s
original six-way distinction.

3 Empirical Evaluation

Based on corpora with coreference annotation, and
using the heuristics described above, we compute
Pearson’s r and assess correlation significance us-
ing the χ2 test for each pairing of cognitive status
and the type of referring expression. This section
provides aggregate results, with full data in the
Appendix.

Table 2 gives an overview over the corpora
considered, using OntoNotes v5.0 (Pradhan and
Xue, 2009), NTC 1.5 (Iida et al., 2017), Ko-
CoNovel (Kim et al., 2024), and the CorefUD 1.3
(Nedoluzhko et al., 2022) editions of AnCora (Re-
casens and Martí, 2010), ECMT, GUM (Zeldes,
2017), LitBank (Dyer et al., 2024), ParCorFull
(Lapshinova-Koltunski et al., 2018), and RuCor
(Ju et al., 2014).7 These corpora vary in scope,
genre, and annotation practices. Not all provide full
coreference coverage – OntoNotes only annotates
specific, referential entities, while KoCoNovel re-
stricts to protagonists, omitting inanimates. Event
anaphora are generally excluded. Because of the re-
sulting noise, it is thus important to interpret them
in conjunction with data from Gundel et al. (1990)
and later papers that is smaller in scale but pro-
duced under more controlled conditions. As for
CorefUD corpora, we use the existing UD anno-
tations for classifying referring expressions and
extracting grammatical features (esp. nsubj), for
other corpora, we operate with automated parses
obtained from spaCy, resp., for Arabic, spaCy-
udpipe (i.e., UDpipe 2.5). We operate with sen-
tence boundaries as provided and use those pre-
dicted by the parsers where these are lacking.

utterance plus all discourse-old entities, with an accompany-
ing salience ranking based on Grosz et al. (1995). Although
Gundel (1998) also explore this link, they reject scalar models,
preferring categorical distinctions. Henschel et al.’s simplifica-
tion thus collapses several GH categories into the equivalent
of familiar. Another simplification is Traugott et al.’s (2008)
use of only three GH statuses (familiar, unique, referential)
for Old English. For Spanish, (Blackwell and Quesada, 2012)
merged referential and type, and further distinguish between
recoverable and non-recoverable activated referents. How-
ever, it is unclear how to technically operationalize their notion
of recoverability on the basis of coreference annotations.

7Note that for Arabic, OntoNotes reflects Modern Standard
Arabic, which may differ from the spoken varieties used by
(Gundel et al., 1990, undocumented variety) and (Gundel et al.,
2010, Tunesian Arabic).

We distinguish the following types of referring
expressions (cf. Tab. 6 for other languages) :
Ø zero anaphor (if annotated)
pron third-person pronoun (e.g., it)
dem.prox proximal dem. pronoun (e.g., this)
dem.med medial dem. pronoun (e.g., Span. ese)
dem.dist distal dem. pronoun (e.g., that)
dem... N demonstrative NP (e.g., this house)
def N definite NP (e.g., the house)
Ø N bare NP (e.g., Russian dom)
ind N indefinite NP (e.g., a house)
These categories are language-specific and func-
tionally not always equivalent. For instance, me-
dial demonstratives exist only in Spanish, Japanese,
and Korean. Zero anaphors vary in distribution and
constraints; e.g., Spanish allows them for subjects,
only, but Japanese also for objects. The category
Ø N also has different functions languages, depend-
ing on (the lack of) a grammatical opposition with
indefinite or definite NPs.

The Givenness Hierarchy postulates three prin-
ciples to account for deviations from the expected
associations between forms and cognitive statuses:
(1) all statuses can be expressed with forms for
lower statuses (implicative hierarchy), (2) devia-
tions are used to trigger Gricean quantity implica-
tures (and thus, rarer than non-deviations), and (3)
these deviations are monodirectional (downward
only). Statistically, we thus expect positive correla-
tions between statuses and their prototypical form,
absence of low statuses encoded with higher-status
forms, and noise from our heuristic-based status
approximations, with a possible overrepresentation
of type (and, possibly, referential) for actual cases
of event anaphora. Tables 3 and 4 summarize our
results with aggregate correlation data for English
and other languages, respectively. Overall, the re-
ported correlations are statistically significant, but
low, at times, reflecting both imperfections in the
annotation-based cognitive status approximations
and noise in the data.

In all English corpora (Tab. 3), pron correlates
positively with in focus and activated, and nega-
tively with lower statuses, consistent with Gundel
et al. Demonstrative pronouns correlate positively
with activated and negatively with in focus, sup-
porting their distinct status from personal pronouns.
Unexpected positive correlations with referential
and type (in OntoNotes) may result from event
anaphora.

Proximal demonstrative NPs exhibit negative
27



OntoNotes LitBank GUM AnCora NTC KoCoNovel ECMT RuCor
version 5.0 CU 1.3 CU 1.3 CU 1.3 1.5 — CU 1.3 CU 1.3
language ar / en / zh en en es ja ko ko ru
modality written written written/spoken written written written written written
genre news, web, lit literature diverse news news literature news diverse
tokens (K) 325 / 1,750 / 235 190 170 429 1,000 165 439 145

Table 2: Coreference corpora considered (CU = CorefUD)

correlation with in focus and the expected positive
correlation with activated, but also with familiar,
contrary to Gundel et al. This suggests a possi-
ble reclassification aligning them with familiar.
Isolated positive correlations with referential (in
OntoNotes) are in line with predictions for indefi-
nite this, but may be due to the incomplete nature of
coreference annotation. Distal demonstrative NPs
correlate positively with activated and unique in
OntoNotes, and with referential and type in Lit-
Bank. Their inconsistent behavior suggests Gundel
et al.’s hierarchy may not fully explain their use.
Other functions appear to be likely, e.g., the use of
distal demonstratives in comparisons with referents
referred to with proximal demonstratives. Overall,
proximal forms are more frequent (e.g., OntoNotes:
3743 vs. 1904; GUM: 982 vs. 374), possibly due
to their broader use contexts, and these (but only
these), seem to adhere to the expected distribution.

Definite NPs correlate strongly with familiar
and unique. Correlations with lower statuses may
reflect limitations of the approximation of unique
by lexical richness. Still, they tend to encode lower
statuses than demonstratives. As for indefinite NPs,
these are negatively correlated with previous men-
tion (familiar or higher) and positively correlated
with the lack thereof (unique or lower). Again, the
differentiation between unique and lower statuses
may be insufficient to delineate the narrower scope
of indefinite NPs.

As for the cognitive statuses themselves, we see
good evidence for in focus (positively correlated
with the use of third-person pronouns, and only
these) and activated) (positively correlated with
demonstrative pronouns. and only these), as well as
for the differentiation between familiar (negatively
correlated with indefinite NPs) and lower statuses
(positively correlated with indefinite NPs). The
unique status can probably not be approximated
from coreference annotations that would be suffi-
ciently reliable to be used in a meaningful way in
this evaluation. This is different for referential,
which can be easily identified from coreference an-
notation. Yet, in the corpora of (mostly) written

language considered here, there are no referring
expressions that seem to require a differentiation
between referential and type.

For other languages (Tab. 4), pronouns and Ø cor-
relate with in focus, as predicted. The positive
correlations between Ø and activated in Japanese
and Chinese may be due to the fact that these lan-
guages do not limit zero anaphors to subject an-
tecedents and can have more than one Ø as ar-
gument. The positive correlations between third-
person pronouns and ACTIVATED for Russian,
Japanese and Chinese may reflect that in these lan-
guages, pronouns can be more easily replaced by
zero anaphors, so that overt pronouns are more
likely to take on characteristics of stressed pro-
nouns ... that Gundel et al. (1993) associate with ac-
tivated. Demonstrative pronouns correlate with ac-
tivated but not with in focus or with lower statuses,
with the possible exception of Korean. Some type
correlations may stem from exophoric or event-
based reference, especially in dialogue.

Similar to English, demonstrative NPs appear
heterogeneous and hard to interpret. Their negative
correlation with in focus is in line with Gundel et
al., and they seem to be associated with cognitive
statuses at the same level or below demonstrative
pronouns. Noteworthy is the systematic associa-
tion between proximal demonstrative NPs and acti-
vated, which is predicted by Gundel et al. Indeed,
English seems to be exceptional in this regard in
extending the scope of this-NPs to familiar. For
medial and distal demonstrative NPs, there seems
to be no clear positive correlation with any cog-
nitive status. This, again, indicates that the func-
tions of demonstrative NPs (other than proximal
demonstrative NPs) may involve other functions
than givenness marking. Definite NPs correlate
with previous mention (i.e., familiar, for Spanish),
but aside from their negative correlation with in
focus, they can be used for any status at the level
of unique or higher. That we also find correlations
with referential and type may be due to the in-
sufficiencies of our approximation of unique, as
this differentiation, indeed, was already statistically
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Table 3: Aggregate correlations for four English corpora; green indicates significant positive correlations, red
negative (p ≤ 0.01).

Table 4: Aggregate correlations for Arabic, Chinese, Japanese, Korean, Russian, and Spanish. Significant correla-
tions (p ≤ 0.01): positive on the left, negative on the right of each status cell.

significant in Gundel et al.’s original data. As for Ø
NPs, these are negatively correlated with in focus
and activated, and positively with familiar and
lower statuses. This underlines the relevance of the
differentiation between activated and familiar, but
also that Ø NPs cover functions otherwise adopted
by definite and indefinite NPs and are thus appli-
cable to any cognitive status, if the conditions are
met. The correlations of indefinite NPs underline
the importance to differentiating previous mention
(familiar) and the lack thereof (unique or lower).

As for the evaluation of cognitive statuses, the
distribution differences support the differentiation
of in focus (for Ø and pron), activated (for stressed
pronouns and demonstrative pronouns), familiar
(for Ø NPs in languages without grammaticalized
determiners) and statuses lower than familiar (for
indefinite NPs). Again, unique cannot be reliably

differentiated from lower statuses with the heuris-
tics adopted here, but whereas referential can, it
does not seem to be necessary to account for any
of the major classes of referring expressions.

Similarly as for the case of English, we thus
find that pronouns mark higher givenness than
demonstratives, demonstrative pronouns and prox-
imal demonstrative NPs rank above definites and
bare NPs. Medial/distal demonstrative NPs re-
sist straightforward classification and may involve
other pragmatic functions beyond those captured
by the Givenness Hierarchy.

4 Consolidation, Inference and Revision

We would like to combine our findings with those
of Gundel et al. (1993) – who report statistically
significant differences between unique and refer-
ential when accounting for definite NPs –, and
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overall suggest to reconsider the status of referen-
tial. While absent from the original proposal (Gun-
del et al., 1990), this was introduced by Gundel
et al. (1993) specifically to account for indefinite
this in English, but have failed to demonstrate its
(statistical) significance, and neither do our correla-
tions call for a differentiation between referential
and type identifiable.

For this reduced hierarchy of five cognitive sta-
tuses, we find robust evidence both in our data
and Gundel et al.’s: correlations between in focus
and pronouns/Ø; between activated and demonstra-
tives/proximal demonstrative NPs; between famil-
iar and the avoidance of indefinite NPs; between
unique and definite NPs (per Gundel et al.); and
between lower statuses and indefinite NPs. How-
ever, medial and distal demonstrative NPs remain
difficult to classify: neither our data nor Gundel et
al.’s show significant correlations, suggesting these
are sensitive to factors other than givenness.

Further, the approach enables bootstrapping Given-
ness Hierarchies in other languages or for phenom-
ena that Gundel et al. did not originally consider.
For instance, Mulkern (2011) investigates the ref-
erential properties of proper names, distinguishing
between full names (e.g., given name plus surname)
and single names (e.g., family name alone or nick-
names). She suggests that full names align with
unique and single names with at least familiar.

Using the correlation analysis described above,
we can now verify these claims in an empirical
quantitative manner. We approximate the notion
of single name by single token proper names, full
names by multi-token proper names and perform
the evaluation against the OntoNotes corpus, as it is
by far the largest corpus in our sample. The results
(Tab. 5) confirm, indeed, that proper names are as-
sociated with the middle segment of the Givenness
Hierarchy (thus negative correlation with in focus),
and moreover, that short names, or, at least, single-
token names, tend to be associated with higher cog-
nitive statuses than full, resp., multi-token names,
as these differ in their correlation with activated.
As mentioned before, the approximation of unique
from coreference annotations is insufficient, but on
conceptual grounds – as pointed out by Mulkern –,
any element that a hearer can recognize as a proper
name is by definition unique. An interesting obser-
vation is, however, that the cognitive statuses that
full and short names seem to be associated with are
not familiar and unique, as postulated by Mulkern,

but, rather, activated and unique. However, this
may be an artifact of the heuristic approximation
of single names by single tokens and full names
by multi-word expressions, as a considerable num-
ber of single tokens will indeed just represent the
complete name of, say, a country, and these might
behave differently from person names.

We can confirm the general pattern of short
names associated with higher givenness and long
names associated with lower givenness, but it also
seems that further differentiations within the larger
group of proper nouns are likely, with their own
alignments with cognitive statuses, and that these
align with, but complement the distinction of dif-
ferent kinds of proper names studied by Mulkern.
With this in mind, future research may now ex-
plore more fine-grained distinctions of referring
expressions in an empirical fashion, and, poten-
tially, revise the Givenness Hierarchy.

For future studies of the Givenness Hierarchy with
coreference-annotated corpora, we suggest a to op-
erate with a simplified model where the current ref-
erential category is abandoned. However, unlike
(Traugott and Pintzuk, 2008), (Blackwell and Que-
sada, 2012), and (Abisambra Miccheli and Que-
sada, 2023), we do not suggest to merge it with
type, but, instead with unique, as, according to
Gundel et al. (1993), it is a superset of unique,
and it provides clear, verifiable criteria for its dis-
tinction from type: referential can be inferred
from subsequent anaphora. To avoid ambiguity, we
propose renaming this unified category to XREF
(extended referential). While our data could not dis-
tinguish referential from type conclusively, future
research may uncover such distinctions for XREF.
With truly unique referents accumulating in this
category, we would expect that some of the effects
(Gundel et al., 1993) and later studies found for
unique are detectable in this broader category.

5 Results and Perspectives

We describe the empirical verification of the Given-
ness Hierarchy (Gundel et al. 1990, 1993) using
coreference-annotated corpora for the languages
for which this theory has been originally formu-
lated. Unlike the original, small-scale manual an-
notations, our approach relies on publicly available
corpora with coreference annotations, allowing for
statistically significant analyses.

For English and across languages, we confirmed
strong associations between in focus and the use
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Table 5: Distribution of names and approximative cognitive statuses in the OntoNotes corpus compared to other
referring expressions. Colors are used in accordance with Tab. 1.

of pronouns and zero anaphora, whereas all other
types of referring expressions are negatively corre-
lated with in focus. Demonstrative pronouns are as-
sociated with locally evoked (activated) referents;
demonstrative NPs showed similar trends, but me-
dial and distal forms lacked consistent associations
with cognitive statuses. This suggests that such
forms serve specialized discourse functions (e.g.,
deixis, exophora, contrast) beyond simple given-
ness marking and should be analyzed separately
from the hierarchy. Definite NPs (or Ø NPs in lan-
guages lacking definite determiners) tend to occupy
the middle-to-lower part of the hierarchy. However,
the inability to reliably distinguish unique from
referential and type using coreference data makes
it difficult to confirm whether definite NPs require
unique status. While Gundel et al. confirmed this
link experimentally, it cannot be directly replicated
using anaphoric annotation alone. At the lower end
of the hierarchy, indefinite NPs (or Ø NPs in rele-
vant languages) dominate. The absence of previous
mention (the primary criterion for familiar) helps
distinguish them from higher statuses.

Aside from issues with unique and medial/distal
demonstrative NPs, we confirm GH predictions
for Arabic, Chinese, English, Japanese, Korean,
Russian, and Spanish. Despite variation in cor-
pus formats, genres, and annotation schemes, and
a considerable noise arising from the incomplete
nature of coreference annotations in comparison
to Gundel et al. (2006), we observed correlations
sufficiently strong to yield significant results also
for aspects of the Givenness Hierarchy previously
described with insufficient amounts of data, only.

Because of difficulties surrounding the approxi-
mation of unique, we recommend simplifying the
GH by collapsing it with referential into a novel
combined category: XREF (extended referential),
encompassing both unique and referential refer-

ents as defined by the original GH manual, with
the primary criterion for their identification drawn
from the GH definition of referential. With XREF,
future studies may better capture the transitional
space between familiar (hearer-old) and type iden-
tifiable (∼ hearer-new).

Beyond evaluating the Givenness Hierarchy, we
showed how phenomena not originally covered by
the Givenness Hierarchy (the givenness of full and
short names) can be investigated with this method-
ology, leading to insights consistent with previous
qualitative analyses (Mulkern, 2011). This method-
ology can thus infer and extend language-specific
givenness hierarchies. Also, our ability to approx-
imate givenness from coreference annotations is
practically relevant: The procedure introduced in
Section 2 can bootstrap givenness annotations and
thus yield the first available training data for GH
annotations. Such data can support the develop-
ment of automated taggers and serve as evaluation
material for future methods of inducing or predict-
ing givenness – potentially even in the absence of
coreference annotation. Note that labelling cogni-
tive statuses appears simpler and more robust than
full anaphora resolution, while still providing valu-
able discourse-level insights. Thus, extrapolating
GH annotations from coreference annotation may
serve as a useful intermediary task for applications
requiring discourse-aware processing.

We would like to emphasize that – at this stage
– we do not aim to evaluate the theory per se. Al-
though many of the categorizations put forward by
Gundel et al. seem plausibile from a cognitive-
linguistic perspective, and the factors they con-
sider (proximity, previous mention, assumed hearer
knowledge, intention to refer to a specific entity)
certainly play a role, it is not uncontested that in-
formation is, in fact, categorial by nature (Ariel,
1990), and how these categories are differentiated,
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cf. Chiarcos (2010, 2011b,c) for overview, dis-
cussion and criticism, and (Poesio and Modjeska,
2008), (Chiarcos, 2011a) or (Hou, 2021) (among
others) for possible alternatives and their opera-
tionalization. Instead, our primary goal is to demon-
strate the potential for using coreference-annotated
corpora for bootstrapping Givenness Hierarchies
for other languages, and these, in turn, may be use-
ful for the empirical, cross-linguistic evaluation of
the theory, potentially, along with other theories
of reference, accessibility and information status.
We are aware that the approximations suggested
in this paper are, to a large extent, imperfect, but
we would argue that these heuristics nevertheless
capture prototypical examples at sufficient num-
bers, and that statistically significant patterns ob-
served over these allow us to gain insights into the
underlying theoretical models. At this stage, we
thus conclude that the theory is to a large extent
verifiable with coreference-annotated corpora, that
there are limitations in the heuristic identification
of UNIQUE referents (for which we suggest a sim-
plification for empirical studies that is based on
the implicative nature of the Givenness Hierarchy),
but also that not all the claims of the Givenness
Hierarchy could be confirmed, especially regard-
ing demonstratives, that motivates more extensive
research into other languages, as well, and that this
research can be conducted with the bootstrapping
methodology suggested here.

As a secondary contribution, we converted
two corpora – Japanese NTC 1.5 and Korean
KoCoNovel – into CorefUD-compatible formats.
The conversion scripts and accompanying ma-
terials for these and all other corpora consid-
ered here are available under an Apache v.2 li-
cense from https://github.com/acoli-repo/
givenness-hierarchy.

Limitations

This study presents an approximative operational-
ization of the Givenness Hierarchy using corefer-
ence annotations. While most cognitive statuses
can be approximated reliably, the status unique
could not be accurately derived from the available
data. For this reason, we propose merging unique
and referential into a single category, XREF, in
future GH implementations.

Note that to facilitate comparability between our
numbers and those of Gundel et al. (1990,1993),
we limit our analysis to referring expressions stud-

ied by Gundel et al., which restricts coverage and
means that totals are not calculated over the full set
of referring expressions annotated in a corpus, but
only to those that fall into categories also consid-
ered by Gundel et al. In particular, proper nouns,
quantified nouns, pronominal adverbs and posses-
sive NPs were not considered in Sect. 3. With the
extension to proper nouns and the replication of
Mulkern (2011), the totals in Sect. 4 were extended
to cover anaphors and antecedents annotated as
PROPN, as well.

Also, we are restricted to referring expressions
that we can reliably identify in our data, so, while
Gundel et al. (1993) distinguished stressed and
unstressed pronouns (available in spoken data),
the (primarily) written text we operate with does
not provide such cues. Likewise, we did not dis-
ambiguate between indefinite this and proximal
demonstratives, because these are identical in form.
In particular, because of limitations in the reliable
detection of unique referents, we could not naively
identify non-unique this-NPs with ‘indefinite this’
and Gundel et al.’s referential category. Simi-
larly, our handling of proper names diverges from
Mulkern (2011). Whereas Mulkern seems to focus
on person names, exclusively, we evaluated all re-
ferring expressions annotated as PROPN. Our data
thus includes organizations, dates, and locations,
as well.

A major limitation lies in the comparability of
the corpora. They differ in genre, size, annota-
tion design, and coverage. Crucially, none provide
annotations for event anaphora, resulting in un-
derrepresentation of certain referential types (e.g.,
demonstrative pronouns for events). Annotations
for bridging or other models of information sta-
tus, which could also inform GH annotations, are
available for a subset of corpora considered and
have been excluded, so that cross-linguistic com-
parison could be established. Several corpora are
also affected by biases in their annotation. For ex-
ample, OntoNotes and ParCorFull only annotate
specific (i.e. referential or higher) referents, thus
systematically excluding type identifiable expres-
sions. Similarly, the KoCoNovel corpus annotates
protagonists, only. None of the corpora provide an-
notations for event anaphora. Russian and Korean
corpora lack annotations for zero anaphora (Ø),
causing misclassification of referents that should
be in focus or activated as lower-status categories
like familiar. In Japanese (NTC 1.5), missing
text boundaries can lead to erroneous coreference
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chains. In the Chinese OntoNotes corpus, an extrac-
tion error led to misclassifying a group of proper
names as bare nominals.

In order to categorize referring expressions and
grammatical features in a systematic way, we rely
on Universal Dependencies (UD). While such anno-
tations were available for subset of 5 corpora drawn
from the CorefUD collection, they had to be cre-
ated automatically for Arabic, Chinese, Japanese,
the Korean KoCoNovel and the English OntoNotes
corpus. We used spaCy (resp., for Arabic, spaCy-
udpipe, i.e., UDPipe 2.5) to create them automat-
ically, introducing potential parsing errors as an
additional source of noise. For identifying in fo-
cus referents on the basis of their realization in the
preceding sentence (i.e., referents not mentioned
in the penultimate sentence, as well), we rely on
the UD label nsubj, whereas the original definition
by Gundel et al. (2006) would also include mor-
phosyntactic topic and focus markers as present
(but not annotated) in Korean and Japanese.

Overall, while these limitations introduce vari-
ability, our methodology provides a scalable,
corpus-based framework for exploring the Given-
ness Hierarchy across languages and modalities.
Despite the aforementioned issues, our analysis is
strengthened by recurring patterns observed across
multiple languages and multiple independently an-
notated corpora. We report only statistically signif-
icant findings and emphasize robust patterns across
datasets, rather than isolated results.
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Appendix

In this appendix, we provide the detailed list of referring expressions (Tab. 6) considered by us and Gundel
et al. (1990, 1993), as well as raw frequencies and correlation analyses for the individual corpora. Table
3 aggregates over Tables 8, 9, 10 and 11 for English. Table 4 aggregates over Tab. 12 for Arabic, Tab.
13 for Chinese, Tab. 14 for Japanese, Tables 15 and 16 for Korean, Tab. 17 for Russian and Tab. 18 for
Spanish. As for the color codes, we use the same schema as Tab. 1.

Table 6: Inventories of referring expressions considered by Gundel et al. (1990, 1993) and in this study, listing type
of referring expression, original label used by Gundel et al. and corpus examples
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Table 7: Cognitive statuses and referential expressions in English as reported by Gundel et al. (1993), absolute
numbers, for correlation and binary χ2 significance see Tab. 1

Table 8: Referring expressions in OntoNotes 5.0, English

Table 9: Referring expressions in the GUM corpus (UDcoref 1.3), English
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Table 10: Referring expressions in the LitBank corpus (UDcoref 1.3), English

Table 11: Referring expressions in the ParCorFull corpus (UDcoref 1.3), English

Table 12: Referring expressions in OntoNotes 5.0, Arabic
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Table 13: Referring expressions in OntoNotes 5.0, Chinese

Table 14: Referring expressions in NTC 1.5, Japanese
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Table 15: Referring expressions in the ECMT corpus (UDcoref 1.3), Korean

Table 16: Referring expressions in the KoCoNovel corpus, Korean

Table 17: Referring expressions in RuCor (UDcoref 1.3), Russian
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Table 18: Referring expressions in AnCora (UDcoref 1.3), Spanish
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Abstract

We tackle the task of mention detection for pair-
programming dialogue, a setting which adds
several challenges to the task due to the charac-
teristics of natural dialogue, the dynamic envi-
ronment of the dialogue task, and the domain-
specific vocabulary and structures. We compare
recent variants of the Llama and GPT families
and explore different prompt and context en-
gineering approaches. While aspects like hes-
itations and references to read-out code and
variable names made the task challenging, GPT
4.1 approximated human performance when
we provided few-shot examples similar to the
inference text and corrected formatting errors.

1 Introduction

Pair programming is a collaboration technique
which has received a lot of scholarly attention due
to the numerous benefits it can lead to, such as im-
proved confidence and code quality (Hawlitschek
et al., 2023). It involves two programmers working
together on the same piece of code. The setting
may vary (e.g., co-located or distributed pair pro-
gramming); the pair dynamics may also vary: e.g.,
scholars mostly observe a navigator and a driver
role, but these may switch variably during the ses-
sion, and some scholars also observe different roles
(Hanks et al., 2011). However, one aspect remains
constant: dialogue drives the task. Dialogue com-
plicates NLP tasks by introducing new challenges
not found in the more traditionally studied written
genres, and the idiosyncrasies of pair-programming
dialogue further add to those challenges.

Below we present a short excerpt from our
dataset to illustrate the type of dialogue that we
are working with. In this excerpt, we can see some
general characteristics of dialogue, such as hesi-
tations (e.g., the repetition of determiners on the
first line or the numerous filler sounds on the last
line) or incomplete sentences (e.g., the turn in line

2 ends abruptly). We also observe some character-
istics more unique to our type of setting, such as
the use of domain terminology (e.g., here ‘a string’
is not thin rope) and references to unrealised enti-
ties (e.g., the speakers keep mentioning a string but
they only type it into the code with the name ‘text’
on the fifth turn. This is frequent in this type of
dialogue because the collaborative setting makes it
necessary to discuss ideas with one’s partner before
deciding what to put into practice.).

A: Can we, uh, I don’t know, define a, a string,
maybe the, the so-cool string.

B: Uh... Yeah, that seems like a good place to
start. And then we can kind of maybe try
and split it up into the.

A: Yeah. Yeah. So should I start defining these,
this string?

B: Yeah, sure. Sounds good.
A: Um. Uh, how should I, uh, call it? Uh...

Just. Um, sentence. [B types ‘text’; the
name ‘sentence’ is discarded and entity be-
comes realised as ‘text’] Oh, text. Yeah,
text

In this work we focus on mention detection, the
basic pillar of work on reference (e.g., this impor-
tance has been described in terms such as ‘The
performance of mention detection is to this day one
of the most important factors in anaphora resolu-
tion’ (Poesio et al., 2023, p. 571)). In simple terms,
it consists on extracting all text spans that refer
to some entity in the world, be it physical or ab-
stract, or a broader element of the discourse in the
case of discourse deixis. We use ‘entity’ to mean
anything that exists, whether concrete or abstract;
thus, mentions will always refer to an entity, and
sometimes they may also be linked to other men-
tions if they all refer to the same entity. A mention
that refers to an entity that is only referred to once
in the discourse is called a singleton mention. Al-
though the basic definition of the mention detection
task is rather simple, researchers often differ in the
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specification of the concrete types of mentions (and
references that these make) that they consider (e.g.,
see Zeldes (2022) for a critique of the commonly
used OntoNotes schema, which includes its omis-
sion of singletons, predication, generic mentions,
and nested mentions). While a full discussion of
our annotation scheme and process is beyond the
scope of the current paper, we do provide some key
details in Section 3.1. In relation to the topic of
what is considered a mention, we shall note that we
included singletons (single mentions to an entity
not mentioned any other time), predication (men-
tions equated to each other through a copula verb,
like in ‘Sahil is a lecturer’), generic mentions (e.g.,
‘Good children eat their vegetables and then Santa
brings presents to good children’), and nested men-
tions (e.g., ‘the book on the table’ would be la-
belled as the book on the table and the table). We
did however not include bridging anaphora (Clark,
1975) in our annotations1, as we considered it much
different from other types of anaphora — e.g., it
is distinct enough to warrant a separate task in the
CODI-CRAC task (Khosla et al., 2021; Li et al.,
2021). Nonetheless, at the mention detection stage,
the anaphors in bridging anaphora are still consid-
ered mentions; we simply consider them first men-
tions at the coreference resolution stage, instead
of linking them to an existing antecedent through
bridging anaphora. As we are working with LLMs,
we shall rely of their vast training data to supply
the schemata needed to interpret bridging anaphora
— we however encourage further work in this area
upon the release of our dataset2. With regard to dis-
course deixis, this is also considered a sufficiently
distinct type of anaphora resolution to warrant its
own task (Khosla et al., 2021; Li et al., 2021). As
such, we did not include any discourse antecedents
in our annotation of mentions, though for our later
annotation of coreference we did add them sepa-
rately after noting that discourse deixis was too
frequent not to be included in the interpretation of
references in our data.

1In bridging anaphora, the anaphor (i.e., the mention) is
linked to a referent that it is not equivalent to, but from which
it is inferred through shared common ground. For example, in
‘I went to a Spanish restaurant. The waiter was from Cuenca’,
the waiter would be linked to a Spanish restaurant via bridg-
ing — it is the waiter’s first appearance in the discourse, but
we could already infer his existence from our knowledge of
restaurants.

2Due to ongoing work, we are currently unable to release
the dataset, but have scheduled its release for the beginning
of 2026. Data will only made available upon request to avoid
data contamination.

In order to analyse the characteristics of pair-
programming dialogue and observe how they may
impact NLP tasks related to reference, we collected
and annotated a dataset of pair-programming ses-
sions. We describe the collection and annotation
procedure in Section 3.1. An analysis of our data
confirmed the relevance of references and shed
light on their characteristics in this domain. We
then used this data to experiment with state-of-the
art LLMs and measure their performance on this
task, paying special attention to how the observed
characteristics of pair-programming dialogue im-
pact it. We describe our experimental methodology
in Section 3.2, and then present and discuss our re-
sults in Sections 4 and 5. Our work is motivated by
the ulterior goal of facilitating the development of
AI agents that can act as pair-programming partners
in an educational setting when no suitable human
partner is available for the student to benefit from
this practice, as suggested in the work of Robe
and Kuttal (Kuttal et al., 2020; Robe et al., 2020;
Kuttal et al., 2021; Robe, 2021; Robe and Kuttal,
2022). This influenced both the design of our data
collection and experiment design: we use LLMs as
the most accessible tools for dialogue agent design
under the new LLM-based paradigm (Jurafsky and
Martin, 2025). Our results have important repercus-
sions for research not only on mention detection,
but also on other tasks related to referring acts, as
they build upon mention detection; we discuss this
impact in Section 5, but it is first contextualised
through the body of research we present now in
Section 2.

2 Related work

Although a lot of research on reference has fo-
cused on written genres, an increasing body of
research has been developed in dialogue as well,
with more available datasets (Khosla et al., 2021;
Li et al., 2021; Poesio et al., 2023). With the recent
paradigm shift introduced by the popularisation of
LLMs, research in this area has also been facili-
tated. With their vast training datasets and their
optimisation for dialogue, these tools offer great
promise for NLP tasks related to reference, even in
dialogue settings. Nonetheless, initial research on
coreference resolution using these types of models
shows that they do not always surpass previous ap-
proaches (Mitkov and An Ha, 2024), but they offer
great generalisability in unsupervised settings (Le
and Ritter, 2023). The models’ vast inherent knowl-
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edge and their capacity for in-context learning have
also been successfully harnessed for entity linking
(Liu et al., 2024). One area in which knowledge
is still much lacking, though, is mention detection
(e.g., the works mentioned above rely on ground-
truth mentions for the successful results).

Mention detection, however, cannot be taken for
granted, as it is the basic task upon which all other
reference tasks are built (Li et al., 2021). This task
has been shown to be challenging and, therefore, at-
tempts have been made at simplifying it. Manikan-
tan et al. (2024) proposed a task that focuses on
the major entities. i.e., the most frequent ones —
that task is useful in their literary setting, where the
main characters of a story are known, but such ma-
jor entities are not so easily extracted in an online
setting with a dynamic environment. Even with
that simplified task, the approach also had to be
broken down into steps for the models to achieve
satisfactory performance; in this case, the gram-
matical heads of the mentions were first extracted
before they were expanded into the full span of
each mention. However, the full mention detection
task (i.e., working on all mentions, not only those
referring to the most frequent entities) still poses a
big challenge. This is specially true in the domain
of situated dialogue with a dynamic environment,
where the system has no prior information about the
entities that may be mentioned. Some evidence of
these challenges are already observed in the work
of Madge et al. (2025), who tested coreference
resolution in one such environments and corrobo-
rated that performance was significantly lower than
in other simpler settings — their experiments in-
cluded the extracted mentions as part of the input,
thus not reflecting mention detection performance,
but we can expect the challenges of the dialogue
setting to similarly affect mention detection.

3 Methodology

3.1 Data collection and annotation

We collected a dataset of 22 distributed (remote)
pair-programming dialogues between students at
our institution. We recorded a total of 25 dialogues,
though two were discarded for technical reasons
and a participant’s withdrawal; a further dialogue
is excluded, as it was used only for training an-
notators. Each session lasted around 30 minutes,
and communication took place only via voice call
and a shared programming interface. We recorded
several data sources: dialogue (audio and transcrip-

tion3), keylog records4, video and screenshots of
the programming interface, and files registering all
changes to the code. The keylog records were incor-
porated into the json files containing the dialogue
transcripts through their timestamps; however, that
level of context was not used in this task, as the
human annotators did not use it either for mention
labelling. The keylog records and the separate vi-
sual information are employed instead for other
tasks in our project for which a richer context is
needed. Further details about the data recording
can be found in (Domingo et al., 2024).

The dataset was then annotated by a team of
7 people trained specifically for the task; before
training, they had to demonstrate the necessary lin-
guistic and programming skills through a test or
relevant qualifications. The majority of the team
worked on annotating coreference chains and link-
ing code references to code files. The task of lo-
cating mentions was carried out by the two team
members with expert knowledge of Linguistics us-
ing LabelStudio.5 The interface was configured
so that no unit smaller than a word could be cap-
tured to avoid human errors, and any adjoining
punctuation marks (e.g., a comma at the end of
a mention) was removed during post-processing.
The annotation scheme and guidelines6 were de-
veloped through discussion among the research
team validated through three rounds of the two ex-
perts double coding sections of two dialogues and
discussing the process as a team with the main re-
searcher, who performed both a quantitative and
qualitative analysis of the output. We thus com-
bined a traditional iterative development approach
(Fuoli, 2018) with a socialisation-based approach
(Godwin and Piwek, 2016) for improved efficiency
and reliability. The annotators who labelled the
mentions also classified them into the linguistic
categories outlined in Appendix B. As we have dis-
cussed, a full discussion of the annotation scheme
is beyond the scope of this article, though more de-
tails can be found in the supplementary materials.
One important piece of information is that we in-

3Dialogues were transcribed using Whisper (Radford et al.,
2022) and revised manually. Manual revision was necessary
due to the tool’s inability at the time to successfully handle
disfluencies and overlapping speech, the imprecisions in audio
segmentation, and the challenging domain terminology.

4Keylog records were obtained using a custom tool or RUI,
depending on compatibility with participants’ computer.

5https://huggingface.co/LabelStudio
6The section of the guidelines concerning mention detec-

tion is available as additional materials and a summary can be
found on Appendix B.
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cluded singletons — we want the data to be usable
as training/testing for an online system, where it is
not possible to know if a singleton is a singleton
or part of a coreference chain until the dialogue is
over.

Table 1 shows the key details of our dataset. An
analysis of our data shows that around a third of
all the words in the corpus correspond to mentions:
the average number of mentions in our dialogues
is 692, with an average number of 3445 words per
dialogue and an average length of 1.6 words per
mention.

Number of: Average
(per dialogue)

Total
(22 dialogues)

turns 385 (SD = 72) 8468
words 3445 (SD = 768) 75797
mentions 692 (SD = 189) 15222
mentions
in chains

289 (SD = 59) 6365

Table 1: Dataset details

For our experiments, we used one dialogue as
our development set, and the remaining 21 for eval-
uation. The development set was chosen semi-
randomly to ensure usefulness: we selected it ran-
domly from the top-ten most ‘average’ dialogues
in terms of the percentage of multimodal mentions,
mentions to abstract programming concepts, names,
read-out sections of code, and ‘intensional’ objects
(borrowing the terminology from (Madge et al.,
2025) to denote references to planned task outputs
that have not been produced yet, or ever).

3.2 Prompt and context engineering and
output processing

In recent years, numerous LLMs have been re-
leased, including many trained on programming
languages in addition to natural languages (Jiang
et al., 2024). It is therefore a futile attempt to try to
carry out a comprehensive performance test of all
possible LLMs, nor even of the most recent ones,
given the rapid developments in the field. Instead,
we chose representative examples to illustrate how
the challenging aspects of our domain may be tack-
led with an LLM approach. We thus limited our
experiments to recent variants of the Llama and
GPT families. With our choice of models we strove
to select frequently used ones — e.g., these are the
families used too by Le & Ritter (2023), and they

represent both proprietary and open-weights mod-
els. Our model selection was further motivated
by the availability of API services that offer suf-
ficient data protection safeguards. With regard to
the model parameters, throughout our experiments,
we have used a constant temperature of 0, for more
deterministic, replicable results.

Prompting makes running the models easy in
principle (Sarkar, 2024); however, results are
highly dependent on the type of prompt used
(White et al., 2023). Bearing this in mind, we
tested different prompting approaches. Our initial
prompt refinement was based on a qualitative anal-
ysis of 20 random outputs from each prompting ap-
proach, considering task completion, format adher-
ence, and task accuracy. We are aware of possible
hallucinations, especially with regard to numerical
values, so we quickly discarded any approach re-
liant on index numbers or any kind of numerical
identifier. Instead, we obtained more consistent re-
sults with simple XML tags (<M></M>). Previous
work with LLMs (Domingo et al., in press) showed
us the effectiveness of a persona-based prompt: in-
stead of providing many details about the task we
expect the model to complete, we describe a per-
sona for it to adopt and rely on its vast training data
to supply the definition of what that persona entails.
A non-human persona showed the best results —
the prompts can be found on Appendix A.1. In our
pursuit of consistency, we did not perform many ex-
periments with temperature parameters, selecting
a temperature of 0 most of the time for consistent,
replicable results. Based on the work by Manikan-
tan et al. (2024), we also tested splitting the task
into the two subtasks that they identify: mention
heads are detected first, and then the second task
consists one expanding them, which can be done
with the same model or using SpaCy7.

In addition to the prompt, the context also re-
quires ‘engineering’. Recent models are capable of
processing long inputs, and it is sometimes the case
that exploiting this capacity by adding long con-
texts improves performance. However, long con-
texts can also introduce noise and draw the model’s
attention away from the main instructions. There-
fore, our context engineering efforts concerned not
only context length, but also quality. We experi-
mented with different few-shot settings where we
provided a varying number of example dialogue
turns with ground-truth labels (from 1 to 10). The

7https://spacy.io/
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examples were randomly selected, or fabricated
by us aiming to exemplify the main difficulties of
our setting, or manually selected to be the most
representative overall, or mixed. We also tested ex-
tracting pool of turns8 from which the best one was
retrieved for each inference turn based on sentence
similarity (also using SpaCy9).

We paired our quantitative evaluation metrics
(F1) with continuous small qualitative analyses
to better understand the performance of each ap-
proach. We observed some consistent errors that
could be corrected through simple rules (e.g., when
the models added spaces or prefaced the output
with an arrow), so we added an automated post-
processing step to our pipeline. Of special inter-
est were some inconsistencies in the models’ pro-
cessing of contracted verbs: e.g., we’ll was some-
times returned as <M>we’ll</M> and sometimes
as <M>we</M>’ll; we corrected the output to fol-
low the latter format, in line with our ground truth.
The use of dialogue data added another difficulty:
sometimes the models struggled with mentions bro-
ken by disfluencies. We corrected the cases where
a determiner was repeated, sometimes with a filler
sound in between (e.g., ‘the, uh, the string’), ensur-
ing that the mention labels grouped the two deter-
miners in the same mention.

We carried out our initial experiments with
smaller models for cost/time efficiency: Llama 3
8B and GPT 4o mini. Both models’ release date is
only a few months apart, and both are claimed to
have a similar size (Abacha et al., 2025), though the
GPT model is distilled from a larger one. Nonethe-
less, these two options offer the highest compa-
rability among the ones available to us. After
analysing our quantitative results, we tested the
best approaches on bigger versions of the models:
Llama 3 70B and GPT4o, as well as GPT 4.1. We
then tested the generalisability of the approaches
on the evaluation set. As our human performance
ceiling we use the agreement between our annota-
tors during the validation stages of the annotation
scheme development: 82.21% to 90.39%.

8For our preliminary tests, we extracted a random pool as a
training set. For our final experiments with the evaluation set,
we were instead able to use a whole dialogue (the development
data) as a more complete training set that we could expect
to contain a variety of turns that could always allow to find
sufficiently similar examples to the turn used for inference.

9Martino Mensio’s Github

4 Results

Here we present the results over the evaluation data:
i.e., the 21 dialogues that are not dialogue 032x028,
which was used as development data The naming
structure \d\d\dx\d\d\d reflects the code assigned
to each speaker in the pair during anonymisation.
The numbers represent the order in which people
interested in participating signed the consent forms.
The experiments with this data allow us to have a
clearer view of model performance without a single
dialogue biasing results. The design of our experi-
ments was based on our preliminary work with the
development data (dialogue 032x028)10. Based on
preliminary work with the development data, we
concluded that the most successful approach was
providing few-shot examples that were similar to
the turn being parsed. We used the development di-
alogue 032x028 as the pool from which to retrieve
the few-shot examples using sentence similarity;
using a whole dialogue would allow us to have a
rich pool of possible examples. We also tested a
zero-shot approach to have a clear view of how
the few-shot examples contribute to the task. For
our final experiments, we used the whole range of
models available to us, both big and small: GPT
4o, GPT 4o mini, GPT 4.1, GPT 4.1 nano, Llama
3 70B, and Llama 3 8B. Under the few-shot con-
dition, we used three few-shot examples, which
had proven to be sufficient with the GPT models.
However, as we had also observed that the Llama
models were more sensitive to the amount of few-
shot examples, we also used six few-shot examples
with Llama 3 8B — given the amount of data we
were testing on, we did not test with a larger num-
ber of examples, and we only used the six exam-
ples on the smaller Llama model. Also drawing on
the insights from our preliminary experiments, we
expected the Llama models to perform below the
GPT models under any condition. Thus, with the
evaluation tests we did not attempt to boost their
performance closer to the GPT models; we only
wished to determine to which extent increasing the
number of few-shot examples boosts performance
in these more context-sensitive models

Table 2 shows the GPT models’ performance un-
der the approaches we’ve described; Table 3 shows
the performance for the Llama models. As we
tested two few-shot conditions, we did not test a
zero-shot approach — our preliminary experiments

10More details about our preliminary work can be found in
Appendix A
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Zero-shot average Few-shot average
Model F1pp Ppp Rpp F1pp Ppp Rpp

GPT 4.1 0.64 0.80 0.53 0.80 0.84 0.76
GPT 4.1

nano
0.25 0.48 0.17 0.57 0.60 0.54

GPT 4o 0.27 0.53 0.18 0.70 0.72 0.68
GPT 4o

mini
0.22 053 0.14 0.73 0.78 0.69

Table 2: Average performance of the GPT models across
the 21 evaluation dialogues. Few-shot performance
involves examples selected based on sentence similarity;
in this case we use three examples. The pp suffix means
that the score was obtained after post-processing the
output.

made it evident that the Llama models rely to a
greater extent on the few-shot examples; thus, our
focus was on seeing the effect of increasing the
number of examples instead.

From these tables we can observe that, as was the
case with the development dialogue, the GPT mod-
els perform better across all dialogues. The best-
performing model is GPT 4.1., which is meant to be
suitable for very complex text tasks. Surprisingly,
GPT4o mini’s performance is not much lower,
though it relies heavily on the post-processing of
the output. As expected, the Llama models perform
below the GPT models in general. We can also see
that increasing the number of few-shot examples
does improve performance to some extent. Here
we have presented the F1 scores; however, we have
also made some observations about precision and
recall. For instance, the average zero-shot precision
for GPT 4.1 was 0.80, but recall was 0.53; with the
few-shot approach, precision increased noticeably
to 0.84, but recall increased even more remarkably
to 0.76. We see this tendency in the other models
through both the final and preliminary experiments,
where precision is higher than recall, and the differ-
ence is larger in the worse-performing approaches.

Additionally, we re-evaluated the final results
using a more lenient metric, based on the work by
Moosavi et al. (2019). They point out that men-
tion detection can be evaluated based on minimum
span match, instead of requiring a system to de-
fine the mention boundaries in exactly the same
way as the ground truth data. They develop an
algorithm for automatically extracting minimum
spans from mentions without the need of additional
manual annotations. Both their algorithm and a

Model FS Few-shot average
F1pp Ppp Rpp

Llama 3 70B 3 0.59 0.62 0.56
Llama 3 8B 6 0.49 0.50 0.48
Llama 3 8B 3 0.46 0.48 0.44

Table 3: Average performance of the GPT models across
the 21 evaluation dialogues. Few-shot performance
involves examples selected based on sentence similarity.
FS stands for the number of few-shot examples. The
pp suffix means that the score was obtained after post-
processing the output.

Model Precision-pp Recall-pp F1-pp
GPT 4.1 0.89 0.80 0.84

GPT 4.1 nano 0.67 0.61 0.64
GPT 4o 0.76 0.72 0.74

GPT 4o mini 0.84 0.74 0.78
Llama 3 70B 0.70 0.62 0.66
Llama 3 8B 0.59 0.55 0.57

Table 4: Scores measuring minimum-span matches on
the similarity-based few-shot example approach with 3
examples. The pp suffix indicates that we evaluated the
output after post-processing it.

simpler method based on head extraction correlate
highly with human annotations in the few datasets
that include such minimum span annotations. Here
we use the head extraction method for simpler im-
plementation. Table 4 shows the adjusted average
scores.

4.1 Error analysis

As our preliminary experiments covered only one
dialogue, with the evaluation data we were inter-
ested in seeing how the characteristics of each di-
alogue affected task performance — all dialogues
in this setting have some broader characteristics in
common, but we already saw in previous analyses
that these are displayed to different extents in each
dialogue. Looking at performance across different
models, we concluded that the ‘easiest’ dialogue
was 040x054 (with a maximum F1 of 0.84 and a
minimum of 0.52), and the ‘hardest’ was 062x059
(with a maximum F1 of 0.67 and a minimum of
0.45). Table 5 shows the main distinctive character-
istics of mentions in this setting for each of these
dialogues. We see that these two dialogues are
in distant sides of the spectrum with regard to the
percentage of mentions that are proper nouns and
the mentions that are read-out code — we must
also bear in mind that, in this domain, both cate-
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gories are linked, as proper nouns are often variable
names. To better understand performance differ-
ences, we performed a brief error analysis of these
two dialogues by looking at their false negatives
and their false positives; we analysed 20 mentions
for each error type for each dialogue. With regard
to the false negatives, in the easy dialogue, 8 of
the missed mentions were direct references to code
(e.g., ‘for x in grade’), while this figure was 14
for the hard dialogue. In this small sample, we
did not find any names in the easy dialogue’s false
negatives, but we found two for the hard dialogue:
‘student student, test scores’ and (BLEEP). These
examples illustrate how names (and mentions in
general) can be challenging in this domain. The
first name includes a hesitation, and the second one
is anonymised — though the pool of few-shot ex-
amples featured this as well. Looking at the false
positives, we can observe how this task is also chal-
lenging and ambiguous for humans, as some of
the false positives could be considered valid pos-
itives or even an error in the ground truth (e.g.,
in ‘Right. I’m doing this wrong, aren’t i? That’s
it.’ the ground truth missed ‘this’). In some other
cases, however, the false positives cannot be con-
sidered mentions even if we apply the annotation
scheme very flexibly (e.g., in the previous example,
‘That’s it’ was returned as a mention, thus a truly
false positive). We observe such verb phrases or
verbs treated as mentions even when the turn shows
no discourse deixis that would justify labelling a
whole verb phrase as a referent; we find four cases
in the easy dialogue, and two in the hard one. The
main cause of false positives that we observe in
both dialogues is a mismatch between the ground
truth span and the output span, where the model
misses parts of a mention when it is a complex noun
phrase — e.g., one turn says ‘Um and then we need
it to output the percentage of students who passed
and then output the grade’, and the ground truth
extracts ‘the percentage of students who passed’,
whereas the model only extracts the main part of
the phrase, ‘the percentage of students’. We find
four such cases in the easy dialogue, and six in the
hard one. Lastly, one important source of false pos-
itives related to this is the presence of hesitations,
which are common in our dataset as part of the
nature of spoken dialogue; in such cases, the model
can miss part of the mention or interpret a repetition
as two separate mentions (e.g., in ‘Yeah um maybe
uh student student, test scores’, the ground truth ex-
tracts ‘student student, test scores’ as a mention to

Type of mention
(percentage range)

Value for
040X054

(easy)

Value for
062x059

(hard)
Multimodality
(2.82-21.36)

5.87 8.24

Abstract
Mentions
(0-19.67))

0.78 1.90

Names
(3.84-24.29)

8.92 15.96

Read-dictate
(1.39-15.35)

6.22 10.47

Intensional
mentions

(1.27-31.85)
5.60 3.95

Total mentions
(350-1154)

482 783

Table 5: Main characteristics of the ‘easiest’ (040x054)
and ‘hardest’ (062x059) dialogues. We show the types
of mentions as a percentage of the total. In parenthe-
ses we show the value range across all dialogues to
contextualise this data.

the variable storing the student test scores, but the
model extracts three separate mentions: ‘student’,
‘student’, and ‘test scores’).

5 Discussion

As we mentioned in Section 3.2, agreement be-
tween our annotators for this task ranged between
82.21% and 90.39% for the three double-coding
validation rounds that we ran. This shows that,
even though this was one of the ‘easier’ tasks in
our work on reference, even trained human experts
sometimes disagreed. We observed some human
errors in the ground truth in our error analysis (Sec-
tion 4.1), but our validation work for the annota-
tion scheme involved qualitative analyses and dis-
cussions with the annotators to ensure that there
were no misalignments in their internalisation of
the scheme; therefore, most disagreements at the
final validation stage can be primarily attributed
to inherent ambiguities of the task — while this
task is simpler than the subsequent task of coref-
erence resolution, for this latter task Poesio et al.
(2023) noted that there is a great degree of ambigu-
ity in references, with figures of up to 40% in dia-
logues annotated for discourse deixis. Bearing this
in mind, we cannot expect any model to surpass the
human scores; that would indicate both overfitting
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to one annotator’s perspective and an imbalance
in our data split — we are preventing this by test-
ing on all our dialogues, thus balancing data from
both annotators. To be able to compare the mod-
els’ performance with the human annotators, we
calculated the models’ agreement with the ground
truth. For GPT4.1, this ranges between 71.86%
and 88.14%; GPT 4o and GPT4o mini reach maxi-
mums of 79.86% and 81.99% respectively, but their
minimums are much lower (38.08% and 37.22%).
We can therefore conclude that, under the best ap-
proach, some recent models approximated human
performance, but only GPT 4.1 did so consistently.

Due to the recent advances in language mod-
els, few studies exist to this date on mention de-
tection using LLMs. However, Manikantan et al.
(2024) and Le & Ritter (2023) offer some compa-
rable results. The latter observed unsatisfactory
performance with Instruct GPT, which yielded an
F1 score of 46.5. The former, however, obtained F1
scores ranging between 77.1 and 85.5 using GPT 4
with their best approach (having the LLM extract
the nucleus of the main mentions, and using SpaCy
to expand the mention span). Our results are unsur-
prisingly higher than Le & Ritter’s, possibly due
to primarily their use of a less powerful model —
in fact their results are similar to what we obtained
with our poorest model, Llama 3 8B. Manikantan
et al.’s better results are more similar to our best
results, despite them performing a simplified task
on literary texts that lack the challenges of pair-
programming dialogue, probably due to our use of
the latest, most powerful models. We find evidence
of this in the fact that performance only reached
this high range of F1 scores between 0.75 and 0.86
with GPT 4.1.

In addition to overall model performance, we
have made some other key observations. We have
observed through models’ zero-shot performance
that their base knowledge allows them to detect
mentions with precision, but that in-context learn-
ing is needed for them to detect a broader range
of mentions. Additionally, as we expected from
analysing the characteristics of our dataset, one key
issue that made mention detection difficult in this
domain is the mentions to code, especially vari-
ables with their flexible form unlike that of names
in other domains. Additionally, the fact that we
are dealing with spoken dialogue resulted in hesita-
tions, which also pose a significant challenge.

6 Conclusions

Through this work, we set out to explore the chal-
lenges that a pair-programming dialogue setting
presents for work on reference, starting with the
base task of mention detection — there can be
no good coreference resolution without very good
mention detection. We used LLMs for this explo-
ration as the most recent and accessible tools for
this task, imagining the kinds of tools that might
available for an online pair-programming agent.

We have looked at the different experimental set-
tings that may improve model performance in a
few-shot setting: prompt and context engineering,
carefully crafting suitable prompts and selecting
the optimal type and amount of few-shot examples.
We have observed that GPT 4.1 is close to human
performance, so it could potentially replace hu-
man annotators with adequate prompt and context-
engineering on texts that are not exceedingly com-
plicated. As we have discussed throughout this
work, LLMs are powerful tools that can detect
mentions to some extent. However, just as hu-
mans require annotation schemes and there is often
debate about which types of mentions should be in-
cluded (Zeldes, 2022), the models require few-shot
examples to capture the whole range of mentions re-
quired. Pair-programming dialogue presents some
additional challenges that are not found in other
text types, primarily hesitations stemming from
it being spoken dialogue, and references to code,
which involve terminology much unlike that of
other domains.

Mention detection is the basic task upon which
work in reference resolution is built. Therefore,
insights into it are important, as outside of research
scenarios coreference resolution cannot rely on hav-
ing gold-standard mentions as input. We have seen
some limitations from LLMs performing this task,
but we have also discussed where some of these
come from and how performance can be improved
in many cases. These insights will inform our fu-
ture work in reference resolution, and we hope it
can also prove useful to the broader NLP commu-
nity. As we discussed in 3.1, we recorded several
types of data, and our annotation work went be-
yond mention detection into reference resolution
and phrase grounding. We will thus work on those
tasks with the outputs and insights obtained at this
first stage of mention detection.
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Limitations

As we have discussed in Section 3.2, we did not
strive to do a comprehensive analysis of LLMs’ per-
formance that included all possible kinds of such
models, nor is that feasible with the rapid develop-
ments in this area. We also did not perform a com-
parative analysis with other neural or rule-based
approaches: our focus is on LLMs as an example
of the SotA in NLP for numerous tasks, to examine
to what degree the idiosyncrasies of our dialogue
setting pose significant challenges. Another signif-
icant limitation of our work is the conversion of
spoken dialogue into text. We used transcriptions
generated with Whisper (Radford et al., 2022) and
revised by us, thus having very robust verbatim
transcripts. Future work with multimodal LLMs
will need to determine whether the same perfor-
mance is achieved when the models process the
audio directly — this could hinder performance
through transcription errors, or it could even sim-
plify the task through the removal of hesitations in
the initial steps of speech processing. Additionally,
although our dataset is not exceedingly small, as
shown on Table 1, it is very far from the size of
popular datasets such as OntoNotes (Weischedel
et al., 2013), which must be taken into account
when interpreting our results/
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A Appendix: Prompt and context
engineering

Table 6 shows the compared performance of dif-
ferent models tested under the same simple setting
(3 randomly selected few-shot examples; we eval-
uated over five folds with repeated random sub-
sampling validation to account for variations result-
ing from the different random examples.). Given
the size of the development set, we cannot read
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Model P R F1 F1pp
GPT 4.1 0.80 0.75 0.77 0.79

GPT 4.1 nano 0.55 0.57 0.56 0.60
GPT 4o 0.62 0.61 0.62 0.66

GPT 4o mini 0.73 0.70 0.72 0.80
Llama 3 8B 0.00 0.00 0.00 0.44

Table 6: Model comparison using 3 random few-shot
examples. Initial results on the development set for
P(recision,), R(ecall) and F1 after post-processing.

much into the results, but they allow us to exem-
plify three basic observations from our broader set
of preliminary experiments: the GPT models per-
form markedly better than Llama, smaller distilled
models are competitive with their full version, and
postprocessing significantly improves results. This
last point is especially true for Llama, which was
consistently inconsistent in its formatting of the
output.

Our initial qualitative analysis allowed us to re-
fine our base prompt, as we discussed in Section
3.2. However, considering that the models that we
are using are optimised for dialogue, we also tested
a prompt that focuses more on this dialogue setting
instead of a parser persona — we called this prompt
a ‘chatty’ prompt. The different prompts are shown
below. Table 7 shows the different F1 scores using
our base prompt and two ‘chatty’ prompt versions,
comparing two small models and different num-
bers of randomly-selected few-shot examples. The
first ‘chatty’ prompt also follows the persona ap-
proach, encouraging the model to respond like a
dialogue partner to a student; the second one in-
troduces the setting as a dialogue, but without ask-
ing the model to adopt any human-like behaviour.
As we can see, performance with the first of the
‘chatty’ prompts decreases noticeably, but with the
second one it is similar to the base prompt. The
table also allows us to exemplify the effect of the
number of few-shot examples. We see that, with
the GPT model, performance is stably high with
few examples, but decreases when we use more
than a couple of examples; for Llama, however, a
higher number of examples increases performance.
In addition to the number of few-shot examples,
we must also consider the type (e.g., Huzaifah et al.
2024 observed the benefits of carefully selecting
examples, with the ones most closely related to
the input content being most useful in clarifying
the task to the model). We therefore compared the
use of random examples against the use of specifi-

Model FS
Base

prompt
F1

Chatty
prompt

1 F1

Chatty
prompt

2 F1
GPT 4o mini 2 0.79 0.56 0.70
GPT 4o mini 3 0.80 0.59 0.72
GPT 4o mini 6 0.81 0.57 0.76
Llama 3 8B 1 0.29 0.11 0.27
Llama 3 8B 2 0.45 0.33 0.28
Llama 3 8B 3 0.44 0.39 0.35
Llama 3 8B 10 0.47 0.47 0.51

Table 7: Performance over development data comparing
two prompt styles, two small models, and three amounts
of randomly-selected few-shot examples. The tests
cover the whole development split (dialogue 032x028),
excluding the 1-10 turns used for few-shot learning.
FS refers to the number of few-shot examples. The
F1 scores represent the value after post-processing the
output.

cally chosen examples. One approach we followed
was manufacturing our own examples that imitated
the style of the dialogues but concentrated in a
few sentences the main phenomena that could be
challenging in our data; we call these examples
‘ideal’ examples. We also tested a similar approach
where we instead selected the most representative
examples from real data; we call these examples
‘real’. Finally, we also tested an approach where
we used real examples from the data but we did not
manually select the best; instead, we used sentence
similarity11 to adapt what the best were for each
case. We separated a pool of dialogue turns; before
inference, each input turn was compared against
the pool of turns and the top n most similar turns
were retrieved as few-shot examples; we call this
approach ‘Similar’. Table 8 shows a comparison of
the performance under the different types of few-
shot examples. Again, using the development data
limits the interpretability of the results, but they
do suggest that a careful selection of the few-shot
examples is far from irrelevant.

Following the work by Manikantan et al. (2024),
we also tested whether dividing the task into two
simpler tasks improved performance. For the first
task, we ask the model to only label the heads of
mentions, expecting that this will reduce the burden
of having to decide which determiners and modi-
fiers to include — we leave that for the second task,
where the heads are expanded into the full mention
span. For the second step, as it relies purely on

11Martino Mensio’s Github
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Model Type of FS FS F1pp
GPT4omini Similar 3 0.81
L3-8b-v1 Similar 3 0.47

GPT4omini Ideal 3 0.75
L3-8b-v1 Ideal 3 0.42

GPT4omini
3 ideal +
n random

1 0.79

GPT4omini
3 ideal +
n random

2 0.79

GPT4omini
3 ideal +
n random

3 0.78

L3-8b-v1
3 ideal +
n random

1 0.45

L3-8b-v1
3 ideal +
n random

2 0.43

L3-8b-v1
3 ideal +
n random

3 0.50

GPT4omini Real 3 0.77
L3-8b-v1 Real 3 0.37

GPT4omini 3 ideal + n real 3 0.79
L3-8b-v1 3 ideal + n real 3 0.44

Table 8: Performance with different types and numbers
of few-shot examples (FS). We present F1 scores after
the output was post-processed (F1pp).

identifying dependencies, we test it both with an
LLM and with a simple script using SpaCy. Ta-
ble 9 shows performance under these conditions,
with a single-prompt approach for comparison. We
can observe that the two-prompt approach never
surpasses the single-prompt approach, and that us-
ing SpaCy to expand the heads does not improve
performance but actually hinders it.

A.1 Prompts

Zero-shot prompt
You are an NLP parser specialised on extract-

ing mentions from text. Your output is fed to a
coreference resolution system and an entity link-
ing system. Therefore, your output should respect
format restrictions and not add any comments; if
there are no mentions, just return the original text.
You will be given a text and you should extract all
the mentions in it. You should return the text with
mention opening tags <M> and closing tags </M>.

Base prompt
You are an NLP parser specialised on extract-

ing mentions from text. Your output is fed to a
coreference resolution system and an entity link-
ing system. Therefore, your output should respect

Model Approach FS F1pp
GPT4o mini 2 prompts 3 0.67

GPT4o mini
1 prompt
+ SpaCy

3 0.63

GPT4o mini 1 prompt 3 0.80
Llama 3 8B 2 prompts 3 0.33

Llama 3 8B
1 prompt
+ SpaCy

3 0.37

Llama 3 8B 1 prompt 3 0.44
GPT4o mini 2 prompts 6 0.67

GPT4o mini
1 prompt
+ SpaCy

6 0.64

GPT4o mini 1 prompt 6 0.81
Llama 3 8B 2 prompts 6 0.36

Llama 3 8B
1 prompt
+ SpaCy

6 0.43

Llama 3 8B 1 prompt 6 0.49

Table 9: Performance comparison with one prompt
or splitting the task into mention-head detection and
mention span expansion (with a second prompt or with
SpaCy). We present F1 scores after post-processing the
output (F1pp).

format restrictions and not add any comments; if
there are no mentions, just return the original text.
You will be given a text and you should extract
all the mentions in it. You should return the text
with mention opening and closing tags as in the
examples.

‘Chatty’ persona-based prompt
You are a university student pair-programming

with a partner, who is also a university student.
Your partner says something and you need to under-
stand it to respond. To show that you’ve understood
your partner, you need to label the things that your
partner has mentioned, to later think about what
each of those mentions refers to.

‘Chatty’ dialogue-based prompt
You are going to see a bit of text from a dia-

logue partner. Think of all the objects, concrete
or abstract, that they mention in their text. Return
the text with <M> </M >tags framing the objects.
Return nothing else. Here are some examples of
how you’ve done this before.

B Appendix: Mention classification labels

The guidelines provided to annotators include nu-
merous images and examples, spanning 28 pages,
so here we only provide a brief summary.

The annotation units are mentions, be it to ele-
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ments in the dialogue (e.g., a previous word now
referred to with a pronoun), in the context (e.g.,
the participants, programming concepts, elements
of the code being created, etc.), or both. These
mentions can be one or more words, and they may
be split by punctuation; if the words are part of the
same mention, we label them as one broad span
that includes the words and the spaces (and possi-
bly commas or apostrophes) between them. If we
did not highlight the space in between the words as
part of the annotation, that would create separate
mentions. If there is a filled pause between parts of
one mention, the pause can be included as part of
the mention. We also include repetition within the
same unit; for example, in many cases the speakers
will repeat an article – we annotate them all as part
of the mention. After labelling the mention spans,
the annotators also classified the mentions accord-
ing to their grammatical number and the linguistic
categories summarised below:

• Pronoun - Personal

• Pronoun - Demonstrative

• Pronoun - Other

• NP - Definite

• NP - Indefinite

• NP - Meta (this category was used for men-
tions referring to words as abstract concepts,
not the meaning represented by the word)

• NP - Read-dictate (this category was used for
read-out or dictated code)

• Name

• Name variation (this category was used for
variable names that were not reproduced ex-
actly, e.g., when the ‘len()’ function is men-
tioned as ‘length’)

• Location adverb

• Incomplete (this label was added indepen-
dently of the others to mentions that spanned
more than one turn, so that we could later join
the segments)
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Abstract
While coreference resolution is attracting more
interest than ever from computational litera-
ture researchers, representative datasets of fully
annotated long documents remain surprisingly
scarce. In this paper, we introduce a new anno-
tated corpus of three full-length French novels,
totaling over 285,000 tokens. Unlike previous
datasets focused on shorter texts, our corpus ad-
dresses the challenges posed by long, complex
literary works, enabling evaluation of corefer-
ence models in the context of long reference
chains. We present a modular coreference reso-
lution pipeline that allows for fine-grained error
analysis. We show that our approach is compet-
itive and scales effectively to long documents.
Finally, we demonstrate its usefulness to in-
fer the gender of fictional characters, showcas-
ing its relevance for both literary analysis and
downstream NLP tasks.

1 Introduction

Coreference Resolution (CR)—the task of identi-
fying and grouping textual mentions that refer to
the same entity (e.g., a person, an organization, a
place)—is a fundamental component of natural lan-
guage processing (NLP). It underpins downstream
applications such as information extraction (Yao
et al., 2019), text summarization (Liu et al., 2021),
and machine translation (Vu et al., 2024). Over the
past decades, significant progress has been made
in CR, evolving from rule-based multi-sieve sys-
tems to end-to-end neural models, encoder-decoder
architectures, and large language models based
approaches, all contributing to improvements on
benchmark datasets (Porada et al., 2024).

These models have long been trained and evalu-
ated solely on generic datasets such as OntoNotes
(Hovy et al., 2006). As CR drew attention in other
fields, it became evident that models trained on
general datasets underperformed when applied to
domain-specific tasks. To address this flaw, dedi-
cated datasets have been developed, covering areas

such as biomedical (Lu and Poesio, 2021) and en-
cyclopedic data (Ghaddar and Langlais, 2016).

Driven by the availability of extensive digitized
collections, literary texts have emerged as a key
subject of digital humanities (Moretti, 2013). A
large part of such research focuses on characters,
considered a fundamental aspect of fiction works.
The study of characters is essential for analyzing
narrative structures, plot development or conduct-
ing diachronic studies. CR is crucial for applica-
tions such as quote attribution (Vishnubhotla et al.,
2023), character archetypes inference (Bamman
et al., 2014), and social networks extraction (Elson
et al., 2010). Additionally, it has been employed to
study the representation and behavior of characters
according to their gender (van Zundert et al., 2023).

As outlined by Roesiger et al. (2018), literary
texts present unique challenges for CR, including
character evolution throughout the narrative and
the prevalence of dialogues involving multiple par-
ticipants. They also contain a high proportion of
pronouns and nested mentions. Complex narrative
structures—such as letters, flashbacks, and sudden
narrator interventions—further complicate the task.
Additionally, authors often rely on readers’ contex-
tual understanding rather than explicit statements,
creating ambiguities when linking mentions.

To address these challenges, annotated datasets
have been developed, covering multiple languages
and genres, from classical novels and fantasy tales
to contemporary literature. These resources en-
able training and evaluating in-domain coreference
resolution models, leading to steady performance
improvements (Martinelli et al., 2024). Despite vis-
ible progress on benchmarks, current state-of-the-
art CR models still struggle with full-scale literary
texts, limiting usefulness for downstream applica-
tions (Vishnubhotla et al., 2023).

A key factor contributing to this limitation lies
in the scarcity of fully annotated long documents.
Most existing datasets consist of short excerpts or
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relatively brief texts. Since coreference annotation
is labor-intensive and costly, there exists a trade-
off between annotating a larger number of short
documents or a smaller number of long ones.

We argue that the lack of representative datasets
for long literary texts is a major obstacle to effec-
tively scaling CR models. This work aims to bridge
this gap, and our contributions are as follows:
• an annotated dataset of character coreference for

three full-length French novels spanning three
centuries, showcasing the feasibility of combin-
ing automatic mention detection with manual
coreference annotation.

• A modular CR pipeline scalable to long docu-
ments, enabling fine-grained error analysis and
achieving competitive performance on bench-
mark dataset.

• A comprehensive study of the impact of docu-
ment length on CR performance.

• A case study on character gender inference using
CR models.1.

2 Related Work

2.1 Coreference Models

Coreference resolution has undergone several
paradigm shifts (Poesio et al., 2023), evolving from
rule-based, linguistically informed models tested
on limited examples to data-driven statistical ap-
proaches enabled by the creation of large annotated
datasets such as those from the Message Under-
standing Conference (MUC) and the Automatic
Content Extraction (ACE) shared tasks (Grishman
and Sundheim, 1995; Doddington et al., 2004).

The adoption of neural network-based models,
beginning with Wiseman et al. (2015), marked sig-
nificant progress. The introduction of end-to-end
models by Lee et al. (2017, 2018), further advanced
CR by jointly detecting mention spans and resolv-
ing coreference, eliminating the need for external
parsers and handcrafted mention detection mod-
els. Building on this foundation, higher-order infer-
ence (HOI) strategies and entity-level models were
developed to refine entity representations during
inference and leverage cluster-level information.

However, as highlighted by Xu and Choi (2020),
the performance gains from these strategies have

1All code and data are publicly available at
github.com/lattice-8094/propp. The trained coreference
resolution pipeline is readily usable through the open-source
propp_fr Python library.

been marginal compared to the substantial improve-
ments achieved by the use of more powerful en-
coders like ELMo, BERT and DeBERTaV3.

Alternative approaches using encoder-decoder
architectures and large language models have been
proposed, framing CR as sequence-to-sequence
(Hicke and Mimno, 2024) or question-answering
(Wu et al., 2020; Gan et al., 2024) tasks. While
showing promising results, these methods are com-
putationally intensive and do not scale efficiently to
long documents or resource-constrained scenarios.

2.2 Existing Datasets

While MUC and ACE laid the foundation for coref-
erence datasets, OntoNotes has since become the
primary benchmark for CR. Published in 2006
(Hovy et al.) and regularly updated, OntoNotes
has been used in the CoNLL shared tasks (Pradhan
et al., 2011, 2012). Its latest version (Weischedel
et al., 2013) spans multiple languages (English,
Chinese and Arabic), and genres, including conver-
sations, news, web, and religious texts. The English
part contains 1.6M tokens across 3,943 documents,
averaging 467 tokens per document. OntoNotes
does not contains singleton mentions—those that
do not corefer with any other mention.

The growing interest for large literature corpora
has driven the development of dedicated annotated
datasets. The late 2010s saw the emergence of the
first literary CR datasets, beginning with DROC
(Krug et al., 2018), including samples from 90
German novels annotated with character corefer-
ence chains. With over 393,000 tokens (averaging
4,368 tokens per document), DROC remains the
largest literary CR dataset to date. The RiddleCoref
dataset (van Cranenburgh, 2019) followed, cover-
ing excerpts from 21 contemporary Dutch novels,
though it is not publicly available due to copyright
restrictions. Bamman et al. (2020) released Lit-
Bank, consisting of the first 2,000 tokens from 100
English novels. This dataset covers six entity cat-
egories (persons, faculties, locations, geopolitical,
organizations and vehicles). Other datasets include
FantasyCoref (Han et al., 2021), KoConovel cover-
ing 50 full-length Korean short stories (Kim et al.,
2024), and LitBank-fr (Mélanie et al., 2024). This
last dataset is noteworthy in that it covers longer
excerpts of text—averaging 9,834 tokens and up to
30,987 for the longest document.

Despite these resources, extrinsic evaluations re-

2standardebooks.org
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Lang. Domain Doc. Tokens Tokens / Doc.
Avg. Max.

Annotated Datasets
OntoNotesen (Weischedel et al., 2013) English Non-literary 3,493 1,600,000 467 4,009
DROC (Krug et al., 2018) German Fiction 90 393,164 4,368 15,718
RiddleCoref (van Cranenburgh, 2019) Dutch Fiction 21 107,143 5,102 -
LitBank (Bamman et al., 2020) English Fiction 100 210,532 2,105 3,419
FantasyCoref (Han et al., 2021) English Fantasy 214 367,891 1,719 13,471
KoCoNovel (Kim et al., 2024) Korean Fiction 50 178,000 3,578 19,875
LitBank-fr (Mélanie et al., 2024) French Fiction 28 275,360 9,834 30,987
Target Datasets
Standard Ebooks2 English Fiction 770 82,855,210 107,604 1,105,964
Chapitres (Leblond, 2022) French Fiction 2,960 240,971,614 81,409 878,645
Contribution
Ours French Fiction 3 285,176 95,058 115,415

Table 1: Comparison of coreference annotation datasets: OntoNotes (English section), fiction datasets, and target
datasets across languages.

veal that CR models perform poorly on full-length
documents (van Zundert et al., 2023). Studies con-
sistently show that performance degrades with in-
creasing document length (Joshi et al., 2019; Tosh-
niwal et al., 2020; Shridhar et al., 2023). This repre-
sents a major challenge given that practical applica-
tions involve digitized collections such as Project
Gutenberg or Wikisource, where documents fre-
quently exceed 90,000 tokens and can reach up to
a million as illustrated in Table 1.

While some initiatives annotate entire books,
they often diverge from standard guidelines. He
et al. (2013) annotated Pride and Prejudice but
focused solely on proper mentions. Similarly,
van Zundert et al. (2023) labeled character aliases
across 170 novels, omitting pronouns and noun
phrases. Other datasets, such as QuoteLi3 (Muzny
et al., 2017) and PNDC (Vishnubhotla et al., 2022),
include coreference annotations for speakers and
direct speech but lack broader character coverage.

Until recently, the only coreference resolution
results reported on a document of substantial length
(37k tokens) came from Guo et al. (2023), though
their work omits singletons, plural mentions, and
nested entities. Since then, Martinelli et al. (2025)
released an extended dataset, BOOKCOREFgold,
comprising two fully annotated English-language
novels averaging 97,140 tokens per document,
along with benchmark results, further illustrating
the growing interest in long-document CR.

These observations underscore the need for an
annotated corpus of full-length literary documents.
Such a resource will enable more robust evaluation
and improvement of CR models, addressing the gap
between current datasets and intended applications.

3 New Dataset

We selected three average-length French novels
spanning three centuries, resulting in a total of
285,176 tokens. We chose to annotate coreference
for character mentions only for several reasons.
First, most downstream tasks in literary NLP focus
on characters. Second, previous work shows that
characters account for the majority of annotated
mentions—83.1% in LitBank. Restricting annota-
tions to character mentions allows us to leverage
the 31,570 mentions already annotated in LitBank-
fr to train an accurate mention detection model.

For consistency and interoperability, we adhere
to the annotation guidelines from Mélanie et al.
(2024). We annotate all mentions referring to a
character, including pronouns, nominal phrases,
proper nouns, singletons and nested entities. Coref-
erence links capture strict identity relations.

On [their]1 way to visit [John]2, [[my]3 parents]1
met [[Mrs. Smith]4 and [[her]4 husband]5]6.

This sentence illustrates some annotation princi-
ples:
• Mention types: pronoun (my), nominal phrase

(her husband), and proper noun (John);

• Nested entities, including third-level nesting
(e.g., her within Mrs. Smith and her husband);

• Plural mentions (their, my parents, Mrs. Smith
and her husband) are treated as distinct corefer-
ence chains separate from their individual com-
ponents;

• Singletons, such as John, are annotated even if
they are not referenced again.

57



3.1 Mentions Detection Model
While Mélanie et al. (2024) report strong results
for mention detection, we opted to retrain our
own model. Our approach builds on a stacked
BiLSTM-CRF architecture inspired by Ju et al.
(2018), leveraging contextual token embeddings
from CamemBERTLARGE (Martin et al., 2020).
When evaluating for exact match with gold anno-
tations, We achieved an improvement of 4.99 in
F1-score on the test set from LitBank-fr (Table 2).
To assess generalization performance and due to
the small number of documents in the dataset, we
also conducted a leave-one-out cross-validation
(LOOCV). Details of the model architecture and
hyperparameters are available in the Appendix A.

Model P R F1 Support
Mélanie et al.
(test set)

85.0 92.1 88.4 4,061

Ours (test set) 91.29 95.59 93.39 4,061
Ours (LOOCV) 90.72 93.52 92.05 31,570

Table 2: Mention detection performances.

Coreference annotation is usually carried out in
two stages: annotating the mention spans, then link-
ing mentions referring to the same entity together.
Given our model’s 92.05 F1-score, we consider its
performance sufficient to automate the first opera-
tion, significantly reducing annotation time.

3.2 Coreference Annotation
Coreference annotation is performed manually,
building on the automatically detected mentions.
A single annotator reviews the text, assigns entity
identifiers to each mention, corrects errors from the
mention detection step, deleting spurious mentions,
adding missed ones, and adjusting incorrect bound-
aries. This process yield gold-standard annotations
for both mentions and coreference chains.

To assess annotation consistency, we double-
annotated a sample from each of the three nov-
els (5,000 tokens per text, 5% of the corpus).
Inter-annotator agreement (IAA) was measured for
mention spans (F1-score) and coreference chains
(MUC, B3, and CEAFe). Results show high consis-
tency: mention span F1-score of 97.47 (vs. 86.0 in
Bamman et al. (2019)), benefiting from our focus
on a single, well-defined entity type. Coreference
agreement is also high: MUC 96.40, B3 91.02,
and CEAFe 71.65 (86.36 CoNLL F1). The lower
CEAFe reflects differences in annotator decisions
regarding long coreference chains and ambiguous

cases such as plural entities leaving room for mul-
tiple valid interpretations. These results overall
demonstrate the reliability and robustness of our
annotations.

To perform annotation we use SACR, an open-
source, browser-based interface (Oberle, 2018).
This tool meets our requirements, allowing efficient
processing of long texts, tracking a large number
of entities and handling nested mentions.

Mention detection errors mainly involve diffi-
cult cases, such as nested and ambiguous mentions
(animals with agentivity, appositions, reflexive pro-
nouns) or other edge cases. It shows the feasibility
of leveraging automatic mention detection to accel-
erate coreference annotation. The manual annota-
tion of a 100k-token text takes around 40 hours.

3.3 Dataset Statistics

Table 3 summarizes statistics from our dataset. The
entity spread refers to the distance between the first
and the last mention of an entity (Toshniwal et al.,
2020). This highlights a key specificity of literary
texts, characters can be referred to thousands times
over several hundred pages, comprising thousands
of tokens.

Average Mentions / Doc. 13,178
Singletons Ratio 1.15%
Coreference Chains / Doc. 159
Average Mentions / Chain 82
Maximum Mentions / Chain 4,932
Average Entity Spread (tokens) 17,529
Maximum Entity Spread (tokens) 115,369
Second-Level Nested Mentions 5.74%
Third-Level Nested Mentions 0.30%
Plural Mentions Ratio 8.13%
Proper Mentions 12.79%
Nominal Mentions 12.26%
Pronominal Mentions 74.95%

Table 3: Dataset statistics summary.

Another important metric for characterizing
coreference is the distance to the nearest antecedent
(Han et al., 2021). For each mention, we locate the
previous mention belonging to the same corefer-
ence chain and measure the difference in terms of
mention positions. Bamman et al. (2020) analyzed
the distribution of distance to nearest antecedent
for proper nouns, noun phrases and pronouns. We
replicate their experiment and report similar results.
While 95% of pronouns appear within 7 mentions
of their last antecedent, this distance reach up to
270 mentions for proper nouns and noun phrases.
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This observation calls for distinct handling of pro-
nouns, common, and proper nouns during CR. The
the last 1% of proper and common noun mentions
exhibit a distance of over 1,700 mentions, present-
ing a significant challenge for CR. See Appendix
B for the full distribution of antecedent distances.

3.4 Corpus Merging

Since we followed the guidelines from Mélanie
et al. (2024), the newly annotated dataset is fully
compatible with the character annotations from the
LitBank-fr dataset. It allows us to merge the two
datasets, resulting in a combined dataset contain-
ing 31 documents and 71,105 character mentions.
This decision is motivated by the goal of evaluating
generalization across a broader range of texts.

This merged dataset becomes the largest anno-
tated literary coreference dataset in terms of tokens
(560,536), average document length (18,081 to-
kens), and maximum document length (115,415
tokens). Unless otherwise specified, all results pre-
sented in this paper pertain to this merged corpus,
which we refer to as Long-LitBank-fr.

4 Coreference Resolution

Several coreference resolution pipelines are avail-
able off-the-shelf, such as the CoreferenceRe-
solver module from Spacy3, Fastcoref (Otmazgin
et al., 2022) and AllenNLP (Gardner et al., 2018).
BookNLP (Bamman et al., 2020), is a pipeline
performing, among other, mentions detection and
coreference resolution for English. A French adap-
tation, BookNLP-fr, was developed by Mélanie
et al. (2024) and trained on the LitBank-fr dataset.
The BookNLP pipelines implement an end-to-end
coreference resolution model (Ju et al., 2018).

Diverging from recent trends of end-to-end ar-
chitectures, we propose to implement coreference
resolution as a modular pipeline, facilitating the
study of each component’s role and enabling fine-
grained error analysis.

Additionally, the use of compact, specialised
models (∼15M and ∼11M parameters for mention
detection and mention scoring models) is motivated
by practical end-use considerations: the need to
process large literary corpora under limited com-
putational resources. This is further supported by
recent critiques of the "bigger-is-better" trend in AI,
arguing that simply increasing scale doesn’t always
lead to better results. Instead, smaller, task-specific

3https://spacy.io/api/coref

models have been shown to offer more sustain-
able, transparent, and often competitive solutions
for domain-specific applications (Varoquaux et al.,
2025).

4.1 Pipeline Description

Our mention-pair-based coreference resolution
pipeline is composed of the following modules:

Mention Detection: We employ the mention de-
tection module described in section 3.1, which
consists of a stacked BiLSTM-CRF architecture
using token-level embeddings from pretrained
CamemBERTLARGE model as input. We retrained
it on the merged corpus, achieving an increase of
2.82 points in F1-score (94.87). As mention de-
tection can impact overall CR performance, we
make it possible to bypass the errors introduced by
this module by using gold mentions as input to the
mention-pair encoder.

Considered Antecedents: To address the quadratic
complexity of considering all antecedents, re-
cent approaches introduce hyperparameters to uni-
formly limit the number of considered antecedents
(Thirukovalluru et al., 2021; Wu et al., 2020). In-
spired by Bamman et al. (2020) and supported by
our observations regarding antecedent distance, we
adopt a mention-type-specific approach. We limit
the number of antecedents to 30 for pronouns and
300 for proper and common nouns.

Mention Pair Encoder: Mention-pairs are en-
coded by concatenating the representations of the
two mentions with a feature vector that includes
attributes such as gender, grammatical person, and
the distance between the mentions. For multi-token
mentions, the representation is calculated as the av-
erage of the first and last tokens embeddings.

Mention Pair Scorer: Encoded mention-pairs are
passed into a feedforward neural network trained
to predict if two mentions refer to the same entity.
Details about the features, model architecture and
parameters are provided in the Appendix C.

Antecedent Ranker: Following Wiseman et al.
(2015), candidate antecedents are ranked accord-
ing to their predicted scores. During inference, the
highest-scoring antecedent is selected unless all
scores fall below 0.5, in which case the null an-
tecedent is assigned.

Entity Clustering: Default strategy for linking
mentions into clusters is to scan the document from
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left to right, each new mention is either merged into
the cluster of its best-ranked antecedent or left as a
standalone entity. Coreference chains are defined
as the set of mentions in a cluster.

We explore additional strategies to address spe-
cific challenges and improve overall performance.

Handling Limited Antecedents: Limiting the
number of antecedents can lead to split corefer-
ence chains. A common strategy in literary texts is
to link all matching proper nouns at the document
level, along with their derivatives. While previous
works have been using hand-crafted sets of aliases
to link proper mentions (Bamman et al., 2020), we
leverage local mention-pairs scoring to perform
coreference resolution at the document scale. Let’s
say that all local predictions involving mentions of
"Sir Ralph Brown" and "Raphael" are coreferent,
we propagate this decision to all mention-pairs at
the global scale, bridging the gap between a men-
tion and an antecedent that would otherwise be out
of the range of locally considered antecedents.

Leveraging Non-Coreference Predictions: While
most mention-pair models focus on coreference
links, the cross-entropy loss used during training
involves that they are equally trained to predict
non-coreference. We propose leveraging high-
confidence non-coreference predictions to prevent
later incorrect cluster merging. Mention-pairs
containing a coordinating conjunction, such as
“[Ralph] and [Mr. Delmare]”, are a strong indi-
cation of non-coreference between these mentions,
which can be used to prevent the merging of these
entities at document level. This approach is com-
bined with an "easy-first" clustering strategy (Clark
and Manning, 2016), which processes mentions in
order of confidence rather than left-to-right, thus
delaying harder decisions.

The addition of these two strategies is refered
to as the easy-first, global proper mentions coref-
erence approach. This approach follows a hier-
archical iterative process, where high-confidence
local mention-pair predictions are resolved first,
constraining subsequent decisions at the document
level. This post-processing module is not trained.

4.2 Evaluation Metrics

We evaluate CR performance using MUC (Vilain
et al., 1995), B3 (Bagga and Baldwin, 1998), and
CEAFe (Luo, 2005) scores. For overall perfor-
mance assessment we report the average F1-score
of the three metrics which we refer to as the CoNLL

F1-score (Pradhan et al., 2012). We use the scorer
implementation by Grobol.4

4.3 Document Length

While Poot and van Cranenburgh (2020) investi-
gated the impact of document length on CR by
truncating documents to different sizes, we adopt a
splitting approach. This allows us to evaluate CR
performance on more text excerpts.

Given a target sample size of L tokens, we
first select all documents from our corpus that ex-
ceed this length. Each document is split into non-
overlapping samples, each containing L tokens.
CR is performed independently on each sample,
and the results are averaged across samples of a
given document. The overall CR scores are cal-
culated as the macro-average across all retained
documents.

4.4 Coreference Resolution Results

4.4.1 Mention-Pairs Scorer Results
The mention-pairs scorer, evaluated using leave-
one-out cross-validation with gold mention spans,
achieved an overall accuracy of 88.10%. As
shown in Table 4, performance disparities between
classes reflect the underlying class imbalance, with
significantly higher precision and recall for non-
coreferent pairs (class 0). Most errors occurred
for mention pairs where the scorer’s confidence is
low (∼0.5) (Appendix D). As we use the highest
ranked antecedent strategy, not all scorer decisions
are used during entity clustering, mitigating the
number of wrong decisions considered.

Coref. P R F1 Support
0 92.31 93.18 92.74 5.52M (82%)
1 68.49 65.62 67.02 1.25M (18%)

Table 4: Mention-pairs scorer performance on Long-
LitBank-fr corpus. Precision (P), Recall (R).

4.4.2 Highest Ranked Antecedent
After sorting, the correct antecedent was predicted
in 88.05% of cases, highlighting the effectiveness
of this approach. Errors occurred for 8,496 men-
tions (11.95%). In 1,478 cases (2.08%), the range
of considered antecedents is too narrow, leaving
true antecedents out of reach. For these mentions,
the null antecedent is assigned approximately half
the time, while an unrelated antecedent is assigned
in the other half. In 7,018 cases (9.87%), the true

4https://github.com/LoicGrobol/scorch
60



Figure 1: Impact of document length on CR performance for different strategy. Gold and predicted mentions.

antecedent is within reach, but the model incor-
rectly assigned a different antecedent in nearly 90%
of instances. In the remaining 10%, the null an-
tecedent is wrongly predicted.

The additional global proper mentions corefer-
ence strategy aims at reducing both types of errors,
by bridging the gap between proper mentions and
their long distance antecedent, and by limiting clus-
tering of mentions that are believed to be distinct
from local mention-pair scores.

4.4.3 Entity Clustering Strategies
The global proper mentions strategy leads to an
overall gain in performance measured by CoNLL
F1-score of 1.68 points. We observe a slight drop
for MUC, but a significant improvement on both
B3 and CEAFe.

Strategy MUC B3 CEAFe CoNLL
Left to Right 94.61 62.95 60.36 72.64
Global Proper CR 94.45 67.32 61.18 74.32

Table 6: Coreference resolution for Long-LitBank-fr
corpus. Average F1-scores. Gold mentions.

These scores reflect the overall performance gain
of this strategy on the full Long-LitBank-fr cor-
pus (averaging 18,081 tokens per document). How-
ever, it is best suited to long texts that present both
the risk of out-of-reach antecedent, and sufficient
local evidence on proper mentions-pairs to propa-
gate document-wide decisions.

4.4.4 Influence of Document Length
When analyzing performance gains as a function of
document length, we observe that the MUC score
remains relatively stable. For CEAFe we see a con-
sistent improvement of around 1 point, regardless

of document length. The most striking trend is
observed on the B3 score: for documents exceed-
ing 20,000 tokens, the gain from the global proper
mentions strategy increases significantly, ranging
from 5 to 10 points. See Appendix E.

From Figure 1, we observe that the overall
CR performance decreases with document length.
Much of the performance loss is observed in the
lower range. This might well explain why CR mod-
els trained and evaluated on documents of limited
length (<10k), have been deceiving when used for
downstream tasks on full length documents.

The proper mentions global coreference strat-
egy consistently outperform the vanilla left-to-right
method. Performance gains is mostly negligible for
short documents (< 2k tokens), but becomes signif-
icant and stable beyond, reaching +3 points on the
CoNLL F1-score. This shows the effectiveness of
our approach for handling CR in longer documents.

Additionally, Figure 1 shows the impact of using
predicted mentions as input to the mention-pair
encoder, leading to a performance drop of ∼7%,
this result is consistent with previous publications.

4.4.5 Comparison to Baseline

For French, our new pipeline consistently outper-
forms the model proposed by Mélanie et al. (2024)
on their test set, setting a new baseline on this spe-
cific dataset. We also report average performances
on the 3 newly annotated novels for future compar-
ison ; both with gold and predicted mentions.

See Appendix G for cross-dataset and cross-
language coreference performance comparison.

While this experiment reveals performance limi-
tations exacerbated by document length, commonly

Corpus (test set) Model Mentions Tokens / Doc MUC B3 CEAFe CoNLL
LitBank-fr (test-set) Mélanie et al. 2024 Gold 2,000 88.0 69.2 71.8 76.4
LitBank-fr (test-set) Ours Gold 2,000 92.43 70.67 75.59 79.56

Long-LitBank-fr (3 docs) Ours Gold 93,019 96.64 52.36 46.45 65.15
Long-LitBank-fr (3 docs) Ours Predicted 93,019 95.59 45.4 35.95 58.98

Table 5: CR performance on LitBank-fr test-set and on the three fully annotated novels. Gold and predicted
mentions.
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used CR metrics (MUC, B3, CEAFe) have been
criticised for presenting systematic flaws. Alter-
native metrics such as LEA (Moosavi and Strube,
2016) and BLANC (Recasens and Hovy, 2011)
have been proposed as better aligned with linguis-
tic intuitions. Others argue for extrinsic evaluation
(O’Keefe et al., 2013; Vishnubhotla et al., 2023),
where CR is assessed based on its contribution to
easier to evaluate, downstream tasks.

5 Gender Prediction Case study

As mentioned, studies gravitating around charac-
ter gender have attracted substantial attention from
computational humanities researchers (Underwood
et al., 2018). A key challenge is accurately predict-
ing the gender of as many character mentions as
possible to ensure representative results.

Early works relied on heuristics to infer gender
from explicit clues (he, Mrs, the man), achieving
high precision (90%) but lower recall (30-50%),
due to the high proportion of ambiguous mentions
in literary texts. Recent works leverages CR for
broader gender prediction (Vianne et al., 2023).

5.1 Data Preparation
We use the Long-Litbank-fr corpus. Starting
with all character mentions, we discard singletons
(2.74%) and plural mentions (9.84%). We manu-
ally annotate the gender of the remaining 62,162
mentions at the entity level. We adopt a binary
approach to gender. Works of fiction are subject
to play on characters’ gender, such as gender rev-
elation or asymmetry of knowledge between char-
acters. To assign character gender we adopt the
omniscient perspective (Kim et al., 2024), refering
to the knowledge one have at the end of the entire
book. We discard chains whose gender cannot be
annotated with certainty, leaving us with 804 enti-
ties and 61,852 mentions (86.99% of all mentions).

5.2 Prediction Pipeline
To predict the gender of character mentions we im-
plement a multi-stage solution:

Heuristic rules: assign gender based on heuristics
from explicit gender clues (pronouns, noun phrases,
articles and adjectives).

First-name database: determine the gender of
proper mentions using a statistical database of first
names given in France since 1900.5

5French National Institute of Statistics and Economic Stud-
ies (INSEE).

Coreference propagation: resolve coreference,
compute the male/female ratio of processed men-
tions, and assign the majority gender to all men-
tions within the coreference chain.

We compare our results with those of Naguib
et al. (2022) who used a similar combination of
heuristic rules and CR to infer character gender.

5.3 Case Study Results
CR significantly improves recall compared to rule-
based methods. While heuristics achieve high pre-
cision (>98%), they suffer from low recall (37-
47%), reflecting the significant number of mentions
whose gender cannot be inferred without additional
context. Our approach outperforms the baseline
by leveraging sophisticated heuristic rules, a first-
names database, and a more effective CR pipeline.
Although CR slightly reduces precision—a conse-
quence of clustering errors—the substantial recall
gain makes it a robust method overall.

Male Female
P R F1 P R F1

Baseline
Naguib et al. 2022 95.0 45.0 60.6 97.0 58.0 72.7

Heuristic Rules 99.8 37.0 54.0 98.9 46.7 63.4
+ First-name data 99.8 38.4 55.4 98.8 47.4 64.1
+ Coreference 95.4 91.6 93.4 90.4 93.4 91.9

Table 7: Mentions gender prediction performance (Pre-
cision, Recall, F1).

6 Conclusion

We highlight critical limitations in coreference
resolution (CR) for literary texts, particularly the
scarcity of representative datasets, limiting the pos-
sibility to train and evaluate models tailored for
literary computational studies. To bridge this gap,
we release an annotated corpus of character coref-
erence chains for three full-length French novels
spanning three centuries (285,000+ tokens). We
introduce a modular CR pipeline tailored for long
documents, integrating global coreference propa-
gation for proper nouns and an easy-first cluster-
ing approach. After carrying out a detailed error
analysis of each component, we study the impact
of document length on overall coreference perfor-
mance. Our approach is competitive with existing
state-of-the-art models, demonstrating good perfor-
mance on longer texts. To demonstrate practical
value, we apply it to character gender inference,
significantly improving recall over rule-based base-
lines while maintaining high precision, and out-
performing other CR-based approach. This study
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underscores the need for robust datasets and well-
evaluated models to advance literary CR research.

Limitations

While our dataset is among the largest annotated
literary datasets in terms of tokens (285,000), it is
limited by the fact that it only contains three doc-
uments. This implies that it does not encompass
the full diversity of time periods, literary move-
ments, and genres within French literature. This
limitation may impact the generalizability of the
coreference resolution (CR) models trained on this
dataset. The proposed Long-LitBank-fr corpus re-
sulting from the concatenation with the LitBank-fr
dataset mitigates this issue by increasing diversity
and improving the potential for model generaliza-
tion.

Another limitation is that we focused solely on
annotating coreference chains for characters. Some
downstream applications may require resolving
coreference for other entity types (e.g., geograph-
ical entities, events). Since our annotations are
restricted to characters, a model trained exclusively
on this data may not easily transfer to tasks involv-
ing other entity types. In such cases, enriching the
annotations would be necessary for broader appli-
cability.

Furthermore, our study is limited to French-
language texts, and we did not explore cross-
lingual generalization of our pipeline. Expand-
ing the dataset to include full documents in other
languages could improve its applicability. This
could be achieved through annotation transfer or
by leveraging multilingual models, which would
help reduce the cost of manual annotation.

Finally, while extrinsic evaluation is not the pri-
mary focus of this work, we have only begun to
assess our pipeline through its application to charac-
ter gender inference. A more comprehensive evalu-
ation of the models’ suitability for full-document
literary analysis would require additional extrinsic
assessments, such as network extraction or quote
attribution.
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A Mention Detection Model

The mention detection module consists of two
stacked BiLSTM-CRF models, each trained on a
different nesting level of mentions. During infer-
ence, predicted spans from both models are com-
bined. If two mention spans overlap, the span with
the lower prediction confidence is discarded.

BERT embeddings: The raw text is split into
overlapping segments of length L (the maximum
embedding model context window) with an over-
lap of L/2 to maximize the context available for
each token. Each segment is passed through the
CamemBERTLARGE model, and we retrieve the last
hidden layer as the token representations (1024 di-
mensions). The final token embedding is computed
as the average from overlapping segments. We do
not fine-tune CamemBERT for this task.

BIOES tag prediction: For each sentence,
token representations are passed through the
BiLSTM-CRF model, which outputs a sequence
of BIOES tags: B-PER (Beginning of mention), I-
PER (Inside), E-PER (End), S-PER (Single-token
mention), and O (Outside).

A.1 Model Architecture
• Locked Dropout (0.5) applied to embeddings

for regularization.

• Projection Layer: Highway network mapping
1024 → 2048 dimensions.

• BiLSTM Layer: Single bidirectional LSTM
(256 hidden units per direction).

• Linear Layer: Maps 512-dimensional BiLSTM
outputs to BIOES label scores.

• CRF Layer: Enforces structured consistency in
predictions.

A.2 Model Training
• Data Splitting: Leave-One-Out Cross-

Validation (LOOCV) with an 85%/15%
train-validation split.

• Batch Size: 16 sentences per batch.

• Optimization: Adam optimizer (lr = 1.4×10−4,
weight decay = 10−5).

• Learning Rate Scheduling: ReduceLROn-
Plateau (factor = 0.5, patience = 2).

• Average Training Epochs: 20.

• Hardware: Trained on a single 6GB Nvidia
RTX 1000 Ada Generation GPU.

B Nearest Antecedent Distribution

Figure 2: Distance to nearest antecedent for mentions
of different type.

C Coreference Resolution Model

C.1 Model Architecture

• Model Input: 2,165-dimensional vector, com-
posed of concatenated:

– CamemBERT embeddings: Maximum con-
text embeddings for both mentions (2 × 1,024
= 2,048 dimensions).

– Mention Features (106 dimensions):

* Mention length.

* Position of the mention’s start token in the
sentence.

* Grammatical category (pronoun, common
noun, proper noun).

* Dependency relation of the mention’s head
(one-hot encoded).

* Gender (one-hot encoded).

* Number (one-hot encoded).

* Grammatical person (one-hot encoded).
– Mention Pair Features (11 dimensions):

* Distance between mention IDs.

* Distance between start and end tokens of
mentions.

* Sentence and paragraph distance.

* Difference in nesting levels.

* Ratio of shared tokens between mentions.

* Exact text match (binary).

* Exact match of mention heads (binary).
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* Match of syntactic heads (binary).

* Match of entity types (binary).

• Hidden Layers:

– Three fully connected layers.
– 1,900 hidden units per layer with ReLU activa-

tion.
– Dropout rate of 0.6 for regularization.

• Final Layer:

– Linear layer mapping from 1,900 dimensions
to a single scalar score.

– Output: Continuous value between 0 (not
coreferent) and 1 (coreferent).

C.2 Model Training
• Data Splitting: Leave-One-Out Cross-

Validation (LOOCV) with an 85%/15%
train-validation split.

• Batch Size: 16,000 mention-pairs per batch.

• Optimization: Adam optimizer (lr = 1.4×10−4,
weight decay = 10−5).

• Antecedent Candidates:

– 30 for pronouns.
– 300 for common and proper nouns.

• Hardware: Trained on a single 6GB Nvidia
RTX 1000 Ada Generation GPU.

D Mention-Pairs Scorer Error
Distribution

Figure 3: Error Rate by Mention-pair Predicted Score
Range.
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E Detailed performance gain from clustering strategy

Table 8: Absolute CR performance gain from the global proper mentions clustering strategy over vanilla left-to-right,
as a function of document length. Predicted mentions.

F Annotated Dataset Details
Year Author Text Tokens
1731 Antoine-François Prévost Manon Lescaut 71,219
1832 George Sand Indiana 115,415
1923 Delly Dans les ruines 98,542

Table 9: Annotated Dataset Details

G Comparison of CR performance with other datasets and languages

Corpus Model Mentions Tokens / Doc MUC B3 CEAFe CoNLL
LitBank (English) Bamman et al. 2020 Gold 2,105 88.5 72.6 76.7 79.3
LitBank-fr (LOOCV) Ours Gold 2,105 91.93 74.6 75.35 80.63
LitBank (English) Bamman et al. 2020 Predicted 2,105 84.3 62.73 57.3 68.1
LitBank (English) Thirukovalluru et al. 2021 Predicted 2,105 89.50 78.21 67.59 78.44
LitBank-fr (LOOCV) Ours Predicted 2,105 84.58 74.77 63.30 73.21
KoCoNovel (Korean) Kim et al. 2024 Predicted 3,578 71.06 57.33 44.19 57.53
Long-LitBank-fr (LOOCV) Ours Predicted 3,578 88.31 68.79 47.17 68.09
G. Orwell, Animal Farm Guo et al. 2023 Predicted 37,000 - - - 36.3
Long-LitBank-fr (LOOCV) Ours Predicted 37,000 92.79 52.35 32.89 59.34
BookCorefgold Longdoc Predicted 76,419 93.5 62.4 45.3 67.0
BookCorefgold Maverickxl Predicted 76,419 94.3 55.3 33.4 61.0
Long-LitBank-fr (LOOCV) Ours Predicted 76,000 94.99 47.51 37.49 60.00

Table 10: Comparison of CR performance with other work on literary coreference with predicted and gold mentions.

69



Proceedings of the Eighth Workshop on Computational Models of Reference, Anaphora and Coreference (CRAC 2025), pages 70–76
Suzhou, China, November 9, 2025. ©2025 Association for Computational Linguistics

Towards Adding Arabic to CorefUD

Dima Taji and Daniel Zeman
Charles University

Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics (ÚFAL)

Prague, Czechia
{taji, zeman}@ufal.mff.cuni.cz

Abstract

Training models that can perform well on vari-
ous NLP tasks requires large amounts of data,
which becomes even more apparent with more
nuanced tasks such as anaphora and corefer-
ence resolution. This paper presents the auto-
matic creation of an Arabic CorefUD dataset
through the automatic conversion of the exist-
ing gold-annotated OntoNotes.

1 Introduction

Coreference resolution is the linguistic task of clus-
tering the different noun phrases that refer to the
same entity within a text (Nedoluzhko et al., 2022;
Zheng et al., 2011; Elango, 2005). For example, in
the sentence "As Gregor Samsa awoke one morn-
ing from uneasy dreams he found himself trans-
formed in his bed into a gigantic insect.", the men-
tions Gregor Samsa, he, himself, and his all refer
to the same entity in the real world.

Recognizing these mentions and clustering them
has been shown to improve the performance of
different NLP tasks, particularly the tasks that re-
quire constructing the meaning of the text, such as
opinion target identification (Jakob and Gurevych,
2010), machine translation (Luong and Popescu-
Belis, 2016; Miculicich Werlen and Popescu-
Belis, 2017), and machine reading comprehension
(Huang et al., 2022). Research has also shown that
the applications of coreference resolution can ex-
tend to tasks in other fields, such as building an
ontology in the biomedical domain (Ashury Tahan
et al., 2024), improving diversity in rankings (Zhu
et al., 2007), and weather forecasting (Belz, 2007).

However, datasets, even for the same language,
vary greatly in their format, the phenomena cov-
ered, and the way they are annotated. As a result,
different state-of-the-art systems are evaluated on
different datasets, and as such, evaluations are often
not directly comparable (Kobayashi and Ng, 2020).
Moreover, using data from different languages to

train multilingual systems cannot be achieved with-
out extensive preprocessing of the data to harmo-
nize it.

Multiple efforts have been made to create multi-
lingual coreference-annotated corpora and harmo-
nize existing corpora to follow a unified scheme.
Of all these efforts, which will be discussed in
Section 2, we are interested in adding an Arabic
dataset to the CorefUD (Nedoluzhko et al., 2021,
2022) corpus, following the approach that has
been designed to convert the English OntoNotes
(Weischedel et al., 2013) dataset to CorefUD.

Due to the morphologically-rich nature of Ara-
bic, we had to modify the existing conversion ap-
proach to account for the presence of zero mentions,
in addition to converting the annotated data follow-
ing the same approach used for the conversion of
the English data. These decisions are presented in
Section 3.

Finally, Section 4 outlines our future plans and
concludes.

2 Literature Review

In this section, we present previous efforts that have
been made pertaining to the work we are describing
in this paper.

2.1 Multilingual Coreference and Anaphora
Corpora

Multilingual corpora annotated with coreference
and anaphora information are an intuitive solution
for creating multilingual and language-agnostic sys-
tems. Some of these corpora are limited to lan-
guages that are of the same family, such as AnCora
(Recasens and Martí, 2010) for Spanish and Cata-
lan, PAWS (Nedoluzhko et al., 2018) for Czech,
English, Polish, and Russian, ParCor (Guillou
et al., 2014) and ParCorFull (Lapshinova-Koltunski
et al., 2022) for English and German, PCEDT
(Nedoluzhko et al., 2016) for Czech and English,
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Wino-X (Emelin and Sennrich, 2021) for English,
German, French, and Russian. Others include dis-
tant families such as TransMuCoRes (Mishra et al.,
2024) for English and 31 South Asian languages,
MMC (Zheng et al., 2023) for English, Chinese,
and Farsi, and OntoNotes (Weischedel et al., 2011)
for English, Chinese, and Arabic.

The issue with this approach is that every corpus
follows its own scheme and has a unique set of
definitions and annotation guidelines, making the
process of adding new languages a costly endeavor
in terms of time, effort, and monetary cost. On
the other hand, there is a potential for combining
these corpora if their schemes and annotations were
harmonized, as discussed next.

2.2 Harmonized Schemes
The first effort to a corpus that harmonizes schemes
began with the SemEval 2010 shared task on
coreference resolution in multiple languages (Re-
casens et al., 2009), which extracted coreferences
from a number of datasets with varying schemes,
and represented them in a CoNLL-like format.
The MMAX tool (Müller and Strube, 2022) in-
troduced an XML format that can be used to anno-
tate anaphora as well as other linguistic phenom-
ena, and was used for multiple corpora. However,
the annotation approaches and the annotated at-
tributes varied greatly between projects. Universal
Anaphora (Poesio et al., 2024) proposes a markup
scheme for encoding anaphoric information to facil-
itate the creation of a collection of corpora using the
same scheme. Similarly, CorefUD (Nedoluzhko
et al., 2021, 2022) addresses the challenges posed
by varying data formats and annotation guidelines
in existing coreference corpora by creating a uni-
fied scheme and format for coreference annotation,
facilitating cross-lingual research and development
in anaphora and coreference resolution.

Nevertheless, these efforts focus more on uni-
fying the underlying file format, while there is no
work being done on the harmonization of linguistic
content.

2.3 Arabic Coreference Corpora
Although, as far as we are aware, OntoNotes 5.0
(Weischedel et al., 2013) is the only current multi-
lingual corpus that includes Arabic, there are sev-
eral coreference corpora for Arabic alone.

Abolohom and Omar (2015) and Abolohom and
Omar (2017) use the Quranic corpus, annotated
with antecedent references of pronouns. However,

since the linguistic structure of Quranic Arabic
(QA) is quite distinct from Modern Standard Ara-
bic (MSA), the transfer of the models’ knowledge
from QA to MSA cannot be directly compared to
the experiment results presented in both papers,
where their models were evaluated on QA.

Others created their own corpora, which have
been used for a limited number of models, such as
Mezghani et al. (2009) and Abdul-Mageed (2011).

However, the corpus that made the most sense to
be our starting point was OntoNotes (Weischedel
et al., 2011, 2013). Since the Arabic portion of the
corpus has been used in numerous efforts (Pradhan
et al., 2012; Li, 2012; Pradhan et al., 2013; Aloraini
et al., 2020; Min, 2021; Aloraini et al., 2022), that
indicates that (1) the corpus is popular enough so
the momentum of using it to create and test models
could be transferred to our new format, and (2)
evaluating new systems created with our converted
corpus against existing systems would be easy. On
the other hand, the downside is that OntoNotes
cannot be redistributed freely, which unfortunately
affects accessibility of derived works.

2.4 CorefUD

Inspired by the progress achieved by standardizing
the labels and annotation guidelines of morphosyn-
tactic labels brought on by Universal Dependencies
(Nivre et al., 2020), Nedoluzhko et al. (2022) in-
troduced CorefUD, a collection of corpora with a
harmonized scheme that would unify and standard-
ize the annotation of anaphoric and coreference
relations.

CorefUD has proved to be beneficial, especially
for languages with small training data sets (Pražák
et al., 2021; Chai and Strube, 2023), and has been
used in four shared tasks focusing on systems for
multilingiual coreference resolutions (Žabokrtský
et al., 2022, 2023; Novák et al., 2024, 2025). Ad-
ditionally, the CorefUD format is being used to
produce new corpora (Dyer et al., 2024; Jørgensen
and Kåsen, 2024). All of these efforts indicate that
following this format has the potential to further
propel research in the area of anaphora and coref-
erence resolution.

3 Data and Conversion

For this experiment, we used the OntoNotes 5 Ara-
bic dataset (Weischedel et al., 2013). The data set
comprises 599 articles with approximately 400K
tokens. Since the data is entirely from the Penn
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Arabic Treebank, it only contains news articles.

3.1 OntoNotes Annotations and Labels

The annotations contained in OntoNotes are orga-
nized in layers, namely treebank, proposition, word
sense, ontology, coreference, and named entity. For
the purpose of our conversion, and following the
approach used by Nedoluzhko et al. (2022), we
require the treebank and coreference layers only.

The treebank layer consists of the syntactic anno-
tations of the sentences. These annotations are the
parses that are provided by the LDC for the data
in the PATB part 3 – v3.1 (Maamouri et al., 2004).
This layer is relevant for us because it contains the
zero nodes that are discussed in Section 3.2.

For our current purposes, this layer contains the
most relevant information. The annotations in this
layer connect names, nominal references, and pro-
nouns that refer to the same entity, marking them
as coreferents. Similarly, verbs and their equiva-
lent noun phrases are also marked as coreferents.
These annotations can span multiple sentences as
long as they occur in the same document. Apposi-
tions are also marked in this layer. In the Arabic
OntoNotes dataset, only 447 articles are annotated
for coreference, making a total of 319K annotated
tokens.

The OntoNotes tags in the Coreference part are
the ones that currently appear in our converted files.
They include two types; IDENT and APPOS, and
two subtypes; HEAD and ATTRIB.

• IDENT denoting any nominal mentions of the
same entity. This is reflected in our dataset by
giving the entities the same IDs, without any
further elaboration on tags.

• APPOS denoting the initial nominal phrase
when combined with the HEAD, or the refer-
ent when combined with the ATTRIB.

Figure 1 shows an excerpt from OntoNotes that
illustrates the use of these labels.

3.2 Zeros

In pro-drop languages such as Arabic, subject pro-
nouns can be omitted; these omitted subjects are
called zero pronouns (Aloraini et al., 2024). How-
ever, even when these pronouns are dropped, they
can still be part of a coreference chain. As such, in
order to identify all the coreference occurrences in
a text, zeros must be identified and inserted in their
appropriate locations. Additionally, not all zeros
need to be part of a coreference chain, and making

<COREF ID="64" TYPE="IDENT">
<COREF ID="66" TYPE="APPOS"
SUBTYPE="ATTRIB">

¨A 	̄ YË@ QK
 	Pð wzyr AldfAς ‘Minister of Defense’

</COREF>
<COREF ID="66" TYPE="APPOS"
SUBTYPE="HEAD">

��
K
P ñÊm.�
	'
@ Ânjlw ryys ‘Angelo Reyes’

</COREF>
</COREF>

Figure 1: An example of OntoNotes’ Coreference an-
notation showing the tags that are used to identify the
nominal mentions. There are two mentions of the same
entity connected with an APPOS relation and labeled
as its HEAD and ATTRIB, respectively. Additionally, the
whole apposition is labeled as a mention in an IDENT(ity)
coreference relation, whereas ID="64" links it to other
mentions of that entity elsewhere in the document (not
shown here). Arabic transliteration follows the Habash-
Soudi-Buckwalter scheme (Habash et al., 2007).

this distinction is another task that a coreference
resolution model needs to learn.

As the existing conversion approach is based on
English, which does not contain zeros, the gen-
erated output does not cover this linguistic phe-
nomenon. Fortunately, the PATB annotations in-
cluded within OntoNotes contain zero nodes, and
the subsequent coreference annotations in Arabic
OntoNotes take the zeros into consideration.

Per the PATB annotation guidelines (Maamouri
et al., 2009), there are five types of zero nodes, four
of which appear in the data included in OntoNotes:

• ICH tag denoting discontinued constituents,
when something interrupts the sentence, with-
out affecting its syntax.

• T tag for subjects preceding the verb.
• *0* tag indicating the existence of a null com-

plementizer or zero WH-pronoun.
• * tag indicating the object of a passive verb,

the subject of a nominal verb, or an omitted
subject of a verb.

• *?* tag denoting ellipses, which do not appear
in the OntoNotes data.

Of the mentioned types of zero node tags that
appear in our corpus, the nodes with the * tag are
the only ones that represent a coreference relation.
The other tags indicate relations that can be realized
using Deep UD (Droganova and Zeman, 2019).
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ID Token Coreference Annotations
3 QK
 	Pð wzyr ‘Minister’ Entity=(0001@ann@nw@ar@on_d1sec0c20–1(0001@ann@nw@ar@on_d1sec0c2–1-ATTRIB
4 ¨A 	̄ YË@ AldfAς ‘Defense’ Entity=0001@ann@nw@ar@on_d1sec0c2)

5 ñÊm.�
	'
@ Ânjlw ‘Angelo’ Entity=(0001@ann@nw@ar@on_d1sec0c2–1-appos:1,HEAD

6 ��
K
P ryys ‘Reyes’ Entity=0001@ann@nw@ar@on_d1sec0c2)0001@ann@nw@ar@on_d1sec0c20)

Table 1: A segment of the generated CorefUD annotations corresponding to the example shown in Figure 1.

3.3 Output Annotation

Table 1 shows the coreference labels generated by
our conversion process that correspond to the exam-
ple shown in Figure 1. We can see that the tokens
belonging to the phrases ¨A 	̄ YË@ QK
 	Pð wzyr AldfAς

‘Minister of Defense’ and ��
K
P ñÊm.�
	'
@ Ânjlw ryys

‘Angelo Reyes’ are annotated with the same en-
tity ID. We can also see that subtypes ATTRIB and
HEAD have been maintained for the heads of each
of the phrases.

Table 2 gives a general overview of the size and
distribution of clusters and labels in our corpus.
The number of unique coreference clusters, i.e.
entities with the same Entity identifier, is 12,672,
spanning 41,556 tokens. The average cluster size
is 3.27, with cluster sizes spanning from 1 to 80
tokens per cluster.

We retained 92% of the zero nodes that appear
in the original OntoNotes annotations during our
conversion. As previously mention, these are the
nodes of the type * which indicate the object of
a passive verb, the subject of a nominal verb, or
an omitted subject of a verb. The 8% of the zero
nodes contained information that we can utilize
to provide additional syntactic annotations for the
Deep UD treebank (Droganova and Zeman, 2019).

It is worth noting that, according to the
OntoNotes Release 5.0 document (Weischedel
et al., 2013), the annotated coreferences were lim-
ited to only the intra-document occurrences. Nom-
inal mentions, which would be marked with the
IDENT label excluded all occurrences where the
connection between entities can be derived from
the use of copula or similar verbs. This is reflected
in the rare appearance of this label in the Arabic
OntoNotes corpus.

While we cannot directly redistribute the
OntoNotes data, our code needed to reproduce
the converted output from one’s own copy of
OntoNotes files will be publicly available.1

1The conversion code and documentation can be found un-
der our GitHub repository https://tinyurl.com/arabic-corefud

Documents 447
Sentences 30,601
Tokens excluding zeros 299,362
Tokens including zeros 336,735
Tokens including retained zeros 309,631
Tokens part of a coreference cluster 41,556
Coreference clusters 12,672
Minimum cluster size 1
Maximum cluster size 80
Average cluster size 3.27
APPOS labels 1,789
IDENT labels 5
HEAD labels 1,749
ATTRIB labels 1,790

Table 2: Statistics of the converted corpus.

4 Conclusion and Future Work

In this paper, we presented our effort to add Arabic
to the CorefUD collection of corpora. We described
the decisions we made to modify the existing con-
version process to accommodate phenomena that
were not in the English corpus, namely the appear-
ance of zero nodes.

Moving forward, we would like to test the qual-
ity of multilingual coreference resolution systems
when trained on the entirety of CorefUD, including
Arabic. Additionally, we plan to prepare a publicly
available CorefUD dataset based on UD_Arabic-
PADT (Taji et al., 2017). We believe this will be
beneficial to furthering research in this area.
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Abstract

In recent years, research on sign languages has
attracted increasing attention in the NLP com-
munity and requires more effort from a linguis-
tic perspective. In this paper, we explore coref-
erence resolution in German Sign Language
(GSL) primarily through gloss-based analysis.
Specifically, in GSL glosses, we conduct a lin-
guistic analysis of coreference, add coreference
annotations based on three videos, and evalu-
ate the ability of two large language models to
resolve coreference. We gain valuable insights
into coreference resolution in GSL, which pave
the way for future research.1

1 Introduction

Natural language develops naturally for daily com-
munication among humans. As a first language
for deaf and hearing impaired individuals, sign lan-
guages (e.g., American Sign Language and German
Sign Language) are visual-spatial natural languages
with their own sophisticated linguistic systems—
including lexicon, morphology, phonology, syntax,
and pragmatics—not only gestures (Stokoe, 1980).
The complexity of signs lies in the fact that they can
be articulated through multiple phonological units,
including handshape, palm orientation, position,
and facial expressions (e.g., eyebrow movement
and head motion) within a three-dimensional sign-
ing space (Herrmann and Steinbach, 2011; Michael
et al., 2011). Compared to spoken language, sign
language remains underexplored and demands lin-
guistic insights from the Natural Language Process-
ing community (Yin et al., 2021b).

To record and analyse signs in written form,
glosses annotated by experts are used as linear la-
bels that approximate the semantic meaning of each
sign, typically using the base form of a correspond-
ing word in spoken language. Table 1 presents

1Our annotated data are publicly available at https://
github.com/orcastimulatee/Coref_GLS_GSL.git

GEBÄRDEN1A LEHRER5 ICH1 BIS-HEUTE2 $GEST-OFF^*
(To this day, I am still a sign language teacher.)

Table 1: An example text shows the glosses and their
English translation. Glosses are written in capital letters
and may include affixes or markers indicating additional
information.

an example of glosses used in German Sign Lan-
guage. While glosses are widely used as an inter-
mediate step in the study of sign language transla-
tion, from signs to spoken text (Müller et al., 2023;
Fayyazsanavi et al., 2024), and sign language pro-
duction, from spoken text to signs (Varanasi et al.,
2024; Fang et al., 2024), they can also support doc-
umentation, education, and linguistic research.

In this paper, we explore coreference—a lin-
guistic phenomenon crucial for natural language
understanding—in German Sign Language, pri-
marily through gloss-based analysis. Although
glosses—one-dimensional sequences of words—
cannot fully capture spatial constructions or rep-
resent the meaning of signs through various cues,
such as non-manual features (Yin and Read, 2020;
Müller et al., 2023), we focus on coreference in
glosses as an initial step towards the Signed Coref-
erence Resolution task (Yin et al., 2021a). To
our knowledge, Yin et al. (2021a) is the only re-
cent work that addresses coreference resolution in
sign language, specifically for pronominal indexing
signs. Following the work, we study entity coref-
erence resolution in German Sign Language using
the Public DGS Corpus (Hanke et al., 2020). Our
contributions are threefold:

• A linguistic analysis of signed coreference
in glosses, including noun phrase, pronoun,
ellipsis, and others.

• Entity coreference annotations on the glosses
of three videos from the DGS corpus.
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• Evaluating the ability of GPT-4o (OpenAI,
2024) and DeepSeek-v3 (DeepSeek-AI, 2025)
to perform coreference resolution on glosses
with coreference gold annotations using
prompt engineering.

2 Related Work

2.1 Coreference Resolution in Sign Language
The coreference phenomenon in sign languages
has previously been studied (Steinbach and Onea,
2015), e.g., in American Sign Language (Kegl,
1987) and in German Sign Language (Wienholz
et al., 2018). More recently, Yin et al. (2021a) in-
troduced the Signed Coreference Resolution task
for Sign Language Processing, thereby presenting a
new challenge for the coreference research commu-
nity. The work proposes DGS-Coref, a gloss-based
dataset derived from the DGS corpus (Hanke et al.,
2020) with coreference annotations. Similarly, to
reduce the overhead of visual processing, we con-
duct annotations on glosses as well. The main dif-
ference is that Yin et al. (2021a) focuses solely on
pronominal coreference relations, whereas our an-
notations cover all types of entity coreference. The
authors (Yin et al., 2021a) also propose a linguisti-
cally informed unsupervised coreference resolution
model for the task, using both glosses and spatial
features extracted from pose estimations.

2.2 Large Language Models
Many studies focus on transformer-based large lan-
guage models (LLMs) for sign language translation
and production tasks (Camgoz et al., 2020; Yin and
Read, 2020; Fang et al., 2024), aiming to make
them accessible to deaf and signing communities.
However, the extent to which an LLM truly un-
derstands the underlying structure and meaning
of signed discourse remains unclear. Gan et al.
(2024) examines the coreference resolution abili-
ties of several LLMs (e.g., the GPT series and the
LLaMA2 family) in English by using prompts and
conducting both manual and automatic analyses. In
contrast, our work evaluates LLMs in the context
of sign language. Coreference in sign language in-
volves manual features, non-manual features, and
spatial referencing, which differ significantly from
the devices used in spoken languages.

3 Coreference in Sign Language

In sign language, a signer can introduce a new en-
tity into the discourse not only through explicit

signs that visually depict its shape, orientation, or
movement, but also by assigning it a spatial lo-
cus within the signing space in front of the signer,
which can later be used to refer back to the entity.
To understand how to track an entity, we conduct a
basic analysis of the Public DGS Corpus.

Noun Phrase. Iconicity is one of the promi-
nent properties of sign language (Perniss et al.,
2010). For example, $PROD SCHWIMMEN (swim-
ming) is a gloss for a productive sign used to repre-
sent an inanimate entity—swimming. It illustrates
the backstroke, a swimming style, with alternat-
ing backward circular motions of both hands. It
is worth noting that backstroke is not annotated
in glosses, but only in the mouthing unit (i.e., it
is coarticulated with mouthed German words for
lip reading). This means that mentions referring
to the same entity can appear in different units,
making coreference resolution a task in a multidi-
mensional space. Beyond standard glosses, com-
pound glosses, e.g., TAUB-GEHÖRLOS (deaf ), con-
sist of two or more glosses connected by hyphens
to express meaning more efficiently. A sequence of
glosses is not annotated as a full German sentence
but rather as a chunk of a sentence that conveys
a core meaning. Therefore, noun phrases may be
omitted from either the subject or object position,
regardless of word order.

Pronoun. $INDEX gloss represents an indexical
sign (a pointing gesture) that refers to a spatial lo-
cus associated with a lexical sign, thus defining a
referent. Subsequent pronouns refer back to the
referent by pointing to the same locus. It is clear
when only two referents are assigned to the left-
hand and right-hand areas, respectively. However,
if many referents need to be assigned within a lim-
ited signing space, the loci can become very close
together, making them difficult to differentiate and
potentially causing ambiguity in entity resolution.
Adding to the complexity, a signer may relocate a
referent to a new locus (Yin et al., 2021a). In the
DGS corpus, following the gloss annotation con-
vention (Konrad et al., 2018), a number is added
as a suffix to the end of a gloss. For example,
ICH1 (I1) and ICH2 (I2) are two contextual variants
of ICH (I), though the basic meaning remains the
same. In our annotation presented in §4, we treat
these two glosses as referring to the same entity.
Unlike in English, pronouns in sign language are
not morphologically marked for gender (i.e., there
are no separate signs for he or she). This means
that gender must be inferred from the discourse
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context. We observe that, sometimes, pronouns can
be replaced with an iconic sign. For example, a
signer may use both hands with palms facing each
other, circling slightly from the sides towards the
center to express the concept of together, visually
representing a group of people, rather than signing
us directly. As a result, the use of pronouns is, to
some extent, reduced.

Ellipsis. Ellipsis is a common phenomenon in
sign languages, including but not limited to Ger-
man Sign Language. It arises from features such
as spatial referencing and role shift—a linguis-
tic device that marks different characters through
body shift, eye gaze, and head orientation (Proske
et al., 2020)—allowing signers to omit overt pro-
nouns or explicit entity names. Moreover, many
sign languages are topic-prominent, e.g., WASSER1
$INDEX1 FRISCH1 IMMER4A* (Yes, you always feel
refreshed when you are in the water.), meaning
that a topic or entity (i.e., water) is typically in-
troduced first in discourse. This entity may later
be omitted from subject or object positions, if it
is predictable and inferable from context. In Ta-
ble 2, we present another example of ellipsis, in
which even more expressions are not explicitly
signed. Signer A was talking about playing ninepin
bowling in the earlier context. Signer B inferred
that the reason for the knee pain was kneeling
down too much, so only the corresponding sign,
HINKNIEN-SICH1 (kneel-down), was used, omit-
ting other non-essential signs. Resolving and re-
covering such elliptical constituents can undoubt-
edly benefit sign language understanding and gloss-
based studies of sign language translation. In spo-
ken language, many linguistic theories have been
studied in relation to zero pronouns and focus,
including topic chain theory (Tsao, 1977; Zhang
et al., 2022) and centering theory (Joshi and Wein-
stein, 1981; Grosz et al., 1983, 1995; Walker et al.,
1998; Chai and Strube, 2022). We raise a question
of whether these theories could aid in resolving
implicit expressions in sign language, which we
leave for future work.

A: JETZT1* ICH2 KNIE1A* SCHMERZ3
$GEST-OFF^* RÜCKEN-UNTEN1E SCHMERZ3
(Now I have knee and back pain.)

B: HINKNIEN-SICH1
(Well, because you had to kneel down a lot.)

Table 2: An example illustrating ellipsis in a dialogue
between two signers.

Others. In the signing space, verb inflection—
through modified movements that match the loci of
the subject and object to indicate agreement—can
help track entities. However, glosses are written in
their base form, and verbs are not morphologically
inflected in the gloss itself. To this end, cues from
visual processing become especially important for
discourse understanding and entity resolution.

4 Human Annotation

To examine the current ability of LLMs to resolve
coreference in sign language glosses (see §5), we
conducted coreference annotation on the glosses of
three videos totaling 990 seconds from the DGS
corpus234. Some gloss names are followed by nu-
merical or alphabetical suffixes to distinguish lexi-
cal and phonological variants (Konrad et al., 2018).
These glosses were annotated carefully by consid-
ering the context, the English translation, and by
watching the video. Entities are annotated through-
out the entire duration of each video, and single-
tons are excluded from the annotation. We have
two annotators with backgrounds in computer sci-
ence and computational linguistics, both of whom
have knowledge of German Sign Language. Inter-
annotator agreement was measured using Krippen-
dorff’s α (Krippendorff, 1980), resulting in a high
score of 0.93. For the annotations with disagree-
ments, the annotators discussed and reached final
decisions for the gold annotations. Ambiguous
cases were excluded. We release the annotated data
as a JSON file.5 Table 3 shows the statistics of our
annotations.

Video1 Video2 Video3

#mentions 166 80 90
#noun phrases 78 51 42
#pronouns 63 9 29
#$INDEX 25 20 19
#entities 36 26 27
#mentions/entities 4.6 3.0 3.3

Table 3: Statistics of the annotated data. Video1,
Video2, and Video3 refer respectively to the links in
the footage234.

2https://www.sign-lang.uni-hamburg.de/
meinedgs/html/1429737_en.html

3https://www.sign-lang.uni-hamburg.de/
meinedgs/html/1183720-17021701-17054739_en.html

4https://www.sign-lang.uni-hamburg.de/
meinedgs/html/1182135_en.html

5Our annotated data are publicly available at https://
github.com/orcastimulatee/Coref_GLS_GSL.git
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MUC B3 CEAFe CoNLL

R P F1 R P F1 R P F1 R P F1

DS-v3_zs 67.60 64.82 66.10 64.65 59.58 61.96 67.23 53.83 59.80 66.49 59.41 62.62
DS-v3_fs 76.20 54.58 63.60 72.79 50.65 59.70 71.39 53.50 61.18 73.46 52.91 61.49

GPT-4o_zs 64.30 70.85 67.38 58.81 66.20 62.26 65.39 52.09 57.98 62.83 63.05 62.54
GPT-4o_fs 74.50 70.95 72.70 71.68 67.10 69.30 73.42 57.54 64.50 73.20 65.20 68.83

Table 4: Performance on the annotated data in §4. zs and fs denote the zero-shot and few-shot settings for the two
LLMs: DeepSeek-v3 (DS) and GPT-4o. Bold numbers indicate the highest score in each column.

5 Prompt Engineering

We employ prompt engineering in zero-shot and
few-shot settings (Brown et al., 2020; Liu et al.,
2023) to evaluate two LLMs: GPT-4o (OpenAI,
2024) and DeepSeek-v3 (DeepSeek-AI, 2025). Fig-
ure 1 shows the prompt template, which includes an
instruction, input glosses, and one example in the
few-shot setting. For few-shot prompting, we select
examples that are similar to the cases in the input
glosses under examination to provide the LLMs
with additional cues for coreference resolution. Ad-
ditionally, LLMs are required to provide explana-
tions of their resolved results to enable further man-
ual analysis of their performance. One example
prompt is presented in Appendix A.

Structure of a Prompt

Instruction
● Roles
● Background of Input
● Task Explanation

Input Glosses

Example
● Input
● Answer for the Input
● Reason

For few-shot prompt

Figure 1: A prompt template shows each components of
the prompt. The dashed box applies only to the few-shot
setup.

6 Experiment

6.1 Setup

We conduct experiments on the annotated data
(see §4). To obtain stable and reliable responses
from LLMs, we divided the data into 20 prompts,
grouped by topic for potential further analysis.
GPT-4o and DeepSeek-v3 are prompted with a
temperature of 0 and a maximum token limit of

5,025 via an AI model API platform6. We report
macro-averaged results for the 20 prompts in both
zero-shot and few-shot settings for the two LLMs.
The evaluation uses the CoNLL F1 score, which
averages MUC (Vilain et al., 1995), B3 (Bagga and
Baldwin, 1998), and CEAFe (Luo, 2005).

6.2 Results and Analyses
Table 4 shows that GPT-4o_fs achieves the best
F1 score of 68.83, which is more than 7 points
higher than DS-v3_fs and 6 points higher than GPT-
4o_zs. This indicates that providing an example
containing gold coreference annotations improves
GPT-4o’s overall performance. We also observe
that DS-v3_fs has high recall (73.46) but low preci-
sion (52.91), resulting in a lower CoNLL F1 score.
This suggests that DS-v3_fs resolves many enti-
ties, but few of them are correct. Overall, the two
LLMs demonstrate moderate performance on our
annotated data. It is important to note that the ex-
periments are conducted on glosses composed of
words from spoken language, which are used for
training the LLMs. How well they can perform
directly on signs remains a worthwhile question for
future research.

Monologue Dialogue
50

60

70

80
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DeepSeek-v3 GPT-4o

Figure 2: CoNLL F1 scores of the two LLMs in the
few-shot setting across different genres.

Figure 2 presents the performance of the two
LLMs on the first video, comprising 8 monologue
prompts and 5 dialogue prompts. It shows that GPT-
4o_fs performs better in dialogue than in mono-
logue. Based on our manual analysis of the model

6https://aimlapi.com/
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responses, we found that GPT-4o can understand
the conversation well and can resolve ICH (I) from
Signer A and DU (you) from Signer B as referring
to the same entity. However, DS-v3_fs struggles
to resolve some entities in dialogue, even when
provided with an example and its explanation in
the few-shot setting.

We also perform an analysis of some entities that
are not resolved successfully. Specifically, for the
entity in Table 5, we observe that DS-v3_fs can
capture the hint from the selected example that is
similar to the queried input and correctly resolve
the entity. However, GPT-4o_fs ignores the exam-
ple despite our various attempts and fails to resolve
it. This suggests that, in this specific case, GPT-
4o_fs relies more on its internal knowledge and
reasoning, making it less influenced by the pro-
vided examples, whereas DS-v3_fs appears more
receptive to such guidance.

A: $LIST1:1of1d KEGELN1 $LIST1:2of2d
SCHERE1* $LIST1:3of3d $NUM-EINER1A:3d
BAHN-WEG1A* $GEST-OFF^* $LIST1:4of4d
ASPHALT1*
(For example Bohle, Schere, three lane alleys
and classic.)

B: $ORAL^KANN1 ALLES1A
(Can you play all four disciplines?)

Table 5: A snippet of glosses between two signers with
coreference annotations shown in red.

7 Discussions and Conclusions

While analysing the properties of coreference in
sign language, our study is primarily based on lin-
ear glosses. Further research is needed in corefer-
ence resolution modeling—especially for under-
standing spatial relations—or in developing en-
hanced glosses that recover omitted elements to
support downstream tasks. In this paper, as an
initial step, we gain linguistic insights into coref-
erence, annotate glosses accordingly, and evaluate
the coreference resolution abilities of two LLMs,
to foster future advancements.

Limitations

Our study is conducted on written glosses, which
may omit some information (e.g., from mouthings
or productive signs), and therefore the experiments
on coreference resolution may not fully reflect a
natural signing scenario. Due to limited resources,

no deaf people or sign language users were in-
volved in the annotation process.
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A Prompts

A.1 An Example Prompt
Figure 3 shows a prompt we used in the exper-
iment for GPT-4o_zs, along with the LLM’s re-
sponse. Note that the answer is summarized from
the LLM’s raw responses, which we manually
checked.
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Instruction: 
Role: You are a sign language coreference resolution assistant.  
Input: a list of glosses, speaker A & B are having a conversation, sentences(words separated by comma or full stop) are 
separated by '''''', each gloss with a unique gloss ID.  
1. Identify which glosses refer to entities.  
2. Cluster glosses that refer to the same entity. 
  
Input Glosses: 
    "# Speaker A" 
    "'''$GEST-NM-KOPFSCHÜTTELN1^#265  ||  KAMPF1A#266  ||  WILLE6#267  ||  ICH1*#268  || HIN-UND-HER1*#269'''" 
     
    "# Speaker B" 
    "'''KAMPF1A#270  ||  $ORAL^#271  ||  TRAINING1#272  ||  HIN-UND-HER1#273  ||  SPASS1*#274'''" 
     
    "# Speaker A" 
    "'''$GEST-NM-KOPFNICKEN1^#275  ||  ICH1*#276  ||  SPASS1#277  ||  WASSER1#278  ||  $INDEX1#279  ||  FRISCH1#280  ||  
IMMER4A*#281'''" 
     
    "# Speaker B" 
    "'''ICH1#282  ||  ICH1#283  ||  LAND1A*#284  ||  BENUTZEN1#285  ||  FLACH1^#286  ||  ICH1#287  ||  $PROD*#288  ||  
BESSER1*#289  ||  ALS4#290  ||  WASSER11#291  ||  $INDEX1#292  ||  $PROD*#293'''" 
     
    "# Speaker A" 
    "'''SPORT4B#294  ||  $PROD*#295  ||  GUT1#296  ||  $INDEX1#297  ||  SCHWIMMEN1#298  ||  GUT1#299'''" 
     
    "# Speaker B" 
    "'''FLEISSIG1#300  ||  $INDEX1#301  ||  FLEISSIG1#302  ||  ICH2#303  ||  FAUL1#304  ||  ICH2#305  ||  $ORAL^#306'''" 
     
    "# Speaker A" 
    "'''ICH1*#307  ||  GERN1#308  ||  ICH2#309  ||  HEUTE1#310  ||  NOCH4A*#311  ||  GERN1#312'''" 
    "'''$GEST-OFF^*#313  ||  NUR4*#314  ||  PRIVAT1A#315  ||  FREI1#316  ||  FREIZEIT1B*#317  ||  SCHWIMMEN1#318  ||  
GERN1#319  ||  DORTHIN-GEHEN1#320  ||  $ORAL^#321  ||  KAMPF1A#322  ||  SCHLUSS1#323'''" 
    "'''$GEST-OFF^#324'''" 
----------------------------------------------------  
GPT-4o’s Answer: 
Assistant： 1. Identify glosses that refer to entities: 
   - ICH1*#268, ICH1*#276, ICH1#282, ICH1#283, ICH1#287, ICH1*#307, ICH2#303,    ICH2#305, ICH2#309   - KAMPF1A#266, 
KAMPF1A#270, KAMPF1A#322 
   - HIN-UND-HER1*#269, HIN-UND-HER1#273 
   - SPASS1*#274, SPASS1#277 
   - WASSER1#278, WASSER11#291 
   - $INDEX1#279, $INDEX1#292, $INDEX1#297, $INDEX1#301 
   - $PROD*#288, $PROD*#293, $PROD*#295 
   - FREIZEIT1B*#317 
   - SCHWIMMEN1#298, SCHWIMMEN1#318 
  
2. Cluster glosses that refer to the same entity: 
   - [ICH1*#268, ICH1*#276, ICH1#282, ICH1#283, ICH1#287, ICH1*#307] 
   - [ICH2#303, ICH2#305, ICH2#309] 
   - [KAMPF1A#266, KAMPF1A#270, KAMPF1A#322] 
   - [HIN-UND-HER1*#269, HIN-UND-HER1#273] 
   - [SPASS1*#274, SPASS1#277] 
   - [WASSER1#278, WASSER11#291] 
   - [$INDEX1#279, $INDEX1#292, $INDEX1#297, $INDEX1#301] 
   - [$PROD*#288, $PROD*#293, $PROD*#295] 
   - [SCHWIMMEN1#298, SCHWIMMEN1#318] 
 

Figure 3: An example prompt shows the instruction, input glosses, and the answer from GPT-4o_zs.
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Abstract
This study introduces a new ASR-transcribed
coreference corpus for French and explores the
transferability of coreference resolution mod-
els from human-transcribed to ASR-transcribed
data. Given the challenges posed by differences
in text characteristics and errors introduced
by ASR systems, we evaluate model perfor-
mance using newly constructed parallel human-
ASR silver training and gold validation datasets.
Our findings show a decline in performance on
ASR data for models trained on manual tran-
scriptions. However, combining silver ASR
data with gold manual data enhances model
robustness. Through detailed error analysis,
we observe that models emphasizing recall are
more resilient to ASR-induced errors compared
to those focusing on precision. The resulting
ASR corpus, along with all related materials, is
freely available under the CC BY-NC-SA 4.0
license at: https://github.com/ina-foss/
french-asr-coreference.

1 Introduction

Coreference resolution differs between written and
spoken texts and is generally more challenging for
spoken data, primarily because most existing cor-
pora are based on written texts (Amoia et al., 2012).
For the French language, the large-scale corefer-
ence corpus ANCOR (Muzerelle et al., 2014) is
based on interview transcripts that were produced
manually (Antoine et al., 2002; Eshkol-Taravella
et al., 2011). With the help of recent state-of-the-
art automatic speech recognition (ASR) systems,
such as Whisper (Radford et al., 2023), we can au-
tomatically transcribe large amounts of audio data.
For example, the Institut national de l’audiovisuel
stores millions of hours of recorded French TV and
radio broadcasts, which are continuously and auto-
matically transcribed and used for research in the
social sciences and digital humanities.

However, unlike the manual transcripts in AN-
COR, Whisper produces text that includes punctu-

ation, capitalization, occasional rephrasing, as well
as ASR errors. This might lead to poor transferabil-
ity of coreference resolution models trained on the
ANCOR corpus when applied to ASR data.

To date, most studies on transferability in coref-
erence resolution have focused on cross-corpus
(Xia and Van Durme, 2021; Yuan et al., 2022)
and cross-lingual (Lai and Ji, 2023; Pražák et al.,
2024) transferability. However, pre-trained lan-
guage models are sensitive even to small text per-
turbations, such as punctuation (Wang et al., 2023)
and casing (Moradi and Samwald, 2021). More-
over, ASR errors have negative impact on down-
stream tasks, such as named entity recognition
(Szymański et al., 2023) or spoken language un-
derstanding (Chang and Chen, 2022). Since these
models are at the heart of most recent automatic
coreference resolution models, such sensitivities
might hinder their performance when resolving
coreference on ASR texts.

In this study, we evaluate the transferability
of coreference resolution models from human-
transcribed to ASR-transcribed data. We create
parallel silver training and gold validation datasets
and conduct a comparative study using two distinct
architectures. Finally, we perform a detailed er-
ror analysis to identify the types of ASR-induced
errors that most affect model performance.

2 Automatic Coreference Resolution

Most widely used end-to-end coreference resolu-
tion systems are mention-to-link, meaning they first
predict candidate mentions—phrases referring to
some entity—and then establish coreference or
anaphoric links between each pair of candidates.
Lee et al. (2017) developed a model that lists all
overlapping spans of a certain length as possible
mention candidates. However, this approach in-
curs high computational overhead. Subsequently,
Kirstain et al. (2021) reduced the computational
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complexity by using only the start and end tokens
to construct the mention representation. CorPipe
uses a similar approach by first predicting all men-
tions using a sequence tagging approach and then
establishing coreference links with a self-attention
layer (Straka, 2024). This system has repeatedly
shown top performance at the CRAC Shared Task
on coreference resolution (Novák et al., 2024).

Another approach to automatic coreference res-
olution is the link-to-mention approach, where
anaphoric links are first predicted between the syn-
tactic heads, and then the mention spans are re-
constructed from the coreferent heads. This ap-
proach reduces computational overhead compared
to the mention-to-link approach, as constructing
span representations is unnecessary. Dobrovolskii
(2021) presented WL-Coref, the first model that
followed the link-to-mention approach. However,
D’Oosterlinck et al. (2023) found that in the case
of conjunctions of multiple mentions, the same syn-
tactic head could correspond to multiple mention
spans, leading to errors in the model of Dobro-
volskii (2021). Subsequently, D’Oosterlinck et al.
(2023) proposed moving the syntactic head to the
coordinating conjunction instead (e.g., in a mention
[Tom and Mary], the head is moved from “Tom” to
“and”). Finally, Liu et al. (2024) proposed another
iteration of the WL-Coref model, which added a
special “antecedent link” to support singletons.

3 Data

The ANCOR corpus is the largest collection of spo-
ken French text annotated for coreference. It con-
sists of manual transcripts from four corpora: two
representing socio-linguistic interviews (Eshkol-
Taravella et al., 2011) and two representing highly
interactive dialogues (Antoine et al., 2002). Orig-
inally in TEI format, the corpus is now available
in the CorefUD format within the CorefUD collec-
tion (Novák et al., 2025; Nedoluzhko et al., 2022).
The manual transcriptions in ANCOR do not in-
clude any punctuation or casing, except for ques-
tion marks and proper names, and accurately retain
speech discontinuities, including repetitions and
stuttering.

The coreference annotation in ANCOR has sev-
eral particularities that distinguish it from other
corpora. First, the deictic pronouns (e.g., I, you,
we) are always annotated as singletons, i.e. they
are never linked to any other mentions. Second, the
discontinuous mentions are present in the corpus.

Statistics ANCOR ASR

Train Val Train Val

#documents 365 45 54 9
#sentences 25K 2,385 16K 2,628
#words 371K 38K 193K 31K
#entities 55K 5,827 25K 4,212
#mentions 91K 9,491 40K 6,751
%singletons 80.8% 79.9% 79.9% 79.1%
%disc. mentions 0.5% 0.6% 0.2% 0.3%

Table 1: Statistics of the datasets. Here, disc. stands for
discontinuous.

Finally, in the original corpus, each utterance is
attributed to a speaker, but this information was
omitted in the CorefUD format.

3.1 Re-transcribing the Corpus

To build an ASR coreference corpus, we utilized
the Whisper Large multilingual model1 (Radford
et al., 2023) to transcribe the ESLO corpus (Eshkol-
Taravella et al., 2011) which constitutes the largest
part of ANCOR. We then performed word-level
alignment of the manual transcriptions with the
ASR transcriptions using the spacy-alignments2

library. Since the coreference annotation in Core-
fUD format is also word-level, we transferred it
to the ASR data (see Annex B for an example).
Next, we split the ASR data into training and val-
idation sets using the same documents as in AN-
COR. Finally, we added morpho-syntactic informa-
tion (lemmas, part-of-speech tags, detailed morpho-
logical features, dependency trees) using Stanza’s
default model for French (Qi et al., 2020) and repo-
sitioned the syntactic head of each mention with
heuristics from the udapi-python package.3

Due to imperfect automatic alignment, the result-
ing ASR corpus often contained invalid coreference
annotations. For the validation set, we manually
verified and corrected these annotations. For the
training set, we removed sentences containing in-
valid CorefUD annotations, such as unclosed men-
tion tags or closing tags without corresponding
opening tags. Table 1 shows that the resulting ASR
training set is almost half the size of its ANCOR
counterpart, while the ASR validation set retains
nearly 80% of its original size. Furthermore, the
proportion of discontinuous mentions in the ASR
dataset is smaller than in the original dataset. This

1Using the WhisperX implementation (Bain et al., 2023).
2https://github.com/explosion/

spacy-alignments
3https://github.com/udapi/udapi-python
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Model Train MUC B3 CEAFe BLANC LEA MOR CoNLL

Human transcription validation set

WL-Coref
Hum. 76/77/76 59/68/63 67/58/62 55/68/59 55/65/60 86/85/86 67.26
ASR 67/68/68 37/59/45 62/34/44 43/57/43 33/55/41 85/79/82 52.30
H+A 76/79/77 63/71/67 70/63/67 61/70/65 59/68/63 86/87/86 70.23

CorPipe-24
Hum. 78/73/76 73/60/66 66/71/68 72/57/63 69/56/62 86/84/85 70.06
ASR 64/66/65 58/54/56 55/61/58 55/53/54 52/48/50 72/82/76 59.50
H+A 80/75/77 74/63/68 67/72/69 73/60/66 70/58/64 85/84/85 71.37

ASR transcription validation set

WL-Coref
Hum. 66/74/70 47/67/55 62/51/56 43/65/49 43/63/51 80/84/82 60.42
ASR 69/64/66 46/54/50 62/42/50 46/50/44 42/50/46 85/76/80 55.43
H+A 74/72/73 63/63/63 66/61/64 60/61/61 59/60/59 84/82/83 66.55

CorPipe-24
Hum. 74/69/71 68/59/63 64/68/66 66/56/60 63/54/58 85/82/83 66.79
ASR 73/67/70 68/56/61 62/65/64 65/52/57 63/51/56 86/79/82 64.79
H+A 75/69/72 69/59/63 64/67/65 66/55/60 64/54/59 86/81/83 66.80

Table 2: Results on the Human (upper part) and ASR (lower part) transcription validation sets. For each validation
set, the best results for each model are shown in bold, and the best results across the models are underlined. All
metrics are reported as Recall/Precision/F1, except for the CoNLL F1 score.

reduction is due to speech discontinuities (e.g., stut-
terings, repetitions, talking over) being preserved
in the human transcription but absent from the ASR
transcription. Finally, the ASR validation set has
more sentences4 despite being smaller. This results
from Whisper producing text closer to written form,
while human transcriptions split the text by pauses
in speech or speaker changes.

4 Experimental Setup

We trained both WL-Coref (Dobrovolskii,
2021; D’Oosterlinck et al., 2023; Liu et al.,
2024) and CorPipe (Straka, 2024) models with
camembertav2-base5 pre-trained encoder, which
currently achieves state-of-the-art results on French
NLP tasks (Antoun et al., 2024) (see Appendix A
for more details). For each architecture, three
model variants were trained according to the
training data: 1) Hum. using the original ANCOR
data; 2) ASR using the automatically transcribed
subset of the original data; 3) H+A using the
combination of the ANCOR and ASR training
datasets.

To measure the performance of the models, in ad-
dition to the ASR validation set, we created a subset
of the ANCOR human transcription validation set,
which includes the same documents as the ASR

4Defining a sentence in spoken text can be challenging. In
the context of this work, a sentence is defined as a continuous
sequence of words where all mentions are fully contained
within it, meaning that a mention cannot span across sentence
boundaries.

5https://huggingface.co/almanach/
camembertav2-base

validation set. For evaluation metrics, we used
MUC (Vilain et al., 1995), B-cubed (Bagga and
Baldwin, 1998), CEAFe (Luo, 2005), BLANC (Re-
casens and Hovy, 2011), LEA (Moosavi and Strube,
2016), MOR (Mention Overlap Ratio) (Žabokrtský
et al., 2022), and the CoNLL score which is the
average of the first three metrics. All metrics were
calculated using the CorefUD scorer6 with exact
mention matching and excluding all singletons.

5 Results and Discussion

The upper part of Table 2 presents the results on the
manually transcribed validation set. For both the
WL-Coref and CorPipe models, training on human
transcripts (Hum.) yielded better performance com-
pared to using only automatically constructed ASR
training data (ASR), with CoNLL score drops of
−14.96 and −10.56 for the WL-Coref and CorPipe
models, respectively. Utilizing a mix of manual
and ASR training data (H+A) slightly enhanced the
performance of both models on the manually tran-
scribed data, resulting in CoNLL score increases of
+2.97 and +1.31 for the WL-Coref and CorPipe
models, respectively. The lower part of Table 2
illustrates similar trends for the ASR validation set.
However, the WL-Coref model appears to be more
sensitive to changes in the data, whereas the Cor-
Pipe model shows almost no difference between
the Hum. and H+A variants.

Across both validation sets, WL-Coref achieved
higher precision in all metrics except CEAFe, while

6https://github.com/ufal/corefud-scorer
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Head Span Conflated Extra Extra Divided Missing MissingModel Train Error Error Entities Mention Entity Entity Mention Entity

Human transcription validation set

Hum. 188 43 85 286 70 62 100 125
ASR 163 53 58 322 48 54 133 171WL-Coref
H+A 188 49 76 303 71 46 79 111

Hum. 3 64 112 277 81 97 121 73
ASR 3 103 143 446 150 142 127 79CorPipe
H+A 3 63 105 257 79 96 93 70

ASR transcription validation set

Hum. 167 48 54 377 85 50 119 125
ASR 144 51 58 257 42 50 171 197WL-Coref
H+A 154 53 64 287 68 46 118 137

Hum. 0 85 91 307 87 76 130 86
ASR 0 82 101 301 78 79 133 103CorPipe
H+A 0 86 89 285 77 77 129 102

Table 3: Error analysis on the Human (upper part) and ASR (lower part) transcription validation sets. For each
validation set, the cells are color-coded in a gradient column-wise, with red representing the highest value and
green representing the lowest value.

CorPipe showed higher recall. When applied to the
ASR validation set, WL-Coref trained on human
transcribed data exhibited a significant drop in re-
call and only a slight drop in precision. In contrast,
CorPipe showed only a moderate decrease in recall.

We hypothesize that this discrepancy may oc-
cur because the WL-Coref model predicts links
between mention heads, making it more suscep-
tible to errors from ASR and automatic syntactic
parsing, which in turn affect its performance. In
contrast, the CorPipe model employs a sequence
tagging approach to detect mentions, which does
not rely on additional syntactic information.

5.1 Error Analysis

To better understand the impact of ASR transcrip-
tions on the performance of coreference resolution
models, we conduct an error analysis based on the
work of Kummerfeld and Klein (2013). To adapt
this analysis to the exact mention matching sce-
nario, we introduce a Move Head operation. This
operation corrects a predicted mention head if the
spans of the predicted and ground truth mentions
match exactly, corresponding to what is termed a
Head Error. The remainder of the analysis largely
adheres to the methodology outlined by Kummer-
feld and Klein (2013).

Table 3 presents the error analysis for the WL-
Coref and CorPipe models (see Annex C for ex-
amples of errors). The WL-Coref model exhibits
a high number of Head Errors but fewer Span Er-
rors. This can be explained by the design of the

CorPipe model, which is specifically tailored for
the CorefUD shared task where head matching is
used for evaluation. Interestingly, the WL-Coref
model produces more accurate spans even when
starting from incorrect heads. Lastly, WL-Coref
consistently has more Missing Entity errors which
is explained by the lower recall.

When evaluated on the ASR validation set, mod-
els trained on Hum. data demonstrate more Con-
flated Entities, where a predicted entity includes
mentions from different ground-truth entities, and
fewer Divided Entities, where different predicted
entities include mentions from the same ground-
truth entity. This behavior suggests that when ap-
plied to ASR transcriptions, the models group men-
tions into tighter clusters. A possible reason is that
the lack of filler words and repetitions in ASR tran-
scriptions reduces the distance between mentions.

The large number of Extra Mention errors mostly
stems from assigning mentions, which should oth-
erwise be singletons, to a coreference chain and
linking the pronouns ce and ça (it) when they are
non-referential. The increase in such errors on the
ASR validation data could be explained by Whis-
per producing more “grammatically valid” tran-
scriptions, adding these pronouns, e.g., by inserting
c’est (it is) when they are absent from speech and
consequently from human transcriptions.

Finally, we found that both human and ASR
validation sets contain annotation errors. However,
their exact impact on the evaluation is beyond the
scope of this study and requires further study.
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6 Conclusions

In this study, we evaluated the performance of
coreference resolution models trained on human-
transcribed data when applied to ASR-transcribed
data, observing a general trend of decreased perfor-
mance on ASR data for models trained on manual
transcriptions. We proposed an approach to au-
tomatically transfer coreference annotations from
human to ASR transcriptions and discovered that
training only on silver ASR data harms model per-
formance, whereas combining silver ASR data with
gold manual data enhances it. Further error analy-
sis revealed that ASR systems, which tend to over-
correct transcriptions, introduce potential errors
to coreference resolution systems. We found that
models prioritizing higher recall are more robust to
these errors than those focusing on precision.

Limitations

Given the scarcity of spoken coreference datasets
in French, this study is confined to a single corpus,
primarily comprising socio-linguistic interviews.
These interviews have low interactivity and cover
a limited range of topics. Furthermore, partici-
pants are sampled from a restricted geographic area,
specifically Orléans and Tours, which narrows the
vocabulary used in the interviews. A more topically
diverse corpus would be essential for a broader
evaluation.

Regarding coreference resolution models, this
study evaluates only two architectures: WL-Coref
and CorPipe. While a more diverse set of models
would enhance the robustness of the comparison,
hardware limitations and variations in coreference
data formats present significant challenges. Ad-
ditionally, the prevalence of English-specific or
OntoNotes-specific architectures complicates the
adaptation of existing models to other languages
and the CorefUD format, which is beyond the scope
of this study.

Finally, this study only uses Whisper as the ASR
system for automatically transcribing the dataset
recordings. We acknowledge that other ASR sys-
tems may produce different transcriptions, poten-
tially leading to different effects on automatic coref-
erence resolution performance.
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A Implementation Details

For WL-Coref, we utilized the implementation by
Stanza (Qi et al., 2020), while for CorPipe, we used
the implementation from their official repository.7

The original implementation of CorPipe-2024 is
based on an older version of TensorFlow, making it
challenging to run on modern systems. We updated
the original code to be compatible with the most
recent version of TensorFlow without altering the
model’s architecture. Since neither model supports
discontinuous mentions, they were removed from
the training data. All models were trained for 40
epochs on an NVIDIA A100 40GB GPU.

7https://github.com/ufal/crac2024-corpipe

B Examples of Data

Table 4 shows an example of human and ASR tran-
scribed data.

C Examples of Errors

In this section, we demonstrate the examples of
different errors. Table 5 shows an example of a
Head Error, Table 6 shows an example of a Span
Error, Table 7 shows an example of an Extra Men-
tion, Table 8 shows an example of an Extra Entity,
Table 9 shows an example of a Missing Mention,
Table 10 shows an example of a Missing Entity, Ta-
ble 11 shows an example of a Divided Entity, and
Table 12 shows an example of a Conflated Entity.
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Human eh bien [monsieur]s [je]s vais commencer par [vous]s poser [des petites questions
préliminaires toutes simples]s n’ est -ce pas et depuis combien de temps habitez-
[vous]s [Orléans]1 ?
euh [dix-neuf ans]2
[dix-neuf ans]2 oui et qu’ est -ce qui [vous]s a amené à vivre à [Orléans]1 ?

ASR Eh bien, [Monsieur]s, [je]s vais commencer par [vous]s poser [des petites questions
préliminaires, toutes simples]s, n’est-ce pas ?
Et depuis combien [de temps]s habitez[-vous]s à [Orléans]1 ?
[19 ans]2.
[19 ans]2, oui.
Et qu’est-ce qui [vous]s a amené à vivre à [Orléans]1 ?

Table 4: Examples of human and ASR transcribed data. Each new line represents a sentence break. Mentions are
enclosed in square brackets with mention heads highlighted in bold. Subscripts are entity identifiers with s denoting
a singleton.

Gold Est-ce que [la langue française] est aussi bien enseignée, ou mieux enseignée, ou
moins bien enseignée, que de le temps où vous étiez vous-même à l’école ?

Predicted Est-ce que (la langue française) est aussi bien enseignée, ou mieux enseignée, ou
moins bien enseignée, que de le temps où vous étiez vous-même à l’école ?

Table 5: Examples of Head Error. Gold mentions are enclosed in square brackets and predicted mentions are
between the round brackets. Correct mentions are higlighted in green while incorrect mentions are in red .
Mention heads are highlighted in bold and underlined.

Gold Je trouve que c’est [des différences assez grandes].

Predicted Je trouve que c’est (des différences) assez grandes.

Table 6: Examples of Span Error. Gold mentions are enclosed in square brackets and predicted mentions are
between the round brackets. Correct mentions are higlighted in green while incorrect mentions are in red .
Mention heads are highlighted in bold.

Gold Demain, je serai peut-être partie ou prête à partir et je peux rester encore [six ans]s.
Je ne sais pas.
J’aimerais rester.
J’aimerais rester, mais...
On nous a dit, n’est-ce pas, ailleurs, que la ville d’Orléans est une ville assez froide,
mais je ne sais pas si vous avez des visites là-dessus, puisque vous êtes... Il y a
[quelques années]s, oui.

Predicted Demain, je serai peut-être partie ou prête à partir et je peux rester encore (six ans)1.
Je ne sais pas.
J’aimerais rester.
J’aimerais rester, mais...
On nous a dit, n’est-ce pas, ailleurs, que la ville d’Orléans est une ville assez froide,
mais je ne sais pas si vous avez des visites là-dessus, puisque vous êtes... Il y a
(quelques années)1, oui.

Table 7: Examples of Extra Mention. Gold mentions are enclosed in square brackets and predicted mentions are
between the round brackets. Correct mentions are higlighted in green while incorrect mentions are in red .
Mention heads are highlighted in bold. Subscripts are entity identifiers with s denoting a singleton. Only mentions
relative to the error are shown.
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Gold Parce que [les Américains]s, [les Allemands]s, les Suisses, les Japonais, [tout ça]s,
[ça]s ne parle pas latin.

Predicted Parce que (les Américains)1, (les Allemands)1, les Suisses, les Japonais, (tout ça)1,
(ça)1 ne parle pas latin.

Table 8: Examples of Extra Entity. Gold mentions are enclosed in square brackets and predicted mentions are
between the round brackets. Correct mentions are higlighted in green while incorrect mentions are in red .
Mention heads are highlighted in bold. Subscripts are entity identifiers with s denoting a singleton. Only mentions
relative to the error are shown.

Gold C’est peut-être moi qui écris le plus.
Et à [votre famille]1 ?
disons que ma femme écrit plutôt à sa famille et moi j’écris plutôt à [la mienne]1,
encore qu’il arrive très fréquemment que j’écrive à la sienne et qu’elle écrive à [la
mienne]1.

Predicted C’est peut-être moi qui écris le plus.
Et à (votre famille)1 ?
disons que ma femme écrit plutôt à sa famille et moi j’écris plutôt à la mienne, encore
qu’il arrive très fréquemment que j’écrive à la sienne et qu’elle écrive à la mienne.

Table 9: Examples of Missing Mention. Gold mentions are enclosed in square brackets and predicted mentions are
between the round brackets. Correct mentions are higlighted in green while incorrect mentions are in red .
Mention heads are highlighted in bold. Subscripts are entity identifiers with s denoting a singleton. Only mentions
relative to the error are shown.

Gold Mais alors, ce qui est embêtant, c’est que vous avez des gosses qui demandent à
travailler.
et qui ne veulent pas être les bras coincés, ou qui ne veulent pas faire de [la pâte à
modeler]1 parce qu’on [l’]1a déjà fait à la maison.

Predicted Mais alors, ce qui est embêtant, c’est que vous avez des gosses qui demandent à
travailler.
et qui ne veulent pas être les bras coincés, ou qui ne veulent pas faire de (la pâte à
modeler)s parce qu’on (l’)sa déjà fait à la maison.

Table 10: Examples of Missing Entity. Gold mentions are enclosed in square brackets and predicted mentions are
between the round brackets. Correct mentions are higlighted in green while incorrect mentions are in red .
Mention heads are highlighted in bold. Subscripts are entity identifiers with s denoting a singleton. Only mentions
relative to the error are shown.
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Gold Je ne parle évidemment pas des dictionnaires de [langue ancienne]1 que nous avons à
la maison.
...
En tout cas, en ce qui concerne [les langues anciennes]1, il y a 20 ans, plus de la moitié
des élèves faisaient [des langues anciennes]1, alors que maintenant, [ça]1 représente 1
%.

Predicted Je ne parle évidemment pas des dictionnaires de (langue ancienne)1 que nous avons à
la maison.
...
En tout cas, en ce qui concerne (les langues anciennes)2, il y a 20 ans, plus de la moitié
des élèves faisaient (des langues anciennes)2, alors que maintenant, (ça)2 représente 1
%.

Table 11: Examples of Divided Entity. Gold mentions are enclosed in square brackets and predicted mentions are
between the round brackets. Correct mentions are higlighted in green while incorrect mentions are in red .
Mention heads are highlighted in bold. Subscripts are entity identifiers with s denoting a singleton. Only mentions
relative to the error are shown. Three dots (...) show that there are several sentences in between.

Gold Alors, [au bureau]1,
À [mon bureau]1, j’ai un petit Larousse, mais j’ai chez moi un dictionnaire en dix
volumes.
...
Je parle pour mon foyer, je ne parle pas [du bureau]1.
...
Est-ce que vous pourriez dire combien par [mois]2 ?
Oui, au point de vue personnel, pas plus de deux ou trois lettres personnelles par
[mois]2.

Predicted Alors, (au bureau)1,
À (mon bureau)1, j’ai un petit Larousse, mais j’ai chez moi un dictionnaire en dix
volumes.
...
Je parle pour mon foyer, je ne parle pas (du bureau)1.
...
Est-ce que vous pourriez dire combien par (mois)1 ?
Oui, au point de vue personnel, pas plus de deux ou trois lettres personnelles par
(mois)1.

Table 12: Examples of Conflated Entity. Gold mentions are enclosed in square brackets and predicted mentions are
between the round brackets. Correct mentions are higlighted in green while incorrect mentions are in red .
Mention heads are highlighted in bold. Subscripts are entity identifiers with s denoting a singleton. Only mentions
relative to the error are shown. Three dots (...) show that there are several sentences in between.
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1 Charles University, Faculty of Mathematics and Physics,
Institute of Formal and Applied Linguistics, Prague, Czechia

{mnovak,nedoluzko,popel,straka,zabokrtsky,zeman}@ufal.mff.cuni.cz
2 University of West Bohemia, Faculty of Applied Sciences,

Department of Computer Science and Engineering, Pilsen, Czechia
{konopik,ondfa,sidoj}@kiv.zcu.cz

Abstract

The paper presents an overview of the fourth
edition of the Shared Task on Multilingual
Coreference Resolution, organized as part of
the CODI-CRAC 2025 workshop. As in the
previous editions, participants were challenged
to develop systems that identify mentions and
cluster them according to identity coreference.

A key innovation of this year’s task was the
introduction of a dedicated Large Language
Model (LLM) track, featuring a simplified
plaintext format designed to be more suitable
for LLMs than the original CoNLL-U repre-
sentation.

The task also expanded its coverage with three
new datasets in two additional languages, us-
ing version 1.3 of CorefUD – a harmonized
multilingual collection of 22 datasets in 17 lan-
guages.

In total, nine systems participated, including
four LLM-based approaches (two fine-tuned
and two using few-shot adaptation). While
traditional systems still kept the lead, LLMs
showed clear potential, suggesting they may
soon challenge established approaches in fu-
ture editions.

1 Introduction

Coreference is the phenomenon where multiple ex-
pressions in a text refer to the same real-world en-
tity. For example: “Beethoven was a revolutionary
artist. The German composer changed the course
of music, and he continues to inspire musicians
today.” Here, “Beethoven”, “the German com-
poser”, and “he” all point to the same individual.
The computational task of coreference resolution is

to automatically identify such links between men-
tions and group them into clusters that represent
entities. In the multilingual setting, the task is the
same, but complicated by the diversity of languages
and their grammatical and discourse conventions.

In this article, we present the overall setup and
results of the fourth edition of the shared task in
multilingual coreference resolution. For descrip-
tions of previous editions, as well as references to
the roots and predecessors of the series, see Novák
et al. (2024).

This year’s edition uses an improved and ex-
panded collection of coreference data, CorefUD 1.3
(Novák et al., 2025), currently spanning 17 lan-
guages from a few typologically different families.
However, the most important novelty in this edition
is the introduction of the Large Language Model
(LLM) track. Although non-LLM models were
still welcome, a dedicated LLM Track was intro-
duced to highlight and explore the capabilities of
LLM-based approaches. Hence, to accommodate
different modeling strategies and study their ef-
fects, we defined two shared-task tracks:

• LLM Track: Focused on solutions that pri-
marily rely on LLMs for coreference resolu-
tion. Allowed strategies include fine-tuning
LLMs, using in-context learning, designing
effective prompts, utilizing constrained de-
coding strategies, and building more complex
agentic systems.

• Unconstrained Track: Open to all other ap-
proaches, including non-LLM models and hy-
brid systems. This track allows the use of
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El|[e22 conductor de el tren|[e5],e22] vio el|[e7 coche|e7]

en la|[e8 vía|e8] e intentó ##|[e22] frenar|[e23] .

Spanish:

Our serialization:

English transl.:

El conductor del tren vio el coche en la vía e intentó frenar.

The driver of-the train saw the car on the track and tried to brake.

Figure 1: Our plaintext serialization of a Spanish example sentence from es_ancora. For clarity, mention spans are
highlighted by colored underlining, where two coreferential entities share the same color. A zero mention labeled on
an empty node is greyed. Note that multi-word tokens are split in the plaintext format into syntactic words (e.g., the
Spanish “del” appears as “de el”); this conversion error was identified after the data release.

additional pre-existing coreference systems,
external tools, and extensive model modifica-
tions.

A major trend in NLP is the shift from tradi-
tional task-specific models to LLMs, which can
address a wide range of tasks with little fine-tuning
and are comparatively easy to deploy. This uni-
fication brings greater efficiency, flexibility, and
scalability, but also raises challenges such as bias,
computational cost, and privacy concerns. At the
same time, LLMs have shown strong performance
on tasks that require understanding of textual con-
text and relations, including question answering,
summarization, and commonsense reasoning.

A category of benchmarks that are commonly
used to test these coreference-related capabilities
are derivations of the Winograd Schema Chal-
lenge (Levesque et al., 2012), for instance KnowRef
(Emami et al., 2019), WinoGrande (Sakaguchi
et al., 2021), and recently WinoWhat (Gevers
et al., 2025). However, these benchmarks represent
an overly narrow view of coreference resolution.
They primarily focus on commonsense reasoning
through carefully crafted disambiguation scenarios,
while real-world coreference resolution involves a
much broader spectrum of phenomena.

Previous works on using LLMs for coreference
resolution show that they struggle with this task
and are not able to outperform systems specifically
tailored for coreference resolution (Le and Ritter,
2023; Vadász, 2023; Hicke and Mimno, 2024; Gan
et al., 2024; Saputa et al., 2024). One of the reasons
may be that the data used to model and test the task
is very heterogeneous due to practical difficulties
in clearly and precisely defining the elements that
coreference relations work with, specifically the
scope of mentions, the degree of zero reconstruc-
tion, and the typology of coreference and anaphoric
relations.

Still, the progress in LLMs is so rapid that it

seems just a matter of time before these LLM-based
systems will dominate also in this task. We see the
LLM track of this shared task as an opportunity to
test this hypothesis and encourage development in
this field, providing a platform for researchers to
explore the current boundaries and future potential
of LLM-based coreference resolution.

The step towards LLMs does not represent only
a technological change – it often requires rethink-
ing how we approach a particular task. Structured
(possibly pipelined) solutions are typically aban-
doned and replaced by processing “flat” sequences
of (sub)words. In the particular case of this shared
task, we replace the relatively richly structured
CoNLL-U format in which the encoding of coref-
erence relations is stored in the CorefUD collec-
tion with an encoding of coreference that could be
added directly into plain text.

Naturally, there are many possible ways to in-
sert coreference markup into text, and prior work
on LLMs for coreference has each used its own
prompt and format. So far, no widely accepted best
practices have emerged for encoding or prompting
coreference in plain text. We implement our own
conversion from CorefUD into a plaintext serial-
ization (example in Figure 1), but acknowledge that
our design choices may limit applicability and that
further optimization could improve LLM perfor-
mance.

The remainder of the paper is structured as fol-
lows. Section 2 discusses the changes in the data
compared to the previous (third) edition of the
shared task. Section 3 outlines the evaluation met-
rics used in the task, including both the primary
and supplementary scores. Section 4 details all par-
ticipating systems, both in the LLM track and in the
Unconstrained track. Section 5 presents a summary
of the results and discusses some differences be-
tween the performance of LLM and Unconstrained
systems. Section 6 provides the conclusion.
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2 Datasets

As in previous years, the shared task takes train-
ing and evaluation data from the public part of the
CorefUD collection (Nedoluzhko et al., 2022),1

now in its latest release (1.3).2 The public edi-
tion of CorefUD 1.3 consists of 24 datasets3 cov-
ering 17 languages from five language families.
Compared to CorefUD 1.2, used last year (Novák
et al., 2024), the release adds three new datasets and
two new languages including Korean, which rep-
resents a new language family. The new datasets
are French ANCOR, Hindi HDTB, and Korean
ECMT. In addition, several existing datasets from
CorefUD 1.2 were updated. The data span diverse
domains including news, fiction, Bible texts, and
Wikipedia articles. French ANCOR notably in-
troduces transcripts of originally spoken conversa-
tional data, which were previously only marginally
represented in CorefUD. Table 1 gives an overview
of the datasets and their sizes. See Appendix A for
references of the individual datasets.

One of the goals of the CorefUD project is to en-
courage research on coreference resolution in lan-
guages other than English, particularly those with
zero anaphora. Zero anaphora, or zero mentions,
occur when a referent (like a subject or object) is
implied but not explicitly stated. This is a common
feature of pro-drop languages, where verb conju-
gation often provides enough information to infer
the missing pronoun. In CorefUD, zero mentions
are represented as empty nodes that are artificially
inserted into Universal Dependencies (UD) trees.
This allows them to be grouped with other men-
tions in a coreference chain, just like any other
explicitly stated mention. Although the two newly
added languages, Korean and Hindi, are considered
pro-drop, the original datasets do not include zero
mention annotation. Therefore, the collection of
datasets with zero mentions remains the same as in
the previous edition.

Our shared task focuses exclusively on identity
coreference. The datasets in the CorefUD collec-
tion, however, may include annotations of other
relations, such as bridging. Similarly, phenomena
like event anaphora and abstract anaphora may be
annotated in some datasets but not in others. Be-
cause CorefUD is not fully harmonized in terms

1https://ufal.mff.cuni.cz/corefud
2http://hdl.handle.net/11234/1-5896
3For the shared task, we used only 22 of them (see Sec-

tion 2.3).

of annotation guidelines, the precise nature of an-
notated anaphoric phenomena may vary slightly
across corpora. In converting to the CorefUD for-
mat, we aim to isolate identity coreference4 while
largely preserving the original annotations.

2.1 New Resources

French ANCOR (fr_ancor; Muzerelle et al.,
2014) is a collection of three different corpora
of conversational speech (Accueil_UBS, OTG,
ESLO), annotated for coreference. Cross-sentence
mentions (caused e.g. by two speakers speaking
simultaneously) are ignored in the conversion from
TEI to CorefUD.

Hindi HDTB (hi_hdtb; Mujadia et al., 2016) is
based on the HDTB corpus (Palmer et al., 2009)
annotated with coreference and anaphoric relations
and corresponding to the namesake treebank in UD.
However, the coreference corpus does not consti-
tute a strict subset of the UD treebank, as approx-
imately 14% of its sentences are not included in
the UD release. Still, each coreference-annotated
document contains at least one sentence that ap-
pears in the treebank. Although the original anno-
tations distinguish PartOf relations, these are often
merged with identity coreference relations within
the same cluster, complicating the separation of
identity, bridging, and split-antecedent relations.
As a result, we currently treat all mentions within
a cluster as coreferential, without making finer dis-
tinctions. At present, we do not incorporate the
manually annotated morpho-syntactic information
from the UD treebank; instead, we replace it with
automatic parses produced by UDPipe 2.

Korean ECMT (ko_ecmt; Nam et al., 2020) is
a conversion of the dataset created for the paper
“Effective Crowdsourcing of Multiple Tasks for
Comprehensive Knowledge Extraction” (ECMT).
The original dataset is based on Korean Wikipedia
and KBox with crowdsourced annotations for four
information extraction tasks: (1) entity detection,
(2) entity linking, (3) coreference resolution, and
(4) relation extraction. The original dataset seems
to contain errors where distinct entities are incor-
rectly merged into a single coreference cluster. The
CorefUD conversion did not attempt to fix these
errors.

4We are aware that complete isolation is not possible due
to near-identity relations; see Recasens et al. (2010).

97



total number of entities mentions

document total per 1k length total per 1k length

docs sents words empty n. count words max avg. count words max avg.

Ancient_Greek-PROIEL 19 6,475 64,111 6,283 3,215 50 332 6.6 21,354 333 52 1.7
Ancient_Hebrew-PTNK 40 1,161 28,485 0 870 31 102 7.2 6,247 219 22 1.5
Catalan-AnCora 1,298 13,613 429,313 6,377 17,558 41 101 3.6 62,417 145 141 4.8
Czech-PCEDT 2,312 49,208 1,155,755 35,654 49,225 43 236 3.4 168,055 145 79 3.6
Czech-PDT 3,165 49,419 834,707 21,092 46,460 56 173 3.3 154,437 185 99 3.1
English-GUM 237 13,263 233,926 119 9,200 39 131 4.4 40,656 174 95 2.6
English-LitBank 100 8,560 210,530 0 2,164 10 261 10.8 23,340 111 129 1.6
English-ParCorFull 19 543 10,798 0 188 17 38 4.4 835 77 37 2.1
French-ANCOR 455 31,761 454,577 0 13,204 29 103 4.3 56,459 124 17 1.9
French-Democrat 126 13,057 284,883 0 7,162 25 895 6.5 46,487 163 71 1.7
German-ParCorFull 19 543 10,602 0 243 23 43 3.7 896 85 30 2.0
German-PotsdamCC 176 2,238 33,222 0 880 26 15 2.9 2,519 76 34 2.6
Hindi-HDTB 271 3,479 76,282 0 3,148 41 36 3.8 12,082 158 43 1.8
Hungarian-KorKor 94 1,351 24,568 1,569 1,122 46 41 3.6 4,091 167 42 2.2
Hungarian-SzegedKoref 400 8,820 123,968 4,857 4,769 38 36 3.2 15,165 122 36 1.6
Korean-ECMT 1,470 30,784 482,986 0 16,536 34 55 3.4 56,538 117 12 1.3
Lithuanian-LCC 100 1,714 37,014 0 1,087 29 23 4.0 4,337 117 19 1.5
Norwegian-BokmaalNARC 346 15,742 245,515 0 5,658 23 298 4.7 26,611 108 51 1.9
Norwegian-NynorskNARC 394 12,481 206,660 0 5,079 25 84 4.3 21,847 106 57 2.1
Old_Church_Slavonic-PROIEL 26 6,832 61,759 6,289 3,396 55 134 6.5 22,116 358 52 1.5
Polish-PCC 1,828 35,874 538,885 18,615 22,143 41 135 3.7 82,706 153 108 1.9
Russian-RuCor 181 9,035 156,636 0 3,515 22 141 4.6 16,193 103 18 1.7
Spanish-AnCora 1,356 14,159 458,418 8,112 19,445 42 110 3.6 70,663 154 101 4.8
Turkish-ITCC 24 4,732 55,358 11,584 4,019 73 369 5.4 21,569 390 31 1.1

Table 1: CorefUD 1.3 data sizes in terms of the total number of documents, sentences, words (i.e. non-empty
nodes), empty nodes (empty words), coreference entities (total count, relative count per 1000 words, average and
maximal length in number of mentions) and coreference mentions (total count, relative count per 1000 words,
average and maximal length in number of words). All the counts are excluding singletons and for the concatenation
of train+dev+test. Train/dev/test splits of these datasets roughly follow the 8/1/1 ratio. However, note that for the
shared task we used reduced versions of dev and test: mini-dev and mini-test, respectively.

2.2 Updated Resources

More data The English GUM corpus (en_gum)
is now in its version 11, which has approximately
10% more data. All the other datasets are the same
size as before (except for a few minor changes re-
sulting from annotation corrections).

New prediction of morphosyntax For datasets
that do not come with manual morphosyntactic an-
notation, the UD relations, tags and features were
predicted with newer models for UDPipe (based
on UD release 2.15 instead of 2.12). This involves
the following ten corpora: Czech PCEDT, English
LitBank, English ParCorFull, German ParCorFull,
German PotsdamCC, Hungarian KorKor, Hungar-
ian SzegedKoref, Lithuanian LCC, Polish PCC,
Russian RuCor.

Substantial changes Re-implementation of con-
version from non-CorefUD formats and/or ma-
jor revision of the annotation was applied to
Czech PDT (cs_pdt) and Hungarian KorKor
(hu_korkor). For Czech, the source dataset is now

the PDT part of PDT-C 2.0 (previously it was 1.0),
which has substantial improvements on the surface-
syntactic layer. Many other changes were done in
the PDT-to-UD conversion of morphology and syn-
tax; coreference annotation is unchanged, except
for a few corrections. For Hungarian, the conver-
sion from the native format was almost completely
rewritten. Empty copula nodes are now deleted as
required in UD. DROP empty nodes now receive
correct incoming dependency relations (nsubj,
obj, or nmod:att), and there are several other
small improvements.5

2.3 Data for the Shared Task

Compared to the public edition of CorefUD 1.3,
the data provided for the shared task participants
underwent slight adjustments.6

5More details on the changes can be found in the README
files of the individual corpora.

6Both the shared task data and submissions are available
at http://hdl.handle.net/11234/1-5987.
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Data reduction Firstly, the English and German
ParCorFull datasets were excluded from this year’s
shared task. These datasets are the smallest (their
test sets contain less than 900 words, one third of
the next smallest test set) and exhibited the largest
variance, considerably influencing overall macro-
averaged scores.7

Secondly, the development and test sets were re-
duced to mini-dev and mini-test sets, respectively.
This change was introduced to lower the compu-
tational cost of evaluation while preserving high
discriminative power. Each dev and test set is now
capped at 25k words, achieved by randomly sam-
pling complete documents. The 25k threshold was
selected to cut the overall collection size by roughly
half, while affecting only a few of the largest cor-
pora and still ensuring reliable and representative
results.8

Plaintext format For the LLM track, we provide
a conversion to a simple plaintext format, along
with both the conversion tool and the converted
dataset files.

The plaintext format (see Figure 1) is a plain text
file in which each line represents a document, and
tokens are separated by spaces. Coreference an-
notations are appended to each token after the ‘|’
character. Each mention, including singletons, is
defined by its span boundaries, marked with open-
ing and closing square brackets concatenated with
the entity ID. Empty nodes are prefixed with ‘##’;
if an empty node has a form or lemma in the origi-
nal data, it is appended immediately after. Because
empty nodes are defined by their syntactic posi-
tion rather than linear order, each empty node is
placed directly after its syntactic parent. This for-
mat does not encode the dependency relation type
to the parent, which means it cannot distinguish
between multiple empty nodes dependent on the
same parent (see Section 3). While this limitation
may slightly affect evaluation results, we consider
the impact marginal and an acceptable trade-off for
preserving the simplicity of the format.

7Considering eight training runs of the last year’s win-
ning system differing in just random initialization, the stan-
dard deviation of the ParCorFull development results is more
than 10 times larger than the standard deviation of the overall
macro-averaged scores and 15 times larger than the standard
deviation of the largest dataset.

8Again considering eight training runs of the last year’s
winning system differing in just random initialization, capping
the large datasets to 25k words increase the standard devia-
tion of the overall macro-averaged percentage results on the
development sets by less than +0.03, from 0.296 to 0.324.

The plaintext format is intentionally less expres-
sive than CoNLL-U and lacks sufficient informa-
tion for some evaluation metrics (e.g., head match
requires mention heads derived from spans using
syntactic trees). To bridge this gap, we provide
a backwards conversion tool that restores plain-
text annotations to CoNLL-U format, as well as an
output cleaner.9

The cleaner addresses common issues caused
by LLM outputs, such as broken annota-
tion structure (e.g., unclosed mentions) or
added/removed/modified words. It first ensures
all mentions are properly opened and closed, then
uses word-level edit distance to align output doc-
uments to the original input. Empty nodes are ig-
nored in the edit-distance computation, as systems
are expected to insert them themselves. Once the
token sequences match exactly, the output anno-
tations can be safely mapped back to the original
CoNLL-U files.

Data variants and starting points In both
tracks, two main variants of the data are provided:
gold, and input data. In addition, participants of the
Unconstrained track can choose from three starting
points.

Gold data includes gold-standard annotations of
coreference and empty nodes, intended for fine-
tuning and evaluation. The data are consistent with
the CorefUD 1.3 release, retaining manually anno-
tated morpho-syntactic features (for datasets that
originally included them), gold empty nodes, and
gold coreference annotations. The only techni-
cal modification is the removal of empty nodes’
forms in order to align the data with the output of
the baseline empty node prediction, which does
not predict these forms (see Section 4.1). While
the gold train and mini-dev sets were available for
download, the gold test set remained secret and
were used internally in CodaLab for evaluation.

Input data was intended to be processed by par-
ticipants’ systems and subsequent submission. The
following preprocessing was thus performed only
on the mini-dev and mini-test sets. To better simu-
late a real-world scenario where no manual linguis-
tic annotation is available, we removed the forms
of empty nodes and replaced the original morpho-
syntactic features with the outputs of UD 2.15 mod-
els across all datasets, including those with origi-

9The conversion tool and cleaner are available as a single
application/Python library on GitHub: https://github.
com/ondfa/text2text-coref
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nally human-annotated features. Additionally, the
gold empty nodes and coreference annotations were
removed, forming the input data for the LLM track.
On the other hand, in line with the setup of the last
year’s edition, participants of the Unconstrained
track could choose from three different starting
points for entering the shared task, with varying de-
grees of work required: (1) Coreference and zeros
from scratch with no predictions of empty nodes
and coreference (practically identical to the LLM-
track variant), (2) Coreference from scratch with
baseline predictions of empty nodes, and (3) Re-
fine the baseline with baseline predictions of empty
nodes and coreference.

3 Evaluation Metrics

The systems participating in the shared task are
evaluated using the CorefUD scorer. In line with
previous editions, the primary evaluation score is
the CoNLL F1 score, computed with head men-
tion matching and excluding singletons. To align
zero mentions, no longer guaranteed to match one-
to-one due to the shift to a more realistic setup
introduced last year, we apply a dependency-based
matching method. In addition to the primary met-
ric, we also compute several supplementary scores
to support a more comprehensive comparison of
the shared task submissions.

Official scorer We evaluate participant submis-
sions using the CorefUD scorer10, specifically the
February 2025 version, which remains virtually un-
changed from the version used in the previous edi-
tion. The scorer builds on the Universal Anaphora
(UA) scorer 2.0 (Yu et al., 2023),11 adopting all
features relevant to the shared task, including im-
plementations of widely used coreference evalu-
ation metrics. In contrast to the UA scorer, the
CorefUD scorer also supports head matching and a
dependency-based method for aligning zero men-
tions.

The scorer takes two CoNLL-U files as input:
the gold file and the predicted file. Since our plain-
text format cannot capture all the information re-
quired for evaluation (e.g., mention heads), any
LLM output produced in this format must first be
restored into CoNLL-U before it can be properly

10https://github.com/ufal/
corefud-scorer

11The UA scorer 2.0 merges, reimplements, and extends
several earlier tools, including previous versions of the
CorefUD scorer.

evaluated.

Mention matching Due to the limitations of ex-
act and partial mention matching methods (see
Žabokrtský et al. (2023) for details), we have set-
tled on the head match strategy for the primary
evaluation metrics. In this approach, a gold and
predicted mention are considered a match if their
heads refer to the same token.12 Full mention spans
are ignored, except in cases where multiple men-
tions share the same head; in such instances, span
information is used to disambiguate them.

However, this approach is not applicable to
empty nodes, which frequently occur in zero
anaphora. Predicted counterparts of gold zero men-
tions may be missing, spurious, or appear at differ-
ent surface positions within a sentence, even if they
serve the same syntactic or semantic role. To han-
dle this, we devised a dependency-based method
last year (Novák et al., 2024). The method aligns
predicted and gold zero mentions within the same
sentence by maximizing their overlap in enhanced
dependency annotations. It formulates the task as a
one-to-one matching in a weighted bipartite graph,
where each candidate pair is scored based on how
well the predicted zero replicates the gold zero’s
dependencies. Matches that correctly assign both
the parent and the dependency type receive higher
weights, though the method remains robust even
when dependency types are not provided.

Primary score As is standard in coreference res-
olution, we use the CoNLL F1 score (Denis and
Baldridge, 2009; Pradhan et al., 2014) as the pri-
mary evaluation metric. This score is calculated
as the unweighted average of the F1 scores from
three widely used coreference evaluation measures:
MUC (Vilain et al., 1995), B3 (Bagga and Bald-
win, 1998), and CEAF-e (Luo, 2005). These met-
rics offer complementary perspectives: link-based,
mention-based, and entity-based, respectively. As
we aim to identify systems with stable performance
across all datasets, the final ranking of submissions
is determined by the macro-average of CoNLL F1

scores across all mini-test sets in the shared task
collection.13

12Gold mention heads in the CorefUD data are deter-
mined from the dependency tree using the Udapi block
corefud.MoveHead.

13The evaluation protocol with macro-averaging CoNLL
F1 scores was announced before the start of the development
phase and it was used also in previous versions of the shared
task. We think it is the fairest aggregation method. As alterna-
tives, one could average differences to the baseline or average
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Supplementary scores Beyond the primary
CoNLL F1 score, we report its alternative vari-
ants based on different mention matching strate-
gies: partial match14 and exact match. We also
compute the CoNLL score using head match for all
mentions, including singletons.

To provide a more comprehensive evaluation,
we report the individual coreference metrics com-
prising the CoNLL score (MUC, B3, and CEAF)
as well as other commonly used metrics such as
BLANC (Recasens and Hovy, 2011) and LEA
(Moosavi and Strube, 2016). Furthermore, we in-
clude the Mention Overlap Ratio (MOR) to assess
mention detection independently of coreference
clustering and the anaphor-decomposable score for
zero anaphora, both introduced in Žabokrtský et al.
(2022).

4 Participating Systems

4.1 Baseline

As in the previous edition, two baseline systems are
provided: one for predicting empty nodes as slots
for zero anaphora and another for coreference reso-
lution. Only participants in the Unconstrained track
are permitted to use or build upon these baseline
systems.

Empty nodes prediction baseline Empty node
prediction was introduced as an additional task in
last year’s shared task, and it is again part of the
shared task this year. To support participants who
wish to focus exclusively on coreference resolu-
tion, we again provide a baseline system for empty
nodes prediction. We release the source code,15 the
trained multilingual model,16 and the mini-dev and
mini-test data with predicted empty nodes.

The baseline model architecture is virtually un-
changed from last year. Each input sentence is
processed by a XLM-RoBERTa-large (Conneau
et al., 2020), generating embeddings for each input
word. Then, two candidate empty nodes are pre-
dicted for each word, and passed through three

ranks. The former yields the same final ranking as macro-
averaging, while the latter would lead to a single difference: in
the LLM track, the winner would be LLM-UWB, despite this
system not producing output for one dataset and not covering
zero anaphora in some datasets (see Sections 4.2 and 5).

14Partial match was used as the primary metric in the first
edition of the shared task (Žabokrtský et al., 2022).

15https://github.com/ufal/crac2025_
empty_nodes_baseline

16https://www.kaggle.com/models/
ufal-mff/crac2025_empty_nodes_baseline/

heads: (1) a binary classification head predict-
ing whether the candidate is really an empty node
or not, (2) a word-order prediction head imple-
mented using self-attention selecting the word after
which the empty node should be added, and (3) a
dependency relation prediction head, which first
concatenates the candidate representation and the
representation of the word most probable accord-
ing to the word-order prediction head, and then
predicts the dependency relation. A single model
is trained on a concatenation of all corpora with
empty nodes, sampling every sentence proportion-
ally to the square root of its corpora size. For a de-
tailed description and a visualization of the model
architecture, see Straka (2024).

We intrinsically evaluate the empty node pre-
diction baseline using precision, recall, and the F1
score, as shown in Table 2, where a prediction is
classified as correct only when all of its depen-
dency head, dependency relation, and word order
are correct. For comparison, we also include the
last year’s F1 score. This year’s results are very
consistent, with the exception of hu_korkor show-
ing an increase of nearly 20 percent points due
to improved conversion to the CorefUD format in
CorefUD 1.3 (see Section 2.2).

Coreference resolution baseline The corefer-
ence resolution baseline is the same as in the past
three years. It is based on the multilingual end-to-
end neural coreference resolution system by Pražák
et al. (2021), which adapts the original end-to-end
model of Lee et al. (2017). The model considers all
possible spans up to a predefined maximum length
and directly predicts an antecedent for each span.
Since it has no separate mention detection step, it
is well suited for datasets that do not annotate sin-
gletons. The baseline uses the mBERT base model
as its encoder.

Hereafter, we denote the combination of the two
baseline systems as BASELINE and the coreference
resolution baseline applied to gold empty nodes as
BASELINE-GZ.

4.2 System Submissions

This year, nine systems were submitted to the
shared task by six teams: UWB,17 PUXAI,18

17UWB = University of West Bohemia.
18PUXAI refers to the system by Nguyễn Xuân Phúc.
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Language Recall Precision F1 2024
F1

ca_ancora 91.1 91.9 91.5 91.7
cs_pcedt 61.4 77.1 68.4 67.8
cs_pdt 74.9 81.0 77.8 76.2
cu_proiel 79.0 81.0 80.0 80.2
es_ancora 93.4 92.9 93.2 92.0
grc_proiel 86.3 89.7 88.0 88.4
hu_korkor 83.3 85.5 84.4 66.7
hu_szeged 87.8 88.9 88.3 90.7
pl_pcc 91.9 89.0 90.4 89.5
tr_itcc 94.0 79.8 86.3 85.8

Table 2: Empty nodes prediction baseline performance
on the minidev sets of CorefUD 1.3 languages contain-
ing empty nodes. An empty node is considered correct
if it has the correct dependency head, dependency re-
lation, and word order. For comparison, we also show
results from the last year on CorefUD 1.2 dev sets.

GLaRef,19 NUST-SEECS,20 ÚFAL CorPipe,21 and
Stanford NLP Group.22 For clarity, we distinguish
the submissions to the LLM track with the ‘LLM-’
prefix in the following text.

LLM-UWB (hejmanj) The UWB team fine-
tunes a Llama-3.1-8B model on the official plain-
text export of the CoNLL-U files. Training is done
using QLoRA adaptation. The model is trained to
generate the fully tagged document text, includ-
ing empty nodes, by inserting them directly in the
output. For some datasets, they modify the input
format to use just a headword for mention repre-
sentation. Two variants of the model are trained: a
simple version using the provided format, but ig-
noring empty nodes, and an extended version with
empty nodes and headword mention representa-
tion. Versions for the final submission was selected
based on dev set results. The simple version is used
for: cs_pcedt, cs_pdt, es_ancora, grc_proiel,
hu_korkor, ko_ecmt, lt_lcc, and pl_pcc. For
hbo_ptnk, the model was not properly trained due
to very long sequences and inefficient tokenization,
and the system failed to meet the output format. In-

19GLaRef = Group Lattice for Reference. Two systems are
submitted under this name: GLaRef-CRAC25 and GLaRef-
Propp.

20NUST-SEECS = National University of Sciences and
Technology, School of Electrical Engineering and Computer
Science.

21ÚFAL CorPipe submitted three variants: CorPipeSingle,
CorPipeBestDev, and CorPipeEnsemble.

22Stanford NLP Group is the creator of the Stanza package.

put windows up to 4 096 tokens are used in training;
at inference time, contexts of 2 048 tokens and out-
puts of 4 096 tokens are typical, with occasional
extensions to 8 192/16 384. No additional data is
used.

LLM-PUXCRAC2025 (PuxAI) This system is
purely prompt-based, few-shot coreference resolver
combining two closed-source LLMs (Gemini-
Flash-2.0 and Grok-3). A difficulty-aware pipeline
selects three hardest examples per language, re-
ranks them by two semantic scores, and feeds them
plus the test document into the model. Output
chains are post-processed into CoNLL-U. No fine-
tuning or extra data is used; the system runs free of
charge on public tiers.

LLM-GLaRef-CRAC25 (oseminck) The au-
thors fine-tune google/gemma-3-12b-it in two
stages: a context-free end-to-end tagger, and a
context-aware variant that processes chunks of sen-
tences (8 or 10 at a time) with preceding con-
text of 500–700 characters. The best three runs
(context-free, 8sent_500char, 10sent_700char) are
combined for the final submission. Training fol-
lows QLoRA + prompt tuning + quantization over
plaintext inputs; no extra data are used.

LLM-NUST-FewShot (moizsajid) This system
applies few-shot in-context learning with Gem-
ini 2.5 Pro. Up to 300k tokens of input are al-
lowed; generation limits are defined by the task.
No fine-tuning or additional data are used. The
system demonstrates that performance scales with
the number of examples provided

GLaRef-Propp (antoine.bourgois) This work
is based on a multi-stage pipeline built on
google/mt5-xl. Empty nodes are detected first
(pro-drop languages only), then mentions with a
BiLSTM-CRF, followed by a mention-pair feed-
forward coreference scorer. Windows of up to 512
subwords are used, with sliding overlaps. The three
modules contain approximately 54 million train-
able parameters and are all fine-tuned solely on
CoNLL-U input.

CorPipeSingle (ÚFAL CorPipe) The system
utilizes a PyTorch re-implementation of CorPipe24
using google/umt5-xl. Mentions and links are pre-
dicted jointly, but empty nodes are taken from the
provided baseline. The model is trained multi-
lingually for 150k gradient updates over 15 epochs;
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batch sizes of 6–16 sentences with proportional
sampling yield the final selected checkpoint.

CorPipeBestDev (ÚFAL CorPipe) Same archi-
tecture as CorPipeSingle, but instead of one fixed
checkpoint, the best checkpoint per treebank (out
of 13 models trained with different seeds and sam-
pling) is selected on the mini-dev sets.

CorPipeEnsemble (ÚFAL CorPipe) An ensem-
ble of the top five out of the 13 multilingual umT5-
xl models from CorPipeSingle, averaging their pre-
dicted mention-pair probabilities.

Stanza (Stanford NLP Group) This work is
based on a head-joining efficient word-level con-
ference approach, built on the work of Dobrovol-
skii (2021); D’Oosterlinck et al. (2023); Liu et al.
(2024). Mentions are first linked by head words,
after which spans are resolved locally through a
CNN. Embeddings for mention resolution are ini-
tialized via XLM-RoBERTa large, with a sliding
window over the document 512 tokens wide.

4.3 System Comparison

Overview of tables Tables 3–5 provide a com-
prehensive comparison of all nine submissions. Ta-
ble 3 lists each system’s shared-task track, primary
pretrained backbone, and key methodological com-
ponents (e.g. fine-tuning, prompt tuning, few-shot
prompting, pipeline modules). Table 4 details each
model’s maximum input context length, maximum
new tokens generated at inference, and total number
of trainable parameters. Finally, Table 5 outlines
the training regimes: whether models were tuned
per language, the batch sizes used, the total number
of gradient updates, which hyperparameters were
tuned, and how empty nodes were handled.

Although all nine submissions share the same
official CoNLL-U training data and target format,
they diverge along four main dimensions: mod-
elling paradigm, context capacity, empty node han-
dling, and language- or treebank-specific adapta-
tion.

Modeling paradigms There are four contribu-
tions in the LLM track and five submissions
in the unconstrainted track. The four LLM-
track systems (LLM-UWB, LLM-PUXCRAC2025,
LLM-GLaRef-CRAC25, LLM-NUST-FewShot)
treat coreference as a text-generation or prompt-
answering task. LLM-UWB and LLM-GLaRef-
CRAC25 perform full fine-tuning (via QLoRA,

LoRA, quantization, or prompt tuning) of large
open-source models (Llama-3.1-8B, gemma-3-
12b-it), teaching them to output bracketed and
empty-node-annotated text. In contrast, LLM-
PUXCRAC2025 and LLM-NUST-FewShot use
purely few-shot or in-context prompting on closed-
source models (Gemini, Grok), with no parameter
updates.

Unconstrained-track submissions (GLaRef-
Propp, CorPipeSingle, CorPipeBestDev, Cor-
PipeEnsemble, Stanza) adopt a more traditional,
mention detection – mention-pair scoring pipeline.
These systems fine-tune XLM-RoBERTa, mT5-xl
or umT5-xl in a supervised manner and build
clusters via antecedent ranking and transitive
closure.

Context capacity and model scale The LLM-
track systems exploit the extended context windows
of modern LLMs: LLM-UWB up to 8 192 input
/ 16 384 output tokens, LLM-PUXCRAC2025 ef-
fectively unlimited (1 048 576), and LLM-NUST-
FewShot 300 000 tokens. LLM-GLaRef-CRAC25
similarly benefits from large-context inference. By
contrast, the Unconstrained track systems are lim-
ited by standard transformer lengths (512–2 560
subwords), relying on sliding windows or chunk-
ing to cover long documents. Model sizes range
from 54 M trainable parameters in GLaRef-Propp’s
BiLSTM-CRF modules to 12 B in gemma-3-12b-
it, with most systems clustering around 1.7 B–8 B
parameters.

Data usage All nine systems use only the official
CoNLL-U data, with no additional corpora. Most
train a single multilingual model rather than sep-
arate per-language models. The only exception is
the CorPipeBestDev system, which picks the best
checkpoint per treebank. In terms of computational
cost, only LLM-NUST-FewShot reports a non-zero
expense (about $234.7), while all other systems
either report zero cost or rely on university com-
puting resources.

Empty node handling Empty nodes are ad-
dressed in different ways: (1) predicted end-to-end
with a fine-tuned system (LLM-UWB and LLM-
GLaRef-CRAC25), (2) predicted end-to-end via in-
context learning (LLM-PUXCRAC2025 and LLM-
NUST-FewShot), (3) adopted from the shared
task’s baseline (CorPipe variants, Stanza), or (4)
predicted with a custom model (GLaRef-Propp).
The LLM-based systems relied on the serialized
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Name Track Techniques
LLM-UWB LLM FT, LoRA, QLoRA, quant.
LLM-PUXCRAC2025 LLM few-shot, re-rank
LLM-GLaRef-CRAC25 LLM FT, prompt-tune, QLoRA, quant.
LLM-NUST-FewShot LLM few-shot in-context
GLaRef-Propp Unconstr. BiLSTM-CRF + feedforward
CorPipeSingle Unconstr. FT multistage
CorPipeBestDev Unconstr. FT + per-treebank select
CorPipeEnsemble Unconstr. FT + ensemble
Stanza Unconstr. FT + LoRA

Table 3: System names, task tracks, and main techniques.

Name Model Input ctx. len. Output tok. len. #Params
LLM-UWB Llama-3.1-8B 8,192 16,384 8 B
LLM-PUXCRAC2025 Gemini-Flash-2.0

Grok-3 1,048,576 16,384 —

LLM-GLaRef-CRAC25 gemma-3-12b-it — — 12 B
LLM-NUST-FewShot Gemini 2.5 Pro 300,000 — —
GLaRef-Propp mt5-xl 512 — 54 M
CorPipeSingle umT5-xl 512/2,560 — 1.7 B
CorPipeBestDev umT5-xl 512/2,560 — 1.7 B
CorPipeEnsemble umT5-xl 512/2,560 — 8.6 B
Stanza XLM-RoBERTa-L 512 — 31M +

560M frozen

Table 4: Models: model name, maximum input context length, maximum new tokens generated, and model sizes.

Name Empty nodes Batch size Grad ups Tuned h-params
LLM-UWB predicted

ignored 1 ? ?

LLM-PUXCRAC2025 predicted few-shot 0 —
LLM-GLaRef-CRAC25 predicted ? ? ?
LLM-NUST-FewShot predicted few-shot 0 —
GLaRef-Propp predicted 16,000 mention pairs 1.26 M batch, epochs
CorPipeSingle baseline 6 sentences 150 k sampling mode
CorPipeBestDev baseline 6 sentences 150 k × 13 same as Single
CorPipeEnsemble baseline 6 sentences 150 k × 5 same as Single
Stanza baseline 10·512-token windows 367 k learning rate, warmup,

LoRA params, . . .

Table 5: Training configuration: empty-node handling, batch sizes, total gradient updates, and tuned hyperparame-
ters. GLaRef-Propp used batch size: 16 sentences for empty nodes prediction and mention detection and 16,000
mention pairs for coreference resolution.

format, which represents empty nodes using ‘##’
markers (see Figure 1). These varied approaches
reflect different assumptions about the importance
and difficulty of modeling zero-anaphora phenom-
ena.

Language/treebank specialization and ensem-
bling Most systems train a single multilin-
gual model for all languages (LLM-UWB,
LLM-PUXCRAC2025, GLaRef-CRAC25, NUST-

FewShot, GLaRef-Propp, CorPipeSingle, Stanza).
Only CorPipeBestDev and CorPipeEnsemble select
or combine checkpoints: CorPipeBestDev picks the
best of 195 (13 models · 15 epochs) multilingual
checkpoints for each corpus, while Ensemble av-
erages the top five multilingual models. Neither
LLM-UWB nor LLM-GLaRef-CRAC25 employ
per-language tuning, favoring a unified model. The
few-shot systems dynamically adapt to each input
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via prompt construction but do not explicitly retrain
per language.

In sum, the task saw a spectrum from
lightweight, prompt-only solutions on closed LLM
APIs to heavyweight, quantized fine-tuned open
models, and from end-to-end generation of annota-
tions to modular neural-pipeline architectures.

5 Results and Comparison

Main results The main results are summarized
in Table 6. LLM-GLaRef-CRAC25 and Cor-
PipeEnsemble are the top-performing systems in
the LLM and Unconstrained tracks, respectively,
outperforming all other submissions in their re-
spective tracks according to the primary metric.
Both systems also achieve the best results within
their track when evaluated with alternative mention
matching strategies: partial match, exact match,
and head match including singletons.

The LLM track exhibits tighter competition, with
performance differences between systems signif-
icantly smaller than in the Unconstrained track.
Excluding the baseline system, the standard devia-
tion of the head match score in the Unconstrained
track is 5.53, compared to just 1.27 in the LLM
track. This higher level of competition is also re-
flected in the progression of scores over time, as
shown in Figure 3 in Appendix D, which tracks
the evolution of primary scores for individual sub-
missions during the evaluation phase of the shared
task.

Comparing across the tracks, all LLMs could
beat the non-LLM baseline system. However, we
have to admit that in this shared task the best LLM
solution fell behind the best non-LLM system by
a large margin of almost 13 points. For simplicity,
we will be comparing the submissions from both
tracks jointly in the remainder of this section.

Secondary metrics The secondary metrics in Ta-
ble 7 reveal a similar trend as the primary met-
ric: the ÚFAL CorPipe system consistently out-
performs all other submissions. The most striking
pattern is the pronounced contrast between the Cor-
Pipe systems and the remaining entries, particu-
larly the LLM-based ones, in terms of the preci-
sion–recall balance across individual coreference
metrics. While CorPipe systems maintain relatively
small gaps between precision and recall, the other
systems consistently show much higher precision
than recall. This indicates that CorPipe systems
are substantially more effective at capturing and

following the coreference annotation guidelines re-
flected in the data.

Comparison across datasets Both Table 8 and
Figure 2 present CoNLL F1 scores of all systems
across the datasets. To make patterns more visi-
ble, the datasets in Figure 2 are ordered from left
to right by the decreasing performance of the top
system, CorPipeEnsemble. For roughly the lower-
performing half of the datasets, the performance
gap between CorPipe and the other systems tends
to be larger, and their scores are more varied, sug-
gesting that these datasets pose greater challenges
for coreference resolution.

Interestingly, CorPipeEnsemble was outper-
formed on two datasets: en_litbank by LLM-
UWB, and hbo_ptnk by LLM-NUST-FewShot.
The latter is particularly striking: on Ancient
Hebrew, LLM-NUST-FewShot surpassed Cor-
PipeEnsemble by 10 points, despite ranking among
the weakest systems on many other datasets. While
the exact cause of this anomaly remains unclear,
a closer analysis shows that LLM-NUST-FewShot
produced almost exactly the same number of non-
singleton mentions as in the gold data (2,327 vs.
2,312), whereas all other system produced less
mentions.

The zero score of LLM-UWB on hbo_ptnk is
in line with their fine-tuning failure described in
Section 4.2.

Performance on zero mentions Table 9 shows
system performance on datasets containing
zero mentions, evaluated using the anaphor-
decomposable score for zero anaphora. Two obser-
vations stand out.

First, LLM-UWB fails to predict any zero men-
tions for all but two of these datasets. This is likely
because several of these datasets substantially over-
lap with those for which the authors used an LLM
variant fine-tuned on data where empty nodes had
been excluded.

Second, on hu_korkor, both the winning sys-
tem and the baseline outperform their counterparts
from last year’s edition by 8 and 10 percentage
points, respectively. The winning system’s score is
now closer to its performance on the other Hungar-
ian dataset, hu_szeged. These gains are consis-
tent with the improved intrinsic performance of the
empty-node prediction baseline for this dataset (see
Section 4.1), resulting from fixes to its conversion
pipeline described in Section 2.2.
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Comparison over years Having organized this
shared task for the fourth consecutive year, it is
particularly interesting to examine how it has con-
tributed to advancing the state of the art in multi-
lingual coreference resolution. While the datasets
and certain aspects of the task have evolved each
year, one constant has been the coreference base-
line system, which is simply retrained annually on
the updated data. This stability allows us to track
progress by comparing the best-performing system
each year against the baseline.

The relative improvement over the baseline
showed a promising upward trend in previous edi-
tions: +21% in 2022, +31% in 2023, and +39%
in 2024 (Novák et al., 2024). This year, however,
the improvement stands at +35%, marking a slight
break in the upward trajectory. This drop is caused
by the exclusion of two very small datasets from
the test set, where the improvement over baseline
has been exceptionally high last year (+47% in
de_parcorfull and +108% in en_parcorful) perhaps
by chance. Still, the results show that systems con-
tinue to deliver strong performance even as the task
grows more diverse and challenging.

Further analysis Similarly to previous years, we
provide several additional tables in the appendices
to shed more light on the differences between the
submitted systems.

Tables 10–11 show results factorized accord-
ing to the different universal part of speech tags
(UPOS) in the mention heads.

Tables 12–15 show various statistics on the enti-
ties and mentions in a concatenation of all the test
sets. Note that such statistics are mostly influenced
by larger datasets.

Differences between LLM and Unconstrained
The main novelty in this year’s shared task setup
was the support for LLM approaches to corefer-
ence resolution. As mentioned in the Main Re-
sults above, the performance of the LLM par-
ticipating systems is worse than the best Uncon-
strained system (CorPipe) by a large margin (with
only two datasets where an LLM system out-
performs all Unconstrained systems). In addi-
tion, some LLM systems seem to be sensitive to
particular datasets: there are dramatic drops in
performance (see e.g. the performance declines
for grc_proiel, tr_itcc, hbo_ptnk, and
cu_proiel in Figure 2).

However, it would be premature to conclude that

LLMs are not a promising solution for coreference
resolution. First, this would contradict everyday
experience with public LLMs, which seem to han-
dle coreference-related phenomena relatively well.
Second, the best-performing CorPipe system has
been tuned for CorefUD over years, while LLM ap-
proaches had only a few months of testing. Third,
and perhaps most importantly, we are still at the
beginning of learning how to best provide LLMs
with coreference-annotated data and how to elicit
coreference reasoning, questions that clearly re-
quire further exploration.

6 Conclusions and Future Work

The paper summarizes the fourth edition of the
shared task on multilingual coreference resolution,
organized in 2025. Besides relatively conserva-
tive (though important too) updates with respect
to the previous editions, such as improved qual-
ity of the data integrated in CorefUD and the in-
creased number of languages, the major innovation
in this edition was the support for LLM-based so-
lutions. With only a few exceptions, LLM-based
solutions did not outperform CorPipeEnsemble,
the best Unconstrained system (from the same au-
thor as the winning submissions in the previous
editions). However, we believe that the lower per-
formance of the LLM solutions should be rather
attributed to our currently limited knowledge of
how coreference is handled internally in LLMs,
and that studying how to deal with coreference in
LLMs may – in a longer-term perspective – result
in rethinking how we should represent coreference
in NLP in general.
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excluding singletons with singletons

system head-match partial-match exact-match head-match

LLM-GLaRef-CRAC25 62.96 61.66 (-1.30) 58.98 (-3.98) 65.61 (+2.66)
LLM-NUST-FewShot 61.74 61.14 (-0.60) 56.34 (-5.40) 63.44 (+1.69)
LLM-PUXCRAC2025 60.09 59.68 (-0.41) 55.22 (-4.87) 54.77 (-5.32)
LLM-UWB 59.84 59.55 (-0.29) 38.81 (-21.03) 62.77 (+2.93)

CorPipeEnsemble 75.84 74.90 (-0.94) 72.76 (-3.08) 78.33 (+2.49)
CorPipeBestDev 75.06 74.08 (-0.98) 71.97 (-3.10) 77.63 (+2.57)
CorPipeSingle 74.75 73.74 (-1.01) 71.53 (-3.23) 77.43 (+2.68)
Stanza 67.81 67.03 (-0.78) 64.68 (-3.13) 70.64 (+2.83)
GLaRef-Propp 61.57 60.72 (-0.85) 58.43 (-3.14) 65.28 (+3.70)
BASELINE-GZ 58.18 57.75 (-0.42) 56.48 (-1.69) 49.88 (-8.29)
BASELINE 56.01 55.58 (-0.43) 54.24 (-1.77) 47.88 (-8.13)

WINNER-2023 74.90 73.33 (-1.57) 71.46 (-3.44) 76.82 (+1.91)
WINNER-2024 73.90 72.19 (-1.71) 69.86 (-4.04) 75.65 (+1.75)
BASELINE-2023 56.96 56.28 (-0.68) 54.75 (-2.21) 49.32 (-7.64)
BASELINE-2024 53.16 52.48 (-0.68) 51.26 (-1.90) 46.45 (-6.71)

Table 6: Main results: the CoNLL F1 score macro-averaged over all datasets. The table shows the primary metric
(head-match excluding singletons) and three alternative metrics: partial-match excluding singletons, exact-match
excluding singletons and head-match with singletons. A difference relative to the primary metric is reported in
parenthesis. The top section shows the LLM track, below is the Unconstrained track. The best score in each column
and each of these two sections is in bold. The systems are ordered by the primary metric. The last four rows showing
the winner and baseline results from CRAC 2023 and 2024 are copied from the last year Findings (Novák et al.,
2024), and thus are not directly comparable with the rest of the table because both the test and training data have
been changed (CorefUD 1.1 vs. 1.2 vs. 1.3). Similar notes apply to the following tables.

system MUC B3 CEAF-e BLANC LEA MOR

CorPipeEnsemble 81 / 82 / 82 73 / 75 / 74 74 / 70 / 72 72 / 75 / 73 70 / 73 / 71 81 / 82 / 81
CorPipeBestDev 81 / 81 / 81 72 / 74 / 73 73 / 70 / 71 72 / 74 / 73 70 / 71 / 70 81 / 81 / 81
CorPipeSingle 81 / 81 / 81 72 / 73 / 72 72 / 70 / 71 72 / 73 / 72 69 / 71 / 70 80 / 81 / 80
Stanza 72 / 80 / 76 62 / 70 / 65 62 / 64 / 63 61 / 70 / 64 59 / 67 / 62 70 / 83 / 75
LLM-GLaRef-CRAC25 67 / 76 / 71 55 / 67 / 60 55 / 61 / 58 54 / 67 / 59 51 / 64 / 56 64 / 79 / 71
LLM-NUST-FewShot 66 / 73 / 69 58 / 65 / 60 52 / 65 / 56 57 / 65 / 58 56 / 62 / 57 59 / 79 / 66
GLaRef-Propp 69 / 76 / 72 56 / 62 / 58 49 / 62 / 55 56 / 62 / 57 52 / 58 / 55 57 / 78 / 65
LLM-PUXCRAC2025 64 / 72 / 68 54 / 63 / 57 52 / 61 / 55 53 / 62 / 56 51 / 59 / 54 56 / 80 / 65
LLM-UWB 60 / 74 / 65 53 / 67 / 57 53 / 64 / 57 48 / 67 / 53 50 / 64 / 55 42 / 81 / 53
BASELINE-GZ 61 / 76 / 68 48 / 63 / 54 49 / 58 / 52 48 / 64 / 54 45 / 59 / 50 55 / 87 / 66
BASELINE 58 / 75 / 65 45 / 62 / 52 47 / 57 / 51 44 / 63 / 50 42 / 58 / 48 53 / 86 / 65

Table 7: Recall / Precision / F1 for individual secondary metrics. All scores macro-averaged over all datasets.
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CorPipeEnsemble 82.9 77.1 80.7 65.5 73.0 76.1 81.8 84.5 76.3 71.8 74.5 69.8 77.7 68.6 71.0 69.9 77.2 78.2 76.3 80.2 84.2 71.2
CorPipeBestDev 82.0 76.3 80.4 62.8 72.6 75.9 81.3 83.8 75.9 69.9 74.3 68.3 77.5 68.3 70.5 69.3 76.0 77.1 74.0 79.9 84.8 70.4
CorPipeSingle 82.5 76.2 80.1 63.0 72.8 75.2 80.8 84.1 75.8 70.3 74.4 66.1 76.5 67.3 69.7 68.9 75.8 76.2 73.6 79.4 84.2 71.6
Stanza 79.5 72.7 75.1 40.8 67.3 69.0 74.8 80.4 67.5 62.5 54.9 62.1 74.2 60.0 64.6 67.7 72.8 72.4 71.7 73.0 80.8 47.8
LLM-GLaRef-CRAC25 73.5 65.1 71.3 58.2 59.6 58.7 69.0 74.4 66.7 60.4 65.8 44.0 56.4 52.5 59.8 63.0 62.5 64.7 61.6 72.5 68.8 56.2
LLM-NUST-FewShot 60.9 51.4 54.3 58.5 48.7 69.8 70.4 61.8 71.9 57.6 57.9 80.2 71.3 43.5 52.3 66.0 59.2 72.8 68.9 70.8 71.4 39.0
GLaRef-Propp 68.1 61.7 66.6 39.1 61.2 61.9 70.0 69.1 65.1 66.1 51.3 58.8 69.5 50.9 60.1 60.6 57.6 67.1 66.3 68.0 71.5 44.3
LLM-PUXCRAC2025 68.0 56.9 63.0 43.7 57.4 61.7 69.1 70.5 63.8 61.5 47.9 45.3 66.8 50.6 61.6 50.3 65.3 65.2 63.0 66.5 67.6 56.1
LLM-UWB 79.2 61.0 68.2 25.3 67.6 73.6 84.0 73.6 58.6 49.1 47.6 0.0 75.8 38.9 67.3 68.3 63.4 73.8 72.0 64.5 80.1 24.3
BASELINE-GZ 68.8 69.5 67.9 29.5 55.7 61.6 66.0 71.0 63.8 55.0 29.4 31.0 66.8 47.1 54.3 64.3 65.3 62.5 63.0 68.1 67.6 51.7
BASELINE 68.0 56.9 63.0 26.3 55.7 61.7 66.0 70.5 63.8 55.0 28.5 31.0 66.8 43.2 54.5 50.3 65.3 62.5 63.0 66.5 67.6 45.9

Table 8: Results for individual languages in the primary metric (CoNLL F1).
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CorPipeEnsemble 91 / 87 / 89 82 / 86 / 84 61 / 79 / 69 77 / 80 / 79 93 / 92 / 92 87 / 87 / 87 65 / 81 / 72 85 / 73 / 78 93 / 84 / 89 84 / 83 / 84
CorPipeBestDev 90 / 87 / 88 82 / 85 / 84 60 / 77 / 68 76 / 79 / 78 93 / 91 / 92 87 / 88 / 88 66 / 82 / 73 83 / 70 / 76 93 / 84 / 88 84 / 82 / 83
CorPipeSingle 90 / 86 / 88 81 / 85 / 83 61 / 78 / 68 77 / 79 / 78 93 / 92 / 92 87 / 88 / 88 63 / 83 / 72 83 / 70 / 76 94 / 83 / 88 84 / 82 / 83
Stanza 87 / 86 / 86 77 / 88 / 82 52 / 84 / 65 63 / 69 / 66 91 / 91 / 91 80 / 84 / 82 59 / 83 / 69 74 / 70 / 72 91 / 81 / 86 57 / 83 / 67
LLM-GLaRef-CRAC25 81 / 84 / 82 75 / 81 / 78 56 / 67 / 61 77 / 79 / 78 83 / 89 / 86 85 / 87 / 86 52 / 68 / 59 66 / 65 / 65 84 / 83 / 84 75 / 75 / 75
LLM-NUST-FewShot 53 / 82 / 64 55 / 79 / 65 35 / 81 / 48 74 / 82 / 78 56 / 91 / 69 59 / 89 / 71 23 / 83 / 36 25 / 63 / 36 72 / 86 / 79 29 / 63 / 40
GLaRef-Propp 80 / 80 / 80 74 / 83 / 78 48 / 63 / 54 49 / 56 / 53 84 / 87 / 86 70 / 74 / 72 51 / 70 / 59 66 / 66 / 66 84 / 82 / 83 60 / 83 / 70
LLM-PUXCRAC2025 79 / 75 / 77 34 / 82 / 48 9 / 93 / 17 39 / 53 / 45 88 / 87 / 87 82 / 60 / 69 50 / 48 / 49 73 / 49 / 59 86 / 78 / 82 50 / 93 / 65
LLM-UWB 83 / 82 / 82 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 71 / 73 / 72 0 / 0 / 0 0 / 0 / 0
BASELINE-GZ 84 / 83 / 84 83 / 85 / 84 76 / 81 / 79 61 / 71 / 66 89 / 90 / 90 64 / 67 / 66 73 / 76 / 74 54 / 59 / 56 89 / 87 / 88 79 / 81 / 80
BASELINE 79 / 75 / 77 34 / 82 / 48 9 / 93 / 17 52 / 62 / 57 88 / 87 / 87 62 / 67 / 64 56 / 63 / 59 54 / 57 / 55 86 / 78 / 82 71 / 73 / 72

WINNER-2023 93 / 92 / 92 91 / 92 / 92 87 / 88 / 87 – 94 / 95 / 95 – 82 / 89 / 85 88 / 70 / 78 75 / 69 / 72 –
WINNER-2024 88 / 85 / 86 77 / 82 / 80 59 / 74 / 66 75 / 78 / 76 90 / 92 / 91 84 / 88 / 86 56 / 75 / 64 83 / 68 / 75 90 / 84 / 87 83 / 80 / 82
BASELINE-2023 82 / 82 / 82 81 / 84 / 82 77 / 81 / 79 – 87 / 88 / 87 – 60 / 68 / 64 61 / 57 / 59 50 / 80 / 62 –
BASELINE-2024 79 / 76 / 77 70 / 74 / 72 55 / 69 / 61 52 / 62 / 56 83 / 83 / 83 63 / 70 / 66 41 / 61 / 49 49 / 57 / 53 85 / 78 / 82 68 / 71 / 70

Table 9: Recall / Precision / F1 for anaphor-decomposable score of coreference resolution on zero anaphors across
individual languages. Only datasets containing anaphoric zeros are listed (en_gum excluded as all zeros in its
test set are non-anaphoric). Note that these scores are directly comparable to neither the CoNLL score nor the
supplementary scores calculated with respect to whole entities in Table 7.
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Figure 2: Plot with results for individual languages in the primary metric (CoNLL F1). This plot shows the same
information as Table 8, but languages are sorted according to the performance of the best system and LLM-based
systems are shown with dashed lines.

109



References
Amit Bagga and Breck Baldwin. 1998. Algorithms

for Scoring Coreference Chains. In Proceedings
of The First International Conference on Language
Resources and Evaluation Workshop on Linguistics
Coreference, pages 563–566.

David Bamman, Olivia Lewke, and Anya Mansoor.
2020. An Annotated Dataset of Coreference in En-
glish Literature. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
44–54, Marseille, France. European Language Re-
sources Association.

Peter Bourgonje and Manfred Stede. 2020. The Potsdam
Commentary Corpus 2.2: Extending Annotations for
Shallow Discourse Parsing. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 1061–1066, Marseille, France. European
Language Resources Association.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
Cross-lingual Representation Learning at Scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Pascal Denis and Jason Baldridge. 2009. Global joint
models for coreference resolution and named entity
classification. Procesamiento del lenguaje natural,
42.

Vladimir Dobrovolskii. 2021. Word-Level Coreference
Resolution. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7670–7675, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Karel D’Oosterlinck, Semere Kiros Bitew, Brandon Pa-
pineau, Christopher Potts, Thomas Demeester, and
Chris Develder. 2023. CAW-coref: Conjunction-
Aware Word-level Coreference Resolution. In Pro-
ceedings of the Sixth Workshop on Computational
Models of Reference, Anaphora and Coreference
(CRAC 2023), pages 8–14, Singapore. Association
for Computational Linguistics.

Ali Emami, Paul Trichelair, Adam Trischler, Kaheer
Suleman, Hannes Schulz, and Jackie Chi Kit Cheung.
2019. The KnowRef Coreference Corpus: Removing
Gender and Number Cues for Difficult Pronominal
Anaphora Resolution. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3952–3961, Florence, Italy. Asso-
ciation for Computational Linguistics.

Yujian Gan, Massimo Poesio, and Juntao Yu. 2024. As-
sessing the Capabilities of Large Language Models
in Coreference: An Evaluation. In Proceedings of

the 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Eval-
uation (LREC-COLING 2024), pages 1645–1665,
Torino, Italia. ELRA and ICCL.

Ine Gevers, Victor De Marez, Luna De Bruyne, and
Walter Daelemans. 2025. WinoWhat: A Parallel
Corpus of Paraphrased WinoGrande Sentences with
Common Sense Categorization. In Proceedings of
the 29th Conference on Computational Natural Lan-
guage Learning, pages 68–80, Vienna, Austria. As-
sociation for Computational Linguistics.
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Richárd Farkas. 2018. SzegedKoref: A Hungarian
Coreference Corpus. In Proceedings of the Eleventh
International Conference on Language Resources
and Evaluation (LREC 2018), Miyazaki, Japan. Eu-
ropean Language Resources Association.

Juntao Yu, Michal Novák, Abdulrahman Aloraini,
Nafise Sadat Moosavi, Silviu Paun, Sameer Pradhan,
and Massimo Poesio. 2023. The Universal Anaphora
Scorer 2.0. In Proceedings of the 15th International
Conference on Computational Semantics, pages 183–
194, Nancy, France. Association for Computational
Linguistics.
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A CorefUD 1.3 Details

Ancient Greek PROIEL grc_proiel (Haug and Jøhndal, 2008)
Ancient Hebrew PTNK hbo_ptnk (Swanson et al., 2024)
Catalan AnCora ca_ancora (Taulé et al., 2008; Recasens and Martí, 2010)
Czech PCEDT cs_pcedt (Nedoluzhko et al., 2016)
Czech PDT cs_pdt (Hajič et al., 2020)
English GUM en_gum (Zeldes, 2017)
English LitBank en_litbank (Bamman et al., 2020)
English ParCorFull en_parcorfull (Lapshinova-Koltunski et al., 2018)
French ANCOR fr_ancor (Muzerelle et al., 2014)
French Democrat fr_democrat (Landragin, 2021)
German ParCorFull de_parcorfull (Lapshinova-Koltunski et al., 2018)
German PotsdamCC de_potsdam (Bourgonje and Stede, 2020)
Hindi HDTB hi_hdtb (Mujadia et al., 2016)
Hungarian KorKor hu_korkor (Vadász, 2022)
Hungarian SzegedKoref hu_szeged (Vincze et al., 2018)
Korean ECMT ko_ecmt (Nam et al., 2020)
Lithuanian LCC lt_lcc (Žitkus and Butkienė, 2018)
Norwegian Bokmål NARC no_bokmaalnarc (Mæhlum et al., 2022)
Norwegian Nynorsk NARC no_nynorsknarc (Mæhlum et al., 2022)
Old Church Slavonic PROIEL cu_proiel (Haug and Jøhndal, 2008)
Polish PCC pl_pcc (Ogrodniczuk et al., 2013, 2015)
Russian RuCor ru_rucor (Toldova et al., 2014)
Spanish AnCora es_ancora (Taulé et al., 2008; Recasens and Martí, 2010)
Turkish ITCC tr_itcc (Pamay and Eryiğit, 2018)

B CoNLL results by head UPOS

system NOUN PRON PROPN DET ADJ VERB ADV NUM

CorPipeEnsemble 71.78 71.67 78.11 52.58 47.92 37.36 32.03 37.40
CorPipeBestDev 71.07 71.13 77.69 49.22 48.35 36.62 27.62 38.22
CorPipeSingle 70.96 70.47 77.28 53.01 44.69 35.45 31.96 38.76
Stanza 62.55 64.24 70.94 41.78 32.77 21.73 21.89 29.58
LLM-GLaRef-CRAC25 58.81 61.23 64.30 41.83 29.26 23.08 20.90 34.52
LLM-NUST-FewShot 58.01 59.21 69.88 32.79 34.39 14.39 20.59 26.36
GLaRef-Propp 56.44 57.99 63.20 36.10 28.43 17.88 20.26 21.56
LLM-PUXCRAC2025 54.71 56.22 64.51 36.55 27.53 15.36 17.86 25.76
LLM-UWB 57.19 55.95 64.72 36.83 29.57 22.30 23.53 26.25
BASELINE-GZ 50.74 58.46 57.21 37.24 25.85 14.15 18.15 23.11
BASELINE 48.44 52.03 54.96 36.75 24.04 13.44 16.98 22.81

Table 10: CoNLL F1 score (head-match) evaluated only on entities with heads of a given UPOS. In both the gold
and prediction files we deleted some entities before running the evaluation. We kept only entities with at least one
mention with a given head UPOS (universal part of speech tag). For the purpose of this analysis, if the head node
had deprel=flat children, their UPOS tags were considered as well, so for example in “Mr./NOUN Brown/PROPN”
both NOUN and PROPN were taken as head UPOS, so the entity with this mention will be reported in both columns
NOUN and PROPN. Otherwise, the CoNLL F1 scores are the same as in the primary metric, i.e. an unweighted
average over all datasets, head-match, without singletons. Note that when distinguishing entities into events and
nominal entities, the VERB column can be considered as an approximation of the performance on events. One of
the limitations of this approach is that copula is not treated as head in the Universal Dependencies, so, e.g., phrase
She is nice is not considered for the VERB column, but for the ADJ column (head of the phrase is nice).
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system NOUN PRON PROPN DET ADJ VERB ADV NUM

CorPipeEnsemble 63.91 61.69 64.74 53.28 51.12 50.58 50.81 50.46
CorPipeBestDev 62.42 60.85 63.57 52.51 49.91 48.72 49.33 49.00
CorPipeSingle 62.91 60.69 64.05 52.66 49.98 49.66 49.92 49.72
Stanza 54.67 54.66 56.77 44.31 42.51 41.37 42.31 41.78
LLM-GLaRef-CRAC25 50.80 51.80 52.12 41.98 39.11 38.75 39.08 38.81
LLM-NUST-FewShot 52.16 52.84 54.26 42.09 40.05 39.47 40.28 39.96
GLaRef-Propp 47.57 48.85 49.46 36.41 33.83 33.37 34.09 33.58
LLM-PUXCRAC2025 47.37 46.07 49.09 34.88 33.11 31.91 32.71 32.48
LLM-UWB 51.82 47.99 53.14 40.23 37.45 36.91 37.44 36.99
BASELINE-GZ 42.44 49.49 45.96 33.76 31.16 30.43 31.05 30.61
BASELINE 40.99 42.45 44.50 31.94 29.42 28.58 29.17 28.80

Table 11: CoNLL F1 score (head-match) evaluated only on mentions with heads of a given UPOS. In both the gold
and prediction files we deleted some mentions before running the evaluation. We kept only mentions with a given
head UPOS (again considering also deprel=flat children). These results may be a bit misleading because e.g. the
PRON column does not consider all pronominal coreference, but only pronoun-to-pronoun coreference. An entity
with one pronoun and one noun mention is excluded from this table (because it becomes a singleton after deleting
noun or pronoun mentions and singletons are excluded from the evaluation in this table).

C Statistics of the submitted systems on concatenation of all test sets

The systems are sorted alphabetically in tables in this section.

entities distribution of lengths

system total per 1k length 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%]

gold 39,576 108 509 2.1 67.4 17.3 5.9 2.8 6.6
BASELINE 10,591 29 347 4.2 0.0 55.8 17.6 7.8 18.9
BASELINE-GZ 10,977 30 354 4.2 0.0 55.5 17.6 7.8 19.2
CorPipeBestDev 40,392 111 248 2.1 66.6 17.7 6.2 2.8 6.6
CorPipeEnsemble 40,615 111 461 2.0 66.5 17.8 6.3 2.9 6.5
CorPipeSingle 40,377 111 362 2.1 66.6 17.7 6.2 3.0 6.6
GLaRef-Propp 40,481 111 563 1.9 75.0 12.4 4.6 2.3 5.7
LLM-GLaRef-CRAC25 39,664 109 280 1.9 70.6 15.1 5.6 2.7 6.0
LLM-NUST-FewShot 35,703 98 393 2.0 71.1 13.5 5.5 2.8 7.1
LLM-PUXCRAC2025 19,896 55 545 2.9 44.3 29.4 10.1 4.8 11.5
LLM-UWB 35,542 97 317 1.9 70.0 15.6 5.6 2.8 6.0
Stanza 38,464 105 523 2.0 67.8 17.4 5.9 2.8 6.2

Table 12: Statistics on coreference entities. The total number of entities and the average number of entities per
1000 tokens in the running text. The maximum and average entity “length”, i.e., the number of mentions in the
entity. Distribution of entity lengths (singletons have length = 1). The two baselines and LLM-PUXCRAC2025
heavily undergenerate (i.e. predict less entities than in the gold data) and the baselines also predict on average longer
entities (i.e. with more mentions) than in the gold data. The remaining systems have the statistics similar to the gold
data, (although the CorPipe* systems and GLaRef-Propp slightly overgenerate, while LLM-NUST-FewShot and
LLM-UWB undergenerate).
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non-singleton mentions distribution of lengths

system total per 1k length 0 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%] [%]

gold 55,333 152 100 2.5 9.8 50.1 19.1 7.0 3.3 10.8
BASELINE 44,110 121 27 1.9 10.0 54.9 18.8 6.3 2.6 7.3
BASELINE-GZ 45,989 126 27 1.9 11.4 54.2 18.5 6.2 2.6 7.1
CorPipeBestDev 56,020 154 149 2.4 9.6 51.0 19.1 6.9 3.1 10.3
CorPipeEnsemble 55,668 153 149 2.4 9.6 51.0 19.0 6.9 3.1 10.2
CorPipeSingle 56,026 154 140 2.5 9.6 50.9 19.1 6.9 3.1 10.4
GLaRef-Propp 48,362 133 51 1.9 9.9 55.3 19.2 6.4 2.6 6.6
LLM-GLaRef-CRAC25 49,311 135 96 2.3 10.7 52.1 18.6 6.4 3.0 9.2
LLM-NUST-FewShot 47,681 131 104 2.0 6.9 58.0 19.1 6.2 2.6 7.2
LLM-PUXCRAC2025 48,593 133 27 1.8 8.4 57.8 18.4 5.9 2.5 6.9
LLM-UWB 42,852 117 58 1.8 1.2 80.6 8.3 2.9 1.4 5.6
Stanza 50,811 139 100 2.3 9.3 52.8 18.9 6.6 2.9 9.6

Table 13: Statistics on non-singleton mentions. The total number of mentions and the average number of mentions
per 1000 words of running text. The maximum and average mention length, i.e., the number of nonempty nodes
(words) in the mention. Distribution of mention lengths (zeros have length = 0). Only the CorPipe* systems generate
a similar number of non-singleton mentions as in the gold data, all other systems generate less mentions. The
average length of mentions predicted by LLM-UWB is notably lower than in the gold data because LLM-UWB
predicted single-word mentions only in most datasets. All other systems have the distribution of mention lengths
similar to the gold data, although no system predicts long mentions (4 and 5+ words) more frequently than in the
gold data, (but CorPipe* systems are near to the gold distribution).

singleton mentions distribution of lengths

system total per 1k length 0 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%] [%]

gold 26,661 73 81 3.0 0.7 39.4 24.0 12.2 6.3 17.3
BASELINE 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BASELINE-GZ 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CorPipeBestDev 26,919 74 112 3.1 0.7 38.1 24.8 12.7 6.4 17.3
CorPipeEnsemble 27,014 74 112 3.0 0.7 38.5 25.0 12.5 6.2 17.0
CorPipeSingle 26,885 74 85 3.1 0.7 38.5 24.9 12.6 6.3 17.1
GLaRef-Propp 30,343 83 33 2.3 2.4 40.4 27.7 13.0 6.1 10.5
LLM-GLaRef-CRAC25 28,021 77 80 2.9 0.9 40.5 25.1 12.2 5.8 15.5
LLM-NUST-FewShot 25,379 70 63 2.8 0.2 41.8 24.9 12.0 5.9 15.3
LLM-PUXCRAC2025 8,807 24 17 2.0 0.4 52.5 23.8 11.4 4.1 7.8
LLM-UWB 24,889 68 86 1.7 0.0 78.2 10.0 4.3 2.1 5.4
Stanza 26,060 71 100 2.9 1.4 40.2 24.5 11.8 6.1 16.0

Table 14: Statistics on singleton mentions. See the caption of Table 13 for details. The two baseline systems do
not attempt to predict singletons at all. LLM-PUXCRAC2025 heavily undergenerates singletons. GLaRef-Propp
overgenerates singletons (including zeros), but note that singletons are not annotated in all the (gold) datasets.
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mention type [%] distribution of head UPOS [%]

system w/empty w/gap non-tree NOUN PRON PROPN DET ADJ VERB ADV NUM _ other

gold 11.0 0.7 1.4 38.6 31.5 17.7 4.2 1.3 1.9 1.4 0.5 2.1 0.8
BASELINE 10.5 0.0 1.4 35.4 26.9 18.7 4.8 1.1 0.9 1.2 0.4 10.0 0.6
BASELINE-GZ 12.0 0.0 1.5 35.1 34.7 18.5 4.7 1.1 0.9 1.5 0.4 2.5 0.8
CorPipeBestDev 10.6 0.0 1.9 39.0 23.7 17.6 4.3 1.2 1.8 1.4 0.5 9.6 0.8
CorPipeEnsemble 10.6 0.0 1.8 39.0 23.8 17.7 4.3 1.2 1.7 1.4 0.5 9.6 0.8
CorPipeSingle 10.5 0.0 1.9 39.1 23.7 17.6 4.3 1.2 1.7 1.4 0.5 9.6 0.8
GLaRef-Propp 9.9 0.0 1.4 35.5 26.9 18.4 4.7 1.1 0.8 1.4 0.4 9.9 0.9
LLM-GLaRef-CRAC25 11.4 0.0 1.8 37.5 24.7 17.0 4.7 1.3 1.4 1.4 0.5 10.7 1.0
LLM-NUST-FewShot 7.1 0.0 1.3 39.4 25.9 18.6 3.5 1.2 1.5 1.5 0.5 6.9 1.1
LLM-PUXCRAC2025 8.9 0.0 1.4 37.2 25.7 18.7 4.1 1.3 2.0 1.3 0.5 8.4 0.8
LLM-UWB 1.2 0.0 0.8 42.9 24.6 20.9 4.8 1.3 1.1 1.7 0.5 1.2 1.0
Stanza 10.0 0.0 1.4 39.0 24.0 18.8 4.1 1.1 1.1 1.4 0.4 9.3 0.8

Table 15: Detailed statistics on non-singleton mentions. The left part of the table shows the percentage of: mentions
with at least one empty node (w/empty); mentions with at least one gap, i.e. discontinuous mentions (w/gap); and
non-treelet mentions, i.e. mentions not forming a connected subgraph (catena) in the dependency tree (non-tree).
Note that these three types of mentions may be overlapping. We can see that none of the systems attempts to
predict discontinuous mentions. LLM-UWB has a notably lower percentage (0.8%) of non-treelet mention spans,
but this is simply explained by its higher percentage (80%) of single-word mentions. The right part of the table
shows the distribution of mentions based on the universal part-of-speech tag (UPOS) of the head word. Note that
this distribution has to be interpreted with the total number of non-singleton mentions predicted (as reported in
Table 13) in mind. For example, 34.7% of non-singleton mentions predicted by BASELINE-GZ are pronominal
(head=PRON), while there are only 31.5% of pronominal non-singleton mentions in the gold data. However,
BASELINE-GZ predicts actually less pronominal non-singleton mentions (45,989× 34.7% ≈ 15,958) than in the
gold data (55,333 × 31.5% ≈ 17,430). Note that the same word may be assigned a different UPOS tag in the
predicted and gold data (in case of empty nodes or if the gold data includes manual annotation). The empty UPOS
tag (_) is present only in the empty nodes and none of the systems attempts to predict the actual UPOS tag of empty
nodes (they all keep the empty tag from the baseline predictor of empty nodes, although about 78% of the empty
nodes in the gold devset are pronouns).
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D Evolution of CodaLab Submissions
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Figure 3: Evolution of CodaLab Submissions in the evaluation phase. The submissions to the LLM and Uncon-
strained track are shown by using the dashed and solid lines, respectively. For clarity, all submissions of the ÚFAL
CorPipe team are represented by the scores of CorPipeEnsemble.
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Your scientists were so preoccupied with whether
they could, they didn’t stop to think if they should.1

Abstract

We present the submissions of our team to the
Unconstrained and LLM tracks of the Compu-
tational Models of Reference, Anaphora and
Coreference (CRAC2025) shared task, where
we ended respectively in the fifth and the first
place, but nevertheless with similar scores: av-
erage CoNLL-F1 scores of 61.57 and 62.96 on
the test set, but with very large differences in
computational cost. Indeed, the classical pair-
wise resolution system submitted to the Uncon-
strained track obtained similar performance but
with less than 10% of the computational cost.
Reflecting on this fact, we point out problems
that we ran into using generative AI to perform
coreference resolution. We explain how the
framework of text generation stands in the way
of a reliable text-global coreference represen-
tation. Nonetheless, we realize there are many
potential improvements of our LLM-system; we
discuss them at the end of this article.

1 Coreference Resolution

Coreference resolution, the task of identifying and
grouping textual linguistic expressions (mentions)
that refer to the same entity, has been studied since
the 1970s, beginning with rule-based systems for
pronouns (Winograd, 1972; Hirst, 1981). The Mes-
sage Understanding Conference (MUC) initiated a
standardised framework for a coreference resolu-
tion shared task with the MUC-6 challenge (Gr-
ishman and Sundheim, 1995). Data-driven ma-
chine learning methods appeared with the avail-
ability of annotated corpora, initially in English.
Subsequently, detection systems using statistical
classifiers and pairs of mentions were developed
(Soon et al., 2001), then mention-ranking systems

1Dr. Ian Malcolm - Jurassic Park (dir. S. Spielberg, 1993).

like Denis and Baldridge (2008), usually in two
stages: mention detection then coreference resolu-
tion. End-to-end global models later emerged and
were evaluated in the CoNLL shared tasks (Prad-
han et al., 2011, 2012). The arrival of deep neural
models marked a turning point for the coreference
resolution with models often inspired by Lee et al.
(2017) later being replaced by BERT-based models
(Joshi et al., 2019) and encoder-decoder architec-
tures (Raffel et al., 2020), all contributing to im-
provements on benchmark datasets (Porada et al.,
2024). In recent years, solutions based on seq2seq
models (Zhang et al., 2023) and generative LLMs
(Zhu et al., 2025) have also been proposed. These
have been praised for their performance, while also
revealing limitations (Gan et al., 2024); prompting
reflection on the relevance of using such approaches
for coreference resolution.

2 CRAC: Task Description and Corpora

The CRAC shared task 2025 is part of a series of
annual challenges since 20162.
In 2024, the detection of zero mentions was

added to the task3 as were 4 new datasets (ancient
Greek, Old Church Slavonic, Ancient Hebrew and
English litBank) (Novák et al., 2024). CorPipe 24
(Straka, 2024), the winning entry in 2024, used a
pretrained language encoder model with two vari-
ants: a two stages model (mentions detection then
coreference resolution) and a single stage model.
Since 2025, the task corpus is based on CorefUD

1.3. (Novák et al., 2025) and contains 22 datasets for
17 languages, including for the first time ANCOR
(Muzerelle et al., 2011), a French spoken language
corpus. In addition to the Unconstrained track, a
new LLM track was introduced this year, which

2https://corbon.nlp.ipipan.waw.pl/.
3With three possible starting points: coreference and zeros

from scratch, coreference from scratch, refine the baseline.
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focuses on using only large language models to
resolve coreference, via prompting, fine-tuning, or
in-context learning.
The Universal Anaphora corpus (which is the

source corpus for the CRAC task) brings together in-
dependently created corpora in different languages.
The different annotation schemes (when available)
indicate that the concept of coreference can in-
clude various phenomena depending on each cor-
pus. Indeed, some corpora contain annotations for
all the referring expressions, while some others in-
clude selected expressions only, such as the English-
LitBank corpus, which is annotated in coreferences
only for a subset of entity types (Bamman, 2020).
Despite efforts to standardise the format, some phe-
nomena are represented differently in several lan-
guages. For example, zero mentions are generally
represented by adding empty nodes to the UD trees,
such as for the Spanish Ancora (Taulé et al., 2008).
Yet, in the French Democrat corpus (Landragin,
2016), zero subjects are annotated on the verb4.

3 System Descriptions and Results

Our team participated in both the Unconstrained
and the LLM tracks submitting results for two en-
tirely different systems. In this section, we describe
the two approaches.

3.1 Unconstrained: Mention-Pair System
3.1.1 Architecture
The baseline system used in the Unconstrained track
is a mention-pair based multi-stage coreference res-
olution system adapted from the existing Propp
processing pipeline.5
As a first step, it extracts contextualized token

embeddings using a frozen multilingual pretrained
transformer encoder (mt5-xl6), applying overlap-
ping sliding windows to capture maximum context
and averaging embeddings across overlaps.
Mention spans are identified using stacked

BiLSTM-CRF models trained to predict nested
BIOES tags (Ratinov and Roth, 2009) at the sen-
tence level. A separate BiLSTM model is used to
identify head tokens for zero mentions.
Mentions are encoded using either the head to-

ken (for zero mentions) or the average of the first
and last token embeddings (for multi-token spans).
Mention-pair representations are the concatenation

4A choice partly motivated by the annotation tool.
5https://github.com/lattice-8094/propp
6https://huggingface.co/google/mt5-xl

of the embeddings of two mentions with a rich set
of linguistic and positional features, and are scored
using a feedforward neural network.
To reduce complexity, the number of antecedent

candidates is limited to 80 per mention. Clus-
ters are formed using a highest-ranked-antecedent
strategy and refined via transitive closure. Global
decisions are improved through leveraging local
high-confidence non-coreference links to avoid er-
roneous later merges.

3.1.2 Training and Computational Resources
Training our unconstrained system involves three
main modules: mention detection, zero mention
head detection, and coreference resolution. All
components rely on word-level embeddings gen-
erated by the frozen encoder.7

• Embedding Stage. We use the mt5-xlmodel
to extract contextualized embeddings for all to-
kens in the training and development datasets.
The embedding model alone requires approx-
imately 7.6�GiB of GPU memory. Process-
ing all 12,187 documents (training + minidev)
takes 55 minutes8.

• Mention Detection Stage. The mention de-
tection module is trained separately for each
nesting level using the precomputed embed-
dings. The best models were obtained at epoch
23 (~4h46) for nested level 0 and epoch 21
(~4h32) for nested level 1, with a peak mem-
ory usage of 3.8�GiB.

• Zero Mention Head Detection. Trained simi-
larly to the mention detection module, the best
model was obtained after 24 epochs (~2h36),
with a peak memory usage of 1.7�GiB.

• Coreference Resolution. The coreference
resolution module is trained on all mention
pairs using a batch size of 16,000 pairs per
batch. The best model was obtained after 25
epochs (~3h57), with a peak memory usage of
1.8�GiB.

In the best-case scenario, the different modules
are trained in parallel, so the total training time for
the entire pipeline corresponds to the embedding

7More details about hyperparameters used for training each
components can be found in the Appendix A.

8All experiments for the unconstrained track are performed
on a single 48�GiB Nvidia RTX 6000 Ada Generation GPU.
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time plus the duration of the longest individual mod-
ule, resulting in a total of under 6 hours. Due to the
size of the pretrained model used, the embedding
step remains the most memory-intensive part of the
pipeline and ultimately determines the minimum
required GPU size (~8�GiB in our case).
Inference on the test set takes approximately 16

minutes, with peak GPU memory usage of 7.5�GiB.
As with training, the embedding remains the main
bottleneck, meaning that coreference resolution
with this pipeline can be performed on any GPU
capable of holding the embedding model.

3.1.3 Unconstrained Track Results

Despite its relatively simple design, our system
achieves substantial improvements over the CRAC-
2025 provided baseline (Table 1). On average, it
yields a 5.56-point absolute gain in CoNLL F1-
score across the test corpora. These gains are consis-
tent across most languages, with particularly strong
improvements observed on lower-resource corpora
such as grc_proiel (+22.8), hbo_ptnk (+27.8), and
cu_proiel (+12.8). This demonstrates the system’s
robustness and its capacity to generalize effectively
across diverse linguistic settings.

Corpus CRAC-coref GLaRef
ca_ancora 68.01 68.06
cs_pcedt 56.94 61.68
cs_pdt 62.96 66.59
de_potsdamcc 55.70 61.18
en_gum 61.71 61.86
es_ancora 70.52 69.09
fr_democrat 54.99 66.13
hu_szegedkoref 54.54 60.08
lt_lcc 65.35 57.60
pl_pcc 66.55 67.98
ru_rucor 67.59 71.45
hu_korkor 43.17 50.87
no_bokmaalnarc 62.45 67.09
no_nynorsknarc 63.00 66.28
tr_itcc 45.92 44.28
cu_proiel 26.33 39.10
en_litbank 65.96 69.96
grc_proiel 28.54 51.34
hbo_ptnk 31.04 58.80
fr_ancor 63.77 65.11
hi_hdt 66.85 69.51
ko_ecmt 50.32 60.57
Average 56.01 61.57

Table 1: Test results for the Unconstrained track com-
pared to the provided baseline (CRAC-coref).

Our system, adapted from the Propp architecture,
follows a modular pipeline in which each stage de-
pends on the previous one. This design introduces
a key limitation: error propagation. The mention
detection module plays a critical role, as errors at
this stage directly affect downstream components
such as mention pairing and clustering.
A notable challenge arises in datasets where sin-

gleton mentions (i.e., mentions not involved in any
coreference chain) are not annotated. In such cases,
the mention detector is trained only on spans that
are part of coreference chains, resulting in an in-
complete learning signal. This weakens its abil-
ity to identify valid mentions in general, particu-
larly when the coreference resolution component
depends entirely on the output of this detector.
This problem is further compounded by incon-

sistent annotation guidelines across datasets. As
mentioned in Section 2, some corpora provide ex-
haustivemention annotations, while others aremore
selective. Such inconsistencies make it difficult
for the system to generalize across languages and
domains, and can lead to performance drops on
datasets with different annotation guidelines.

3.2 LLM Track: Fine-tuning Gemma 3

For the LLM track, we developed two models based
on fine-tuning of the Gemma-3-12B-it model us-
ing quantization and one single LoRA (Low-Rank
Adaptation) (Biderman et al., 2024) adapter for all
corpora. We proceeded to peft (parameter-efficient
fine-tuning) with 4-bit NormalFloat quantization
using QLora (Dettmers et al., 2024). The choice for
the Gemma model was motivated by participation
of members of our team in the shared task for Multi-
lingual Grammatical Error Correction (MultiGEC-
2025) (Masciolini et al., 2025), where they experi-
enced particular problems with Llama 3 for under-
resourced languages, in particular Icelandic and
Slovene (Seminck et al., 2025). The task was won
by a system build on Gemma 2 (Staruch, 2025),
which is known to be a reliable multilingual model.
Therefore, we decided to work with Gemmamodels
for the current shared task.
We used the text2text-coref tool9 provided by

the CRAC organizers to transform the CoNLL
data into a plain text format with in-text annota-
tions and also to transform the system’s output
in plain-text back to CoNLL format. We pro-
ceeded to two distinct fine-tunings: a context-

9https://github.com/ondfa/text2text-coref
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free model and a context-aware model. Our sys-
tems can be found on https://github.com/
lattice-8094/GLaRef-CRAC25-LLM-Track.

3.2.1 Context-free Model
This model has the simplest design imaginable for
coreference resolution using LLMs. We model the
problem as just an annotation of coreference of
the text: we give the whole text unannotated as an
input, and the gold annotated text in the plain-text
format as an output. The text is treated as a whole
and there is no modelling of context. The prompt
is given in (1). We experimented with different
prompts, also leveraging ChatGPT-4o to enhance
the prompt and give detailed instructions of the
annotation schema. But in preliminary experiments,
it turned out that a shorter prompt led to better
performances and that the annotation schema can
be learned implicitly during the fine-tuning of the
model. Therefore, we kept a small prompt that is
language agnostic.

(1) You are a linguist, expert in anaphora and
coreference resolution. You have to anno-
tate in the text which nouns, pronouns and
other linguistic expressions refer to the same
entity. Do only insert annotations. Do not
insert extra linguistic material, nor punctu-
ation markers and do not delete elements
from the input texts.

Gemma 3 models can take up to 128K input tokens,
so there is theoretically no problem of input length.
Our model was trained for 10 epochs, using batch

size of one, for bigger batch sizes, the code threw
an out of memory error. The training lasted about
3 days on two Nvidia RTX 6000 Ada Generation
GPUs, featuring each 48 GB of memory capacity.
In Table 2, we can see that the results differ sub-

stantially across corpora. Whereas for some lan-
guages we observe scores above 70 points, for oth-
ers the system’s performance is poor. The main
reason for this is the length of the texts per corpus.
Despite the promise of handling up to 128K tokens
of input, we soon realized that Gemma 3 was not
capable of handling long texts properly, at least for
this task, but it has been demonstrated for other
tasks as well that output tends to degrade for longer
texts, even if the maximum input length is respected
(Levy et al., 2024; Liu et al., 2024). The system
diverges from the original text when it is too long,
for example by producing repetitive text (cycles), a
well known problem of generative models (Fu et al.,

2021; Ildiz et al., 2024). When the original text is
not present anymore, it is impossible to gain points
on in-text coreference resolution annotation. But
what exactly a long text is depends on the language
and the model’s knowledge of the language. That
has to do with the system’s tokenizer. Tokens of
under-resourced languages tend to be smaller than
the ones of well-represented ones. This problem
led us to the development of a second model.

3.2.2 Context-aware Model
The second fine-tuning splits the data into chunks
of 8 sentences at a time. In the prompt, the most
recent context (500 characters) that the model has
already annotated is given, in order to preserve the
coreference chains that were found earlier in the
text.
If the chunk of sentences is the beginning of the

text, the previous context is empty. In Example (2),
we can see that the prompt is almost the same as
the one of the Context-free Model.

(2) You are a linguist, expert in anaphora
and coreference resolution. Based on the
previous context, you have to annotate in
the new sentence which nouns, pronouns
and other linguistic expressions refer to the
same entity.
—————————————————
Previous context: {gold_previous_context}
—————————————————
Do only insert annotations. Do not insert
extra linguistic material, nor punctuation
markers and do not delete elements from
the input texts.

Before deciding to train a model with this context
size, we experimented by giving it the entire context
annotated thus far. It led to a disastrously bad result.
Inspecting manually the output, it seems that the
LLM does not ‘understand’ prompts that are too
long. If there is already a long context that has been
annotated, the LLM can no more make sense even
of the task. We thus strictly restrained the given
context to 500 characters (we choose characters in
order to keep a similar context length across dif-
ferent languages in the corpora as token length is
highly variable).
This model was trained on the same hardware

as the Context-free model, but only on 3 epochs
(mostly motivated by limited time and an increased
number of training examples dues to cutting up long
texts into chunks of 8 sentences). Training lasted

122



about two days.
First, we tested the context-aware model by pre-

processing the development and test datasets the
sameway as the training data (chunks of 8 sentences
and a context of 500 characters). Again, the results
can be found in Table 2.
What we first observe is that there are some

‘FAIL’ results. There are two types of FAIL:

(a) The system cannot predict the corpus due to
‘Torch Dynamo Hit Recompile Limit’ Errors.

(b) The system has produced output that is incom-
patible with the text2text-coref toolkit, which
prevents it from producing a CoNLL file from
a plain-text output of the model.

The first problem is caused by the on the fly con-
struction of data to predict, which leads to recom-
pilation of the NN graph. As every chunk is ac-
companied by the most recent annotated context,
the model has to base each prompt on its previous
output. This leads to prediction data that is unstable
and incompatible with the Torch library (or at least
disfavored by it). Even though we found after the
deadline of this shared task that there is a parameter
that can be changed to enlarge the capacity of the
prompt cache (which would increase the tolerance
of the system to changing the prompt), it would
have slowed down the system even more, meaning
that prediction times would even be higher than the
1,5 days it takes the system already to predict the
test set. Another option to solve this problem in
the future could be to create fixed-sized prompts at
the subword level, using pruning or padding when
necessary, to avoid recompilation.
The second problem can undoubtedly be solved

by working on the transformation scripts. We
solved a small part by searching for and deleting in-
valid hash-tag sequences. For example, in en_gum,
the model often generated sequences of “##”, which
causes errors when executing the text2text-coref
tool. Unfortunately, we did not have enough time
to address all the text2text-coref related issues and
hence, there are some corpora that we did not man-
age to predict. But in the end, our context-aware
approach seems to solve the problem of long texts.
The performance increases significantly for the ma-
jority corpora that we managed to process.
For some corpora on which the context-free

model obtained good results, the context-aware
model did not manage to improve the scores (for
example ca_ancora or es_ancora). We noticed that

these corpora feature rather short texts and our con-
clusion was that the 500 characters context given
in the prompt might be too short. We therefore
wanted to develop a new model that had a larger
context. We also wanted to address the problem of
the torch dynamo recompilation limit by making
less requests by enlarging the chunks.
As time fell short, we decided to use the context-

aware model trained on contexts of 500 characters
and chunks of 8 sentences but with different predic-
tion parameters without retraining. We predicted
chunks of 10 sentences giving 700 characters of
context. The results can be found in Table 2.
We see that for most corpora, this run yielded the

best results and we got a number of FAILs that is
much lower. However, there are corpora perform-
ing best in the 8sent_500char setting and even two
corpora where the context-free model is the best.
This indicates that the trade-off between smaller
texts to predict (thanks to chunking) and having
only access to the most recent context is different
for each corpus, depending on the LLMs knowl-
edge of the language, and the size of the texts. It
seems that each corpus would have its own optimal
parameters.
Our final submission, combined best scores of all

the LLM-predictions, leading to an average score
of 62.96.

4 Discussion

Even though our LLM-approach yielded the highest
scores in the LLM track (with only one point ahead
of the second best submission), performances of
systems in the unconstrained track cannot be ig-
nored. Indeed, when we just compare our two sub-
missions (mention-pair and Gemma 3 fine-tuning),
we have to conclude that performance is very sim-
ilar. And that is without taking into account the
fact that the winner of the unconstrained track, the
corpipe-ensemble system, largely encompasses our
endeavours with an average score of 75.84. So, an
important question that needs to be asked is: is
it worth the trouble to use LLMs for coreference
resolution? After all, their use is very costly in com-
putation resources. For example, the training time
for our two submissions differs significantly: only 6
hours for the classic model versus 2 or 3 days for the
LLM-based system. The gap is even more striking
at inference time, where the unconstrained system
requires approximately 16 minutes to process the
test-set, compared to about a day and half for the
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Corpus C-F 8s_500c 10s_700c
ca_ancora 71.83 70.44 73.45
cs_pcedt 53.39 64.47 65.12
cs_pdt 70.13 FAIL-a 71.33
cu_proiel 8.92 57.22 58.25
de_potsdamcc 58.75 FAIL-b 59.60
en_gum 44.34 FAIL-a 58.73
en_litbank 44.00 64.70 69.01
es_ancora 74.43 71.72 72.61
fr_ancor 14.40 64.73 66.74
fr_democrat 16.85 60.43 FAIL-a
grc_proiel 13.68 65.75 65.16
hi_hdtb 56.36 51.64 52.74
hbo_ptnk 1.00 FAIL-b 43.96
hu_korkor 46.39 52.53 52.46
hu_szegedkoref 56.42 56.41 59.82
ko_ecmt 60.52 61.09 63.04
lt_lcc 56.38 62.55 62.28
no_bokmaalnarc 57.40 64.14 64.74
no_nynorsknarc 61.63 61.60 FAIL-a
pl_pcc 70.81 72.21 72.55
ru_rucor 65.40 68.26 68.79
tr_itcc 6.08 51.92 56.23
Average 47.85 58.91 62.67

Table 2: CoNLL F1-scores of the LLM track on the test
set. C-F: Context-free. Xs_Yc: X sentences, Y char-
acters. FAIL-a: Torch Dynamo Recompilation Limit
Error. FAIL-b: Text2text-coref Tool Error.

LLM-based approach. This is a substantial differ-
ence for a performance that remains comparable to
that of a traditional mention-pair system.
There is a lot of room for improvement in the de-

sign of our context-aware model. In the first place
by optimizing the context size, the length of the
chunks, pre-treatment of prompts to avoid recompi-
lation problems, and the machine learning parame-
ters —which would undoubtedly allow us to gain
a number of extra points in performance— and in
the second place by design modifications which we
will discuss broadly in Section 5. But according
to us, one of the core problems of using LLMs for
coreference resolution is that it asks to transform
coreference resolution into a text generation task. In
the remainder of this section we will explain what
are the fundamental problems of doing so.
When used for coreference resolution in the plain-

text format, LLMs are optimized to perform anno-
tation. So in fact, our context-aware model handles
coreference as an annotation problem, that should
be handled as a text generation problem. Although

using LLMs for annotation tasks is commonly done
(Tan et al., 2024), conceptually it has important
consequences when dealing with coreference.
Firstly, it defines coreference resolution neces-

sarily as an incremental task: chunks are annotated
in the order of the text and this leads inevitably in
making only local decisions. Even if, from a cog-
nitive point of view of coreference resolution, it
seems reasonable to treat coreference as incremen-
tal (Seminck, 2018), many coreference systems are
in fact not incremental, for example our pair-wise
system performs resolution based on highest scor-
ing mention-pair clustering, instead of incremental
clustering in the order of the text.
As a result, it takes away the abstract representa-

tion of coreference chains, by providing only local
annotations on word levels in text. The text-global
modeling of coreference is at best only implicitly
present, but in the setting of our context-aware
model, more likely, absent. This led to annoying
mistakes in long text. What can happen is that when
a context is presented with entities numbered for ex-
ample ‘51’, ‘67’ and ‘98’, the system will use lower
numbers, starting again from ‘1’ to annotate new
coreference chains. Although we could imagine
simple ways to prevent this behaviour (for example
by explicitly stating in the prompt that it is forbid-
den to restart numbering from ‘1’), it would be
interesting to think about a way to make the system
aware of the coreference annotation of the entire
text, without giving the entire annotated preceding
context.
Lastly, we would like to point out the problem

of transforming coreference resolution into a text
generation problem. The objects we have to deal
with are necessarily string variables and only string
variables. Of course, this could be seen as a general
problem for using generative AI for any scientific
problem. Coreference resolution is particularly im-
pacted by the previous problem: how to represent a
global and abstract presentation of the coreference
chains using only a single string variable?
Even though the learning power of LLMs is im-

pressive and one can try to insert abstract represen-
tations into the prompt to be handled, the way the
LLM treats this information is a black box. For
the LLM this information is part of the string, just
as both the original text and the text annotations:
there is no actual distinction between these things.
There is no guarantee that from the output, the orig-
inal text, readable annotations and abstract global
coreference chain annotations can be recovered. Of
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course, performance could be increased by enhanc-
ing the post-hoc scripts that parse and align the
original text with the LLM-output by foreseeing
more unwanted scenarios and creating patch-work
solutions for them. But it does not change the prob-
lem fundamentally, we still have no guarantee of
stability of our research objects.
Moreover, the larger the amount of additional

information we may want to inject, treat with the
LLM and then recover from the output, the lower
the chances we actually succeed, as the probabil-
ity of mixing up information increases. The LLM
framework puts us out of control of the objects we
want to calculate and manipulate. This is true for
many uses of LLMs, stretching far beyond the prob-
lem of coreference. But we have to reflect on the
question whether we can and want to accept it.

5 Future Work

Despite our conclusion that generative large lan-
guage models are not easy to use to model corefer-
ence, participating in the shared task has given us a
lot of ideas about how we could enhance our contri-
bution next year. Even though we are not convinced
that putting into practice these solutions would take
away our reservations about the unsuitedness of
text generation for coreference resolution, we are
confident that they will enable us to increase signif-
icantly our scores. We will discuss these ideas and
hope that we (or other teams and researchers) could
benefit from them when developing new systems.

5.1 Improving Modelling of Coreference

Currently, in the context-aware model, as texts are
split into chunks, the model never has access to the
entire representation of coreference, as it is only
implicitly present as the previously annotated most
recent context. We could try to enhance the model
by making it explicitly state all the clusters con-
structed so far and feed it as additional information
into the prompt. Then, after annotation, extract the
newly formed clusters and re-build the global coref-
erence annotation. We expect this to help against
restarting numbering coreference clusters from ‘1’,
but foresee the possibility that this representation
might be unstable across the text, as it could be
corrupted during text generation.
A second idea to improve the global represen-

tation of coreference resolution is to model a text
in the memory of a chat conversation where each
chunk is user-turn followed by a model’s response.

Although correctly memorizing very long conver-
sations is still a challenge for LLMs (Maharana
et al., 2024), we would like to test their abilities to
keep track of global coreference chains using the
memory of the chat conversation.

5.2 Task-Specific Loss Function

The fine-tuning we performed for the LLM track
currently relies on the standard cross-entropy loss
used in language modeling, as implemented in the
gemma-3-12b-it model. However, this loss func-
tion is not well aligned with the specific needs of
coreference resolution; while maintaining overall
textual fidelity is important, assigning correct coref-
erence identifiers is absolutely critical.
In standard text generation, two outputs such as

[e111] and [e112] are nearly indistinguishable
in terms of loss. The model is only minimally pe-
nalized for generating a slightly incorrect entity ID,
even though such mistakes can drastically impact
the coreference resolution.
One direction for future work would be to imple-

ment a task-specific loss function. After generating
a batch of annotated text, we could compute a batch-
level coreference evaluation metric (e.g. CoNLL
F1-score). Though technically challenging, it could
make LLM fine-tuning more sensitive to the actual
goals of coreference resolution.

5.3 Improving the Input Format

The current plain-text format provided by the
CRAC shared task uses a custom inline annotation
style to mark entity spans and coreference chains.
For example:

Down the|[e1 Rabbit-Hole|e1] Alice|[e2] was beginning to
get very tired of sitting by her|[e2],[e3 sister|e3] on the|[e4
bank|e4] , and of having nothing to do : once or twice
she|[e2] had peeped into the book her|[e2],[e3 sister|e3]
was reading

We propose exploring alternative tagging
schemes better suited to LLMs, such as formats
inspired by markup languages like HTML or XML.
These clearly mark span boundaries with readable,
nested tags, explicitly marking start and end of
each span (<entity_start> </entity_end>):

Down <e1>the Rabbit-Hole</e1> <e2>Alice</e2> was
beginning to get very tired of sitting by <e3><e2>her</e2>
sister</e3> on <e4>the bank</e4> , and of having nothing
to do : once or twice <e2>she</e2> had peeped into the
book <e3><e2>her</e2> sister</e3> was reading
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Such a structure might be easier to tokenize and
interpret by LLMs andmay lead to better generaliza-
tion and consistency in generation-based settings.
Adopting this alternative would require adapting
the conversion scripts from CoNLL-U to plain text,
and from LLM outputs back to CoNLL-U. We be-
lieve this modification could help bridge the gap
between coreference annotation conventions and
LLM-friendly input formats, potentially improving
model performance.
We could also try, together with the newly devel-

oped task-specific loss function, to fine-tune directly
on the CoNLL-U format. This would limit error
propagation caused by the transformation scripts.

5.4 LLM-based Pair-Wise Resolver
To limit the undesirable effects of text generation
(loss of control on our study objects), we could split
the coreference resolution task into sub-problems
and come back to a pair-wise resolution system us-
ing LLMs. We would first use an LLM for mention
detection, and then another for pair-wise classifi-
cation, where pairs of mentions are classified as
coreferent or not, fine-tuning the LLM to produce
a binary response.
While this system would undoubtedly be com-

putationally extremely heavy, as it asks for tens
of thousands of calls to the LLM in order to per-
form pair-wise resolution, it would be an interest-
ing experiment to see whether performance on the
mention-detection and the pair-wise resolution in-
creases with respect to classical systems, such as
our mention-pair system. According to the results,
we could also consider to replace a given module by
an LLM-based system. If the LLM results are high
but very costly computationally, we could also use
it only for the more difficult cases of resolution. The
current pair-wise system outputs confidence scores
for its calculations, we could use the LLM-based
system only for low confidence scores.

5.5 Student Training of LLM with Oracles
We only have access to gold data in order to fine-
tune the coreference resolution systems. But, the
incremental setting imposed by the LLM puts us
in a situation where error propagation can be an
issue. Therefore, we could want to teach the LLM
to resolve coreference based on its previous predic-
tions even if they contain errors. However, learning
to predict the gold annotation given what has al-
ready been predicted (the context) can actually be
detrimental. For example, if due to early errors,

two chains have seen their indices swapped in the
context, trying to predict the original gold indices
is actually incoherent. To remedy this, we would
need to relabel the current chunk to replace gold
tags, given what has already been predicted in the
context. This is computationally very expensive,
likely NP-hard, given that the coreference metrics
consider the annotation of the whole text. We con-
sider to train oracles to predict good relabeling of
the gold data at a reasonable cost, inspired by works
done in syntactic parsing where oracles are trained
to predict sequences of transitions of a system that
reconstruct a parse tree (Coavoux and Crabbé, 2016;
Shen et al., 2021).

6 Conclusion

We fine-tuned the Gemma-3-12B-it model to per-
form coreference resolution in the LLM track of the
CRAC shared task and ended first. We found that
our approach was adaptable to all the languages of
the shared task, but that the systems were compu-
tationally very costly, especially compared to our
pair-wise coreference resolution system submitted
in the Unconstrained track of the CRAC shared task.
Analyzing our results, we come to the conclusion
that it is not obvious use generative LLMs for coref-
erence resolution. Coreference resolution being
a global discourse phenomenon, it is difficult to
model it as a text generation task. Notwithstanding
this fundamental problem, our work can be seen as
one of the first attempts to fit the problem resolu-
tion task in the framework of LLMs and provides
a rich ground for reflection on multiple areas of
improvement for future work.
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A Unconstrained Track Model
Architecture and Hyperparameters

A.1 Mention Detection Model
A.1.1 Architecture
• Locked Dropout (0.5) applied to embeddings
for regularization.

• Projection Layer: Highway network mapping
1024→ 2048 dimensions.

• BiLSTM Layer: Single bidirectional LSTM
(256 hidden units per direction).

• Linear Layer: Maps 512-dimensional BiLSTM
outputs to BIOES label scores.

• CRF Layer: Enforces structured consistency in
predictions.

A.1.2 Training Parameters
• Data Splitting: 85%/15% train-validation split.

• Batch Size: 16 sentences per batch.

• Optimization: Adam optimizer (lr= 1.4×10−4,
weight decay = 10−5).

• Learning Rate Scheduling: ReduceLROn-
Plateau (factor = 0.5, patience = 2).

• Average Training Epochs: 22.

• Hardware: Trained on a single 48�GiB Nvidia
RTX 6000 Ada Generation GPU.

A.2 Coreference Resolution Model
A.2.1 Architecture
• Model Input: 2,063-dimensional vector, com-
posed of concatenated:

– CamemBERT embeddings: Maximum con-
text embeddings for both mentions (2 × 1,024
= 2,048 dimensions).

– Mention Features (15 dimensions):
∗ Mention length.
∗ Position of the mention’s start token in the
sentence.

∗ Dependency relation of the mention’s head
(one-hot encoded).

– Mention Pair Features (8 dimensions):
∗ Distance between mention IDs.
∗ Distance between start and end tokens of
mentions.

∗ Sentence and paragraph distance.
∗ Difference in nesting levels.
∗ Ratio of shared tokens between mentions.

∗ Exact text match (binary).
∗ Exact match of mention heads (binary).
∗ Match of syntactic heads (binary).

• Hidden Layers:

– Three fully connected layers.
– 1,900 hidden units per layer with ReLU activa-
tion.

– Dropout rate of 0.6 for regularization.

• Final Layer:

– Linear layer mapping from 1,900 dimensions
to a single scalar score.

– Output: Continuous value between 0 (not
coreferent) and 1 (coreferent).

A.3 Model Training
• Data Splitting: 85%/15% train-validation split.

• Batch Size: 16,000 mention-pairs per batch.

• Optimization: Adam optimizer (lr = 4× 10−4,
weight decay = 10−5).

• Antecedent Candidates: 80 maximum.

• Antecedent Candidates:

• Hardware: Trained on a single 48�GiB Nvidia
RTX 6000 Ada Generation GPU.
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Abstract

We present CorPipe 25, the winning entry
to the CRAC 2025 Shared Task on Multilin-
gual Coreference Resolution. This fourth it-
eration of the shared task introduces a new
LLM track alongside the original unconstrained
track, features reduced development and test
sets to lower computational requirements, and
includes additional datasets. CorPipe 25 rep-
resents a complete reimplementation of our
previous systems, migrating from TensorFlow
to PyTorch. Our system significantly outper-
forms all other submissions in both the LLM
and unconstrained tracks by a substantial mar-
gin of 8 percentage points. The source code
and trained models are publicly available at
https://github.com/ufal/crac2025-corpipe.

1 Introduction

Coreference resolution seeks to identify and clus-
ter multiple references to the same entity within
text. The CRAC 2025 Shared Task on Multilin-
gual Coreference Resolution (Novák et al., 2025a)
represents the fourth iteration of this shared task,
designed to advance research in multilingual coref-
erence resolution across diverse languages and do-
mains. Building upon the CorefUD 1.3 collection,
this year’s task introduces several notable changes:
a new LLM track that relies on large language mod-
els (LLMs) for coreference resolution, reduced de-
velopment and test sets (minidev and minitest) to
lower computational demands, and the inclusion of
additional datasets expanding language coverage.

As in the previous year, the submitted systems
must also predict the empty nodes, which repre-
sent elided elements that are not explicitly present
in the surface text but are necessary for corefer-
ence analysis. Empty nodes are especially impor-
tant in pro-drop languages (like Slavic and Ro-
mance languages), where pronouns can be dropped
from a sentence when they can be inferred, for
example according to verb morphology, as in the

Czech example “Řekl, že nepřijde”, translated as
“(He) said that (he) won’t come”.

CorPipe 25, our submission to the CRAC 2025
Shared Task, represents a complete reimplemen-
tation of our previous winning systems (Straka,
2024, 2023; Straka and Straková, 2022), transition-
ing from TensorFlow to PyTorch while preserving
the architecture that has proven successful. Our sys-
tem employs a three-stage pipeline approach: first
predicting empty nodes,1 then detecting mentions,
and finally performing coreference linking through
antecedent maximization on the identified spans.
As in previous CorPipe versions, mention detection
and coreference linking are trained jointly using a
shared pretrained encoder model, and all models
are fully multilingual, trained across all available
corpora.

Our contributions are as follows:
• We present the winning entry to the CRAC

2025 Shared Task, surpassing other partici-
pants in both tracks by a substantial margin of
8 percentage points.

• We provide a complete reimplementation of
CorPipe in PyTorch. The reimplementation
enables us to leverage more pretrained mul-
tilingual models, allowing us to perform an
evaluation of various models and providing in-
sights into their relative performance for coref-
erence resolution across diverse languages.

• We present performance comparisons between
TensorFlow and PyTorch implementations,
demonstrating the practical benefits of the mi-
gration.

• The CorPipe 25 source code is released at
https://github.com/ufal/crac2025-corpipe un-
der an open-source license. Three pretrained
multilingual models of different sizes are also
released, under the CC BY-NC-SA licence.

1Our empty node prediction system was provided to all
participants as a baseline implementation.
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2 Related Work

Neural Coreference Resolution Neural corefer-
ence resolution has been dominated by span-based
approaches since the seminal work of Lee et al.
(2017), who introduced an end-to-end neural model
that jointly performs mention detection and corefer-
ence resolution. This approach was further refined
by Lee et al. (2018) with coarse-to-fine inference,
significantly improving both efficiency and accu-
racy. Joshi et al. (2020) demonstrated substantial
improvements by incorporating SpanBERT (Joshi
et al., 2019), a pretrained model specifically de-
signed for span prediction tasks.

Alternative paradigms have emerged to ad-
dress the limitations of span-based methods. Wu
et al. (2020) formulated coreference as a question-
answering task, while Liu et al. (2022) introduced a
specialized autoregressive system and Bohnet et al.
(2023) employed a text-to-text paradigm. However,
all these architectures must evaluate the trained
model repeatedly during processing of a single sen-
tence.

Word-Level Coreference Resolution A signif-
icant departure from span-based approaches came
with Dobrovolskii (2021), who proposed word-
level coreference resolution, which represents men-
tions by their head-words only. The approach has
been extended by D’Oosterlinck et al. (2023) with
CAW-coref, which introduces conjunction-aware
handling to better manage complex mention struc-
tures. More recently, Liu et al. (2024) proposed
MSCAW-coref that aims to work in a multilingual
setting and accounts for singleton mentions. This
approach has been adopted by Stanza (Qi et al.,
2020), a widely-used Python natural language pro-
cessing toolkit.

Multilingual Coreference Resolution The
CRAC shared tasks on multilingual coreference
resolution (Žabokrtský et al., 2022, 2023; Novák
et al., 2024, 2025a) have been instrumental in ad-
vancing the field, providing standardized evalua-
tion framework, the CorefUD dataset (Novák et al.,
2025b), and a multilingual baseline (Pražák et al.,
2021).

Previous versions of CorPipe have participated
in all CRAC shared tasks, evolving from basic mul-
tilingual models (Straka and Straková, 2022) to
incorporating larger contexts (Straka, 2023) and
performing zero mention prediction from raw text
(Straka, 2024).
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Figure 1: The system architecture of the empty node
prediction baseline. Every ReLU activation is followed
by a dropout layer with a dropout rate of 50%.

3 Architecture

Our system is essentially a PyTorch reimplementa-
tion of CorPipe 24 (Straka, 2024).

Empty Nodes Baseline First, empty nodes are
predicted using a baseline system that was available
to all shared task participants. The architecture of
this system is illustrated in Figure 1.

Our approach for empty node prediction focuses
on generating the essential information required
for coreference evaluation: the word order posi-
tion (determined by which input word the empty
node follows), along with the dependency head and
dependency relation. We do not predict forms or
lemmas, even when available in training data. The
model operates non-autoregressively, predicting up
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Coreference Linking

Charles University is the oldest university in Czech Republic . It is ...

umT5-xl encoder
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Mention Detection
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Inference only: dynamic-programming decoding algorithm producing correctly balanced sequence of instructions

Figure 2: The CorPipe 25 model architecture.

to two empty nodes per input word, with each input
word serving as the potential dependency head.

The architecture processes tokenized input
through a XLM-RoBERTa-large (Conneau et al.,
2020), representing each word by its first subword
embedding. For each word, we generate two
empty node candidates: the first through a dense-
ReLU-dropout-dense module (768→2k→768
units), and the second by concatenating the first
candidate with the input word representation
and applying an analogous transformation. The
candidates are processed by three heads, each
following its own 2k-unit ReLU layer and dropout:
(1) binary classification for empty node existence,
(2) self-attention for word order position selection,
and (3) dependency relation classification using
the candidate representation concatenated with the
embedding of the most likely word preceding it.

Training employs a single multilingual model
with Adam optimizer (Kingma and Ba, 2015) for
20 epochs of 5 000 batches (64 sentences each).
The learning rate linearly increases to 1e-5 in the
first epoch and then decays to zero in the rest of

the training following cosine decay (Loshchilov
and Hutter, 2017). Sentences are sampled from all
empty node corpora, proportionally to the square
root of corpus size. Training required 19 hours on
a single L40 GPU with 48GB RAM.

The source code is released under the MPL
license at https://github.com/ufal/crac2025_empty_
nodes_baseline, together with the full set of
hyperparameters used. The trained model is
available under the CC BY-SA-NC license at https:
//www.kaggle.com/models/ufal-mff/crac2025_empty_

nodes_baseline/. Finally, the minidev and minitest
sets of the CRAC 2025 Shared Task with predicted
empty nodes are available to all participants.

Coreference Resolution Once the empty nodes
have been predicted, we employ coreference res-
olution system based on CorPipe 23 from Straka
(2023). The architectural overview is shown in Fig-
ure 2 and summarized below; detailed implementa-
tion specifics are available in the referenced work.

Our model processes documents sentence-by-
sentence. To maximize available context for each
sentence, we expand it with preceding tokens and
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Model Params
Batch
Size

Learning
Rate

Train
Time

mT5 base 264M 8 6e-4 4h
umT5 base 269M 8 6e-4 4h
mT5 large 538M 8 6e-4 9.5h
mT5 xl 1593M 6 5e-4 22.5h
umT5 xl 1605M 6 5e-4 22.5h
mT5 xxl 5393M 6 5e-4 33h
umT5 xxl 5417M 6 5e-4 33h

Table 1: Properties of mT5 encoder models used. The
training time is measured for 15 epochs 10k updates
each using a single A100 GPU, with the exception of
the xxl models, which are trained using a single H100
GPU.

at most 50 subsequent tokens, constrained by the
maximum segment length (512 or 2 560 tokens).
Input tokens first pass through a pretrained multi-
lingual encoder. Subsequently, we predict corefer-
ence mentions using an enhanced BIO encoding
scheme that handles potentially overlapping span
sets. Each identified mention is then encoded as a
concatenation of its boundary tokens (first and last),
and coreference links are established through a
self-attention mechanism that determines the most
probable antecedent for each mention (including
self-reference utilized by first entity mentions).

We employ different segment sizes during
training versus inference: training always uses
512-token segments, while inference leverages ex-
tended 2 560-token segments (with the exception
of two PROIEL corpora always using 512 tokens),
exploiting relative positional encoding capabilities
for improved long-range context modeling.

Training For the shared task submission, we
train 13 multilingual models based on umT5-
xl (Chung et al., 2023), differing only in random
initialization and whether we express corpus size
during sampling using sentences or words. The sen-
tences are sampled proportionally to the square root
of the corpus size; for ablations, we consider also
values of this sampling ratio different from 0.5.

Every model is trained for 15 epochs with 10k
batches each, with every batch consisting of 6 sen-
tences. The model is trained using the AdaFactor
optimizer (Shazeer and Stern, 2018). The learning
rate follows a warmup schedule: linear increase to
5e-4 during the initial 10% of training, followed by
a cosine decay (Loshchilov and Hutter, 2017) to 0.
The model trains for 22.5 hours on a single A100

System Head-
match

Partial-
match

Exact-
match

With Sin-
gletons

UNCONSTRAINED

CorPipeEnsemble 75.84
1

74.90
1

72.76
1

78.33
1

CorPipeBestDev 75.06
2

74.08
2

71.97
2

77.63
2

CorPipeSingle 74.75
3

73.74
3

71.53
3

77.43
3

Stanza 67.81
4

67.03
4

64.68
4

70.64
4

GLaRef-Propp 61.57
5

60.72
5

58.43
5

65.28
5

BASELINE-GZ 58.18
6

57.75
6

56.48
6

49.88
6

BASELINE 56.01
7

55.58
7

54.24
7

47.88
7

LLM

GLaRef-CRAC25 62.96
1

61.66
1

58.98
1

65.61
1

NUST-FewShot 61.74
2

61.14
2

56.34
2

63.44
2

PUXCRAC2025 60.09
3

59.68
3

55.22
3

54.77
4

UWB 59.84
4

59.55
4

38.81
4

62.77
3

Table 2: Official results of CRAC 2025 Shared Task on
the minitest set with various metrics in %.

GPU with 40GB RAM. For ablation experiments,
we also consider other umT5 and mT5 (Xue et al.,
2021) models, whose properties and corresponding
hyperparameters are summarized in Table 1.

For each model, we save checkpoints after every
epoch, obtaining a pool of 13 · 15 checkpoints.

4 Shared Task Results

In the shared task, teams were permitted to submit
up to three systems. We selected the following
configurations based on our checkpoint selection
strategy:

• CorPipeSingle, a single best-performing
checkpoint selected based on overall minidev
performance across all corpora;

• CorPipeBestDev, employing corpus-specific
optimal checkpoints selected individually
based on minidev performance for each cor-
pus from the pool of 13 · 15 checkpoints;

• CorPipeEnsemble, an ensemble of 5 best-
performing checkpoints based on overall
minidev performance across all corpora.

The first configuration CorPipeSingle corresponds
to practical deployment, where a single model han-
dles all corpora, while the others aim at maximizing
performance.

133



System Avg ca
cs

pced
cs
pdt cu de

pots
en
gum

en
litb es fr

anco
fr

demo grc hbo hi
hdtb

hu
kork

hu
szeg ko lt

no
bokm

no
nyno pl ru tr

UNCONSTRAINED

CorPipeEnsemble 75.8
1

82.9
1

77.1
1

80.7
1

65.5
1

73.0
1

76.1
1

81.8
1

84.5
1

76.3
1

71.8
1

74.5
1

69.8
1

77.7
1

68.6
1

71.0
1

69.9
1

77.2
1

78.2
1

76.3
1

80.2
1

84.2
3

71.2
2

CorPipeBestDev 75.1
2

82.0
3

76.3
2

80.4
2

62.8
3

72.6
3

75.9
2

81.3
2

83.8
3

75.9
2

69.9
3

74.3
3

68.3
2

77.5
2

68.3
2

70.5
2

69.3
2

76.0
2

77.1
2

74.0
2

79.9
2

84.8
1

70.4
3

CorPipeSingle 74.8
3

82.5
2

76.2
3

80.1
3

63.0
2

72.8
2

75.2
3

80.8
3

84.1
2

75.8
3

70.3
2

74.4
2

66.1
3

76.5
3

67.3
3

69.7
3

68.9
3

75.8
3

76.2
3

73.6
3

79.4
3

84.2
2

71.6
1

Stanza 67.8
4

79.5
4

72.7
4

75.1
4

40.8
4

67.3
4

69.0
4

74.8
4

80.4
4

67.5
4

62.5
5

54.9
4

62.1
4

74.2
4

60.0
4

64.6
4

67.7
4

72.8
4

72.4
4

71.7
4

73.0
4

80.8
4

47.8
5

GLaRef-Propp 61.6
5

68.1
6

61.7
6

66.6
6

39.1
5

61.2
5

61.9
5

70.0
5

69.1
7

65.1
5

66.1
4

51.3
5

58.8
5

69.5
5

50.9
5

60.1
5

60.6
6

57.6
7

67.1
5

66.3
5

68.0
6

71.5
5

44.3
7

BASELINE-GZ† 58.2
6

68.8
5

69.5
5

67.9
5

29.5
6

55.7
6

61.6
7

66.0
6

71.0
5

63.8
6

55.0
6

29.4
6

31.0
6

66.8
6

47.1
6

54.3
7

64.3
5

65.3
5

62.5
6

63.0
6

68.1
5

67.6
6

51.7
4

BASELINE† 56.0
7

68.0
7

56.9
7

63.0
7

26.3
7

55.7
6

61.7
6

66.0
6

70.5
6

63.8
6

55.0
6

28.5
7

31.0
6

66.8
6

43.2
7

54.5
6

50.3
7

65.3
5

62.5
6

63.0
6

66.5
7

67.6
6

45.9
6

LLM

GLaRef-CRAC25 63.0
1

73.5
2

65.1
1

71.3
1

58.2
2

59.6
2

58.7
4

69.0
4

74.4
1

66.7
2

60.4
2

65.8
1

44.0
3

56.4
4

52.5
1

59.8
3

63.0
3

62.5
3

64.7
4

61.6
4

72.5
1

68.8
3

56.2
2

NUST-FewShot 61.7
2

60.9
4

51.4
4

54.3
4

58.5
1

48.7
4

69.8
2

70.4
2

61.8
4

71.9
1

57.6
3

57.9
2

80.2
1

71.3
2

43.5
3

52.3
4

66.0
2

59.2
4

72.8
2

68.9
2

70.8
2

71.4
2

39.0
3

PUXCRAC2025 60.1
3

68.0
3

56.9
3

63.0
3

43.7
3

57.4
3

61.7
3

69.1
3

70.5
3

63.8
3

61.5
1

47.9
3

45.3
2

66.8
3

50.6
2

61.6
2

50.3
4

65.3
1

65.2
3

63.0
3

66.5
3

67.6
4

56.1
1

UWB 59.8
4

79.2
1

61.0
2

68.2
2

25.3
4

67.6
1

73.6
1

84.0
1

73.6
2

58.6
4

49.1
4

47.6
4

0.0
4

75.8
1

38.9
4

67.3
1

68.3
1

63.4
2

73.8
1

72.0
1

64.5
4

80.1
1

24.3
4

Table 3: Official results of CRAC 2025 Shared Task on the minitest set (CoNLL score in %). The systems † are
described in Pražák et al. (2021); the rest in Novák et al. (2025a).
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A) CORPIPE SINGLE MODELS

Single mT5-large model 72.84 80.1 74.6 78.0 58.5 67.2 73.3 77.4 82.0 72.1 68.5 71.2 67.9 76.3 67.3 68.0 69.8 74.4 75.2 74.0 77.5 81.2 67.7

Single umT5-base model –3.54 –2.7 –1.1 –2.9 –5.0 –5.2 –2.3 –4.6 –3.5 –0.9 –1.8 –6.3 –8.9 –3.6 –5.8 –4.3 –2.0 –1.5 –2.0 –3.5 –3.0 –3.5 –3.8
69.27 77.4 73.5 75.1 53.5 62.0 71.0 72.8 78.6 71.2 66.7 64.9 59.0 72.7 61.5 63.7 67.8 72.9 73.2 70.4 74.5 77.8 63.9

Single umT5-xl model +1.96 +2.4 +1.6 +2.1 +4.5 +5.6 +1.9 +3.4 +2.0 +3.7 +1.8 +3.2 –1.8 +0.2 –0.0 +1.7 –0.9 +1.4 +1.0 –0.4 +1.9 +3.0 +3.9
74.75 82.5 76.2 80.1 63.0 72.8 75.2 80.8 84.1 75.8 70.3 74.4 66.1 76.5 67.3 69.7 68.9 75.8 76.2 73.6 79.4 84.2 71.6

Single mT5-xxl model +3.16 +3.0 +2.9 +3.3 +10.8 +6.1 +3.6 +5.0 +2.4 +3.6 +4.0 +6.2 +6.5 +0.4 –5.1 +3.9 –0.5 +3.2 +1.7 +1.5 +2.7 +3.7 +1.9
76.04 83.1 77.5 81.3 69.3 73.3 76.9 82.4 84.4 75.7 72.4 77.5 74.4 76.7 62.2 71.9 69.3 77.6 76.9 75.4 80.2 84.9 69.6

Single umT5-xxl model +3.46 +3.0 +2.7 +3.2 +9.1 +4.5 +3.8 +6.8 +2.4 +5.4 +3.0 +6.8 +4.8 +1.4 –1.2 +3.2 –0.6 +0.6 +3.1 +2.3 +2.8 +3.8 +4.7
76.26 83.1 77.3 81.2 67.6 71.7 77.1 84.2 84.4 77.5 71.5 78.1 72.7 77.7 66.1 71.2 69.2 75.0 78.3 76.3 80.3 85.0 72.4

B) CORPIPE ENSEMBLE MODELS

Single umT5-xl model 74.75 82.5 76.2 80.1 63.0 72.8 75.2 80.8 84.1 75.8 70.3 74.4 66.1 76.5 67.3 69.7 68.9 75.8 76.2 73.6 79.4 84.2 71.6

5 umT5-xl models +1.05 +0.4 +0.9 +0.6 +2.5 +0.2 +0.8 +1.0 +0.4 +0.5 +1.5 +0.1 +3.7 +1.2 +1.3 +1.3 +1.0 +1.4 +2.0 +2.7 +0.8 –0.0 –0.4
75.84 82.9 77.1 80.7 65.5 73.0 76.1 81.8 84.5 76.3 71.8 74.5 69.8 77.7 68.6 71.0 69.9 77.2 78.2 76.3 80.2 84.2 71.2

3 mT5-xxl models +2.15 +1.4 +1.4 +1.0 +7.0 +2.1 +2.0 +2.9 +1.0 +1.0 +2.4 +6.1 +8.9 +1.3 –0.1 +2.8 +1.1 +1.6 +0.5 +2.3 +1.4 +0.6 –0.6
76.93 83.9 77.6 81.1 70.0 74.9 77.3 83.7 85.1 76.7 72.7 80.5 75.0 77.8 67.2 72.5 70.0 77.4 76.7 75.9 80.8 84.8 71.0

3 umT5-xxl models +2.05 +1.1 +1.5 +1.7 +5.8 +1.0 +2.0 +2.9 +0.9 +2.2 +2.5 +3.9 +7.9 +1.3 –0.5 +3.5 +1.2 –1.0 +1.1 +2.3 +1.9 +1.8 +0.2
76.80 83.6 77.7 81.8 68.8 73.8 77.2 83.7 85.0 78.0 72.8 78.3 74.0 77.8 66.8 73.2 70.1 74.8 77.3 75.9 81.3 86.0 71.8

3 mT5-xxl models + +2.45 +1.7 +1.8 +1.5 +7.2 +0.6 +2.5 +3.3 +1.3 +1.8 +2.6 +6.2 +8.9 +1.6 +0.5 +2.7 +1.6 +0.1 +1.3 +2.5 +2.1 +1.6 +0.2
+3 umT5-xxl models 77.20 84.2 78.0 81.6 70.2 73.4 77.8 84.1 85.4 77.6 72.9 80.6 75.0 78.1 67.8 72.4 70.5 75.9 77.5 76.1 81.5 85.8 71.8

C) CORPIPE PER-CORPUS BEST MODELS

Single umT5-xl model 74.75 82.5 76.2 80.1 63.0 72.8 75.2 80.8 84.1 75.8 70.3 74.4 66.1 76.5 67.3 69.7 68.9 75.8 76.2 73.6 79.4 84.2 71.6

Per-corpus best umT5-xl model +0.35 –0.5 +0.1 +0.3 –0.2 –0.2 +0.7 +0.5 –0.3 +0.2 –0.4 –0.1 +2.2 +1.0 +1.0 +0.8 +0.4 +0.2 +0.9 +0.4 +0.5 +0.6 –1.2
75.06 82.0 76.3 80.4 62.8 72.6 75.9 81.3 83.8 75.9 69.9 74.3 68.3 77.5 68.3 70.5 69.3 76.0 77.1 74.0 79.9 84.8 70.4

Table 4: Additional experiments on the CorefUD 1.3 minitest set (CoNLL score in %). The models in italics are
post-competition submissions (i.e., submitted after the shared task deadline).

The official results of the CRAC 2025 Shared
Task are summarized in Table 3 showing the
CoNLL score and individual corpora performance,
and in Table 2 showing four metrics across all cor-
pora. All CorPipe 25 configurations substantially
surpass all other participants, by 7 percent points
for CorPipeSingle and 8 for CorPipeEnsemble. The
CorPipeBestDev configuration only marginally out-
performs CorPipeSingle, which we attribute to the

exclusion of the two smallest corpora this year.
We evaluate additional mT5 and umT5 models

on the minitest in Table 4. The xxl-sized models
provide a boost of more than 1 percent point over
the xl size; the ensemble of 3 mT5-xxl and umT5-
xxl models provide an additional 1 percent point
gain, achieving the best performance of 77.2%,
a 1.4 percent point increase compared to the best
competition submission.
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A) SUBMITTED CRAC25 SYSTEMS

CorPipeEnsemble 76.51 84.1 76.9 81.1 64.2 77.9 77.5 80.0 85.1 79.6 72.5 76.1 66.8 82.0 69.7 73.1 69.4 81.6 80.1 79.7 80.3 80.0 65.5
CorPipeSingle 75.69 83.2 75.9 80.2 62.7 76.9 76.5 80.1 84.2 79.0 71.9 76.2 66.0 80.6 68.1 71.9 67.6 80.2 79.2 80.3 79.2 78.3 66.7
Stanza 69.37 80.3 72.8 74.5 38.0 78.0 70.7 73.0 79.5 69.8 63.2 54.1 63.6 78.9 65.3 68.6 64.9 78.8 74.9 75.3 74.1 78.4 49.5
GLaRef-Propp 62.96 68.9 61.9 62.9 40.0 64.0 65.2 72.1 68.8 69.0 65.0 54.1 57.8 72.1 52.5 60.4 60.6 74.2 69.8 70.3 65.0 67.8 42.8
BASELINE-GZ 58.64 70.5 68.0 67.4 27.7 57.9 65.0 66.6 71.7 65.4 56.3 29.8 23.8 69.9 49.9 59.0 63.0 69.3 66.1 66.8 65.6 63.4 47.1
BASELINE 56.39 69.9 57.3 63.2 24.1 57.9 65.0 66.6 71.3 65.4 56.3 27.0 23.8 69.9 46.6 58.3 48.3 69.3 66.1 66.8 64.1 63.4 40.1

B) CORPIPE SINGLE MODELS

mT5-large 73.26 81.3 73.8 77.0 57.7 75.3 74.1 75.9 81.7 74.9 69.7 72.1 65.2 79.7 66.4 68.7 67.7 80.0 77.2 77.5 76.8 76.2 62.8

mT5-base –4.43 –3.7 –3.4 –4.3 –5.0 –7.8 –2.6 –5.3 –3.1 –3.7 –4.2 –9.1 –8.1 –3.6 –5.7 –3.7 –2.2 –2.8 –1.9 –3.1 –3.8 –5.4 –4.8
68.83 77.6 70.4 72.7 52.7 67.5 71.5 70.6 78.6 71.2 65.5 63.0 57.1 76.1 60.7 65.0 65.5 77.2 75.3 74.4 73.0 70.8 58.0

umT5-base –3.38 –2.6 –1.3 –2.2 –4.5 –6.4 –2.9 –3.6 –1.5 –1.8 –3.2 –7.8 –9.3 –2.9 –2.5 –3.4 –2.2 –5.3 –1.4 –1.6 –2.6 –3.0 –2.5
69.88 78.7 72.5 74.8 53.2 68.9 71.2 72.3 80.2 73.1 66.5 64.3 55.9 76.8 63.9 65.3 65.5 74.7 75.8 75.9 74.2 73.2 60.3

XLM-RoBERTa-base –5.23 –6.2 –5.0 –5.3 –6.5 –4.4 –3.9 –7.4 –4.5 –4.4 –4.2 –8.3 –14.7 –2.5 –1.3 –3.1 –6.0 –2.7 –4.2 –4.0 –5.0 –5.6 –5.9
68.03 75.1 68.8 71.7 51.2 70.9 70.2 68.5 77.2 70.5 65.5 63.8 50.5 77.2 65.1 65.6 61.7 77.3 73.0 73.5 71.8 70.6 56.9

XLM-RoBERTa-large –1.36 –1.6 –2.3 –0.7 +0.6 +0.1 +0.1 –2.4 –1.0 –1.4 –1.1 –0.5 –6.6 +0.2 +1.2 +1.2 –3.1 –2.0 –2.4 –1.5 –1.8 –2.2 –2.9
71.90 79.7 71.5 76.3 58.3 75.4 74.2 73.5 80.7 73.5 68.6 71.6 58.6 79.9 67.6 69.9 64.6 78.0 74.8 76.0 75.0 74.0 59.9

RemBERT –1.84 –2.5 –2.2 –0.8 +0.3 +1.0 –0.4 –1.4 –1.1 –0.4 –1.4 –1.6 –4.7 +0.2 –1.0 –2.1 –4.4 –5.2 –2.3 –2.5 –1.5 –2.7 –3.5
71.42 78.8 71.6 76.2 58.0 76.3 73.7 74.5 80.6 74.5 68.3 70.5 60.5 79.9 65.4 66.6 63.3 74.8 74.9 75.0 75.3 73.5 59.3

InfoXLM-large –1.44 –1.9 –1.9 –0.4 +1.3 +0.0 –0.3 –3.0 –1.0 –0.8 –1.1 –1.4 –7.3 +1.0 +0.5 +0.4 –3.3 –1.5 –1.6 –1.9 –1.7 –3.3 –2.4
71.82 79.4 71.9 76.6 59.0 75.3 73.8 72.9 80.7 74.1 68.6 70.7 57.9 80.7 66.9 69.1 64.4 78.5 75.6 75.6 75.1 72.9 60.4

T5Gemma-large-ul2 –3.13 –2.5 –1.2 –3.2 –6.1 –0.9 +0.7 +1.3 –0.6 –1.2 +0.5 –9.5 –6.0 –4.4 –5.5 –5.2 –1.7 –7.2 –1.8 –2.9 –2.9 –2.2 –6.6
70.13 78.8 72.7 73.8 51.6 74.4 74.8 77.2 81.1 73.7 70.2 62.6 59.2 75.3 60.9 63.5 66.0 72.8 75.4 74.6 73.9 74.0 56.2

T5Gemma-xl-ul2 –0.55 +0.0 +0.4 –0.9 –1.0 +1.1 +2.9 +5.5 +1.1 +1.5 +1.3 –2.2 –0.1 –2.2 –5.6 –3.0 –0.5 –3.3 +0.0 –1.3 –1.5 +0.5 –4.8
72.71 81.3 74.2 76.1 56.7 76.4 77.0 81.4 82.8 76.4 71.0 69.9 65.1 77.5 60.9 65.7 67.2 76.7 77.2 76.2 75.3 76.7 58.0

T5Gemma-xl-ul2-it –0.07 +0.1 +0.8 –0.7 –0.2 +2.8 +2.9 +5.4 +0.9 +1.5 +2.2 –1.9 –0.7 –1.5 –3.4 –1.0 –0.4 –2.8 +0.2 –0.6 –0.9 +0.2 –4.6
73.19 81.4 74.7 76.3 57.5 78.1 77.0 81.3 82.6 76.4 71.9 70.2 64.5 78.2 63.0 67.7 67.3 77.2 77.4 76.9 75.9 76.5 58.2

T5Gemma-xl-prefixlm –0.50 –1.1 +1.0 –0.2 –1.9 +1.4 +2.3 +5.4 +0.9 +0.5 +2.5 –1.7 +0.0 –1.3 –5.1 –2.8 +0.5 –5.3 +0.6 –1.3 –0.8 +0.9 –5.2
72.76 80.2 74.8 76.8 55.8 76.7 76.4 81.3 82.6 75.4 72.2 70.4 65.2 78.4 61.3 65.9 68.2 74.7 77.8 76.2 76.0 77.1 57.5

T5Gemma-xl-prefixlm-it –1.89 –1.6 +0.3 –2.0 –5.4 +0.5 +1.9 +3.3 –1.2 +0.1 +0.8 –4.8 –3.4 –3.1 –5.4 –2.4 –0.7 –5.8 –1.7 –2.0 –1.8 –1.4 –5.7
71.37 79.7 74.1 75.0 52.3 75.8 76.0 79.2 80.5 75.0 70.5 67.3 61.9 76.6 61.0 66.3 67.0 74.2 75.5 75.5 75.0 74.8 57.1

T5Gemma-2B-ul2 +1.16 +1.3 +2.0 +1.4 +2.1 +1.7 +3.1 +7.6 +1.5 +3.1 +1.8 +1.3 +2.9 +0.2 –4.1 –0.2 –0.7 –3.0 +1.8 +0.6 +1.0 +2.0 –1.9
74.42 82.5 75.8 78.4 59.8 77.0 77.2 83.5 83.2 78.0 71.5 73.4 68.1 79.9 62.3 68.5 67.0 77.0 79.0 78.1 77.8 78.2 60.9

mT5-xl +0.16 –0.2 +0.2 +0.3 +1.4 –1.0 +0.1 +1.3 +0.4 +0.5 –0.6 +0.0 +0.9 –0.3 +1.6 +0.2 +0.1 –1.0 +0.0 –0.6 +0.4 +0.6 –0.8
73.42 81.1 74.0 77.3 59.1 74.3 74.2 77.2 82.1 75.4 69.1 72.1 66.1 79.4 68.0 68.9 67.8 79.0 77.2 76.9 77.2 76.8 62.0

umT5-xl +2.40 +2.1 +2.5 +3.2 +5.0 +1.9 +2.8 +3.2 +2.3 +3.9 +2.1 +3.5 +0.3 +0.9 +1.7 +3.1 +0.6 +0.3 +2.3 +1.9 +2.7 +2.4 +4.0
75.66 83.4 76.3 80.2 62.7 77.2 76.9 79.1 84.0 78.8 71.8 75.6 65.5 80.6 68.1 71.8 68.3 80.3 79.5 79.4 79.5 78.6 66.8

mT5-xxl +3.54 +2.4 +2.8 +4.1 +10.2 +2.0 +3.0 +5.8 +2.4 +3.8 +2.8 +8.0 +8.1 +1.6 +2.4 +2.6 +0.8 +0.0 +2.0 +2.9 +3.4 +3.3 +3.6
76.80 83.7 76.6 81.1 67.9 77.3 77.1 81.7 84.1 78.7 72.5 80.1 73.3 81.3 68.8 71.3 68.5 80.0 79.2 80.4 80.2 79.5 66.4

umT5-xxl +3.77 +2.5 +3.1 +3.9 +8.7 +3.6 +3.6 +6.5 +2.8 +4.9 +3.7 +7.2 +6.0 +1.7 +1.9 +3.2 +1.8 +0.3 +3.2 +2.4 +3.7 +4.4 +3.8
77.03 83.8 76.9 80.9 66.4 78.9 77.7 82.4 84.5 79.8 73.4 79.3 71.2 81.4 68.3 71.9 69.5 80.3 80.4 79.9 80.5 80.6 66.6

Table 5: Ablations experiments on the CorefUD 1.3 minidev set (CoNLL score in %). The results are averages of 3
or more runs and for every run the epoch with best average score over the whole CorefUD is used.

5 Ablations Experiments

We perform a series of ablation experiments on the
CorefUD 1.3 minidev set (to avoid overfitting on
the minitest set). The presented results are averages
of 3 or more runs, and for every run the epoch with
the best average score across all corpora is used.

For reference, the minidev scores of the systems
submitted to the CRAC 2025 Shared Task are sum-
marized in Table 5.A.

The first set of experiments evaluates the im-
pact of different models beyond the mT5 and
umT5 families. Notably, we also evaluate the
XLM-RoBERTa-base and XLM-RoBERTa-large
models (Conneau et al., 2020), the RemBERT
model (Chung et al., 2021), InfoXLM-large (Chi
et al., 2021), and several variants of the recently
introduced T5Gemma model (Zhang et al., 2025).

The results are summarized in Table 5.B. The
umT5 models consistently outperform the mT5
ones, which is why we used them in the official sub-
mission.2 The mT5 and umT5 models outperform
the other evaluated models, particularly because
they support longer contexts (Table 6.C and Straka,
2023, Table 4). When restricting the context to 512
tokens, XLM-RoBERTa-large model achieves the
best performance, surpassing both InfoXLM-large
and RemBERT. Finally, the recently introduced
T5Gemma encoder-decoder model adapted from
the Gemma decoder-only model seems to lag
behind the umT5 models of corresponding sizes,
despite supporting longer contexts too.

2In this context, it is unfortunate that the umT5-large model
has not been released as it would likely outperform the mT5-
large model, which is a size very suitable for deployment.
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A) CROSS-LINGUAL ZERO-SHOT EVALUATION OF MT5-LARGE MODEL

Single mT5-large Model 73.26 81.3 73.8 77.0 57.7 75.3 74.1 75.9 81.7 74.9 69.7 72.1 65.2 79.7 66.4 68.7 67.7 80.0 77.2 77.5 76.8 76.2 62.8

Zero-Shot Multilin. Models–14.21 –4.2 –16.8–15.1–18.5–13.4–16.2–13.0 –7.4 –30.5 –9.3 –8.0 –16.3–13.5 –2.5 –12.2–20.5–24.2–14.4–18.4 –8.3 –14.8–14.9
59.05 77.1 57.0 61.9 39.2 61.9 57.9 62.9 74.3 44.4 60.4 64.1 48.9 66.2 63.9 56.5 47.2 55.8 62.8 59.1 68.5 61.4 47.9

B) CROSS-LINGUAL ZERO-SHOT EVALUATION OF UMT5-XL MODEL

Single umT5-xl Model 75.66 83.4 76.3 80.2 62.7 77.2 76.9 79.1 84.0 78.8 71.8 75.6 65.5 80.6 68.1 71.8 68.3 80.3 79.5 79.4 79.5 78.6 66.8

Zero-Shot Multilin. Models–14.39 –4.6 –17.4–15.5–19.3–13.5–18.2–14.9 –2.0 –34.3 –6.5 –6.3 –21.2–12.6 –1.9 –14.9–19.3–24.0–15.7–18.4 –8.5 –16.9–10.7
61.27 78.8 58.9 64.7 43.4 63.7 58.7 64.2 82.0 44.5 65.3 69.3 44.3 68.0 66.2 56.9 49.0 56.3 63.8 61.0 71.0 61.7 56.1

C) VARIOUS SEGMENT SIZES OF MT5-LARGE MODEL

Segment 2560 73.26 81.3 73.8 77.0 57.7 75.3 74.1 75.9 81.7 74.9 69.7 72.1 65.2 79.7 66.4 68.7 67.7 80.0 77.2 77.5 76.8 76.2 62.8

Segment 1024 –0.31 –0.1 –0.7 +0.0 +0.0 +0.0 –0.2 –0.1 –0.3 –0.7 –0.7 +0.0 +1.7 +0.1 +0.2 +0.0 –1.0 +0.0 –0.3 –0.7 –1.2 –0.9 –2.0
72.95 81.2 73.1 77.0 57.7 75.3 73.9 75.8 81.4 74.2 69.0 72.1 66.9 79.8 66.6 68.7 66.7 80.0 76.9 76.8 75.6 75.3 60.8

Segment 512 –2.54 –4.2 –2.8 –2.2 +0.0 –0.2 –2.0 –4.8 –2.5 –2.2 –3.3 +0.0 –3.5 –1.0 –1.1 –2.1 –4.0 –1.5 –3.5 –3.2 –3.2 –4.6 –4.0
70.72 77.1 71.0 74.8 57.7 75.1 72.1 71.1 79.2 72.7 66.4 72.1 61.7 78.7 65.3 66.6 63.7 78.5 73.7 74.3 73.6 71.5 58.8

D) VARIOUS SEGMENT SIZES OF UMT5-XL MODEL

Segment 2560 75.66 83.4 76.3 80.2 62.7 77.2 76.9 79.1 84.0 78.8 71.8 75.6 65.5 80.6 68.1 71.8 68.3 80.3 79.5 79.4 79.5 78.6 66.8

Segment 1024 –0.45 –0.2 –0.9 +0.0 +0.0 –0.1 –0.4 –0.2 –0.5 –1.8 –0.4 +0.0 +0.2 +0.0 +0.6 +0.1 –1.1 –0.1 +0.0 +0.0 –1.1 –0.9 –3.1
75.21 83.2 75.4 80.2 62.7 77.1 76.5 78.9 83.5 77.0 71.4 75.6 65.7 80.6 68.7 71.9 67.2 80.2 79.5 79.4 78.4 77.7 63.7

Segment 512 –2.30 –3.2 –2.7 –1.6 +0.0 –0.1 –1.9 –3.8 –2.1 –3.6 –1.7 +0.0 –5.1 –0.5 +0.2 –1.7 –4.4 –1.8 –3.1 –2.0 –2.3 –3.7 –5.3
73.36 80.2 73.6 78.6 62.7 77.1 75.0 75.3 81.9 75.2 70.1 75.6 60.4 80.1 68.3 70.1 63.9 78.5 76.4 77.4 77.2 74.9 61.5

E) VARIOUS SAMPLING RATIOS OF MT5-LARGE MODEL

Ratio 4/8 73.26 81.3 73.8 77.0 57.7 75.3 74.1 75.9 81.7 74.9 69.7 72.1 65.2 79.7 66.4 68.7 67.7 80.0 77.2 77.5 76.8 76.2 62.8

Ratio 0/8 –0.23 +0.1 –1.5 –0.5 +0.7 –0.4 –0.1 –0.4 +0.1 –0.7 –0.5 +0.0 –0.1 +0.5 –0.6 +0.2 –0.1 –1.0 +0.8 +0.5 +0.1 –0.7 –1.6
73.03 81.4 72.3 76.5 58.4 74.9 74.0 75.5 81.8 74.2 69.2 72.1 65.1 80.2 65.8 68.9 67.6 79.0 78.0 78.0 76.9 75.5 61.2

Ratio 1/8 –0.18 –0.3 –1.0 –0.4 +0.9 –1.9 +0.0 –0.1 –0.1 –0.3 –0.5 –0.7 +0.8 +0.3 +1.0 +0.2 –0.2 –1.8 +0.2 +0.5 –0.2 +0.3 –0.6
73.08 81.0 72.8 76.6 58.6 73.4 74.1 75.8 81.7 74.6 69.2 71.4 66.0 80.0 67.4 68.9 67.5 78.2 77.4 78.0 76.6 76.5 62.2

Ratio 2/8 –0.36 +0.4 –0.5 –0.2 +0.1 –0.9 –0.6 +0.1 +0.2 –0.6 –1.3 –1.8 +0.1 –0.2 –0.7 +0.1 –0.5 –1.7 +0.0 +0.0 +0.2 +0.4 –0.6
72.90 81.7 73.3 76.8 57.8 74.4 73.5 76.0 81.9 74.3 68.4 70.3 65.3 79.5 65.7 68.8 67.2 78.3 77.2 77.5 77.0 76.6 62.2

Ratio 3/8 –0.24 +0.1 –0.2 –0.4 +1.3 –1.8 –0.3 –0.3 +0.6 –0.1 –0.5 –1.6 –0.2 –0.1 –0.4 –0.8 +0.3 –0.9 +0.0 –0.5 –0.4 +0.6 +0.1
73.02 81.4 73.6 76.6 59.0 73.5 73.8 75.6 82.3 74.8 69.2 70.5 65.0 79.6 66.0 67.9 68.0 79.1 77.2 77.0 76.4 76.8 62.9

Ratio 5/8 +0.09 +0.3 –0.6 +0.4 –2.6 –0.7 +0.5 +0.7 +0.7 +0.2 –0.6 –3.1 +1.2 +0.6 +2.1 +0.8 –0.3 –0.2 +1.0 +0.4 +0.5 +0.4 +0.2
73.35 81.6 73.2 77.4 55.1 74.6 74.6 76.7 82.4 75.1 69.1 69.0 66.4 80.3 68.5 69.5 67.4 79.8 78.2 77.9 77.3 76.6 63.0

Ratio 6/8 –0.31 +0.0 +0.3 +0.4 +0.2 –2.5 –0.6 –0.6 +0.2 +0.8 –1.0 –1.9 –0.4 –0.2 –0.4 –0.1 –0.1 +0.5 –0.1 –0.1 –0.3 –0.9 +0.0
72.95 81.3 74.1 77.4 57.9 72.8 73.5 75.3 81.9 75.7 68.7 70.2 64.8 79.5 66.0 68.6 67.6 80.5 77.1 77.4 76.5 75.3 62.8

Ratio 7/8 –0.32 +0.0 +0.0 +0.4 –2.4 –1.3 +0.1 –0.6 –0.4 –0.6 –1.1 –3.9 +0.0 –0.1 +0.9 +0.6 –0.3 –0.6 +0.2 +0.7 +0.1 +1.2 –0.1
72.94 81.3 73.8 77.3 55.3 74.0 74.2 75.3 81.3 74.3 68.6 68.2 65.2 79.6 67.3 69.3 67.4 79.4 77.4 78.2 76.9 77.4 62.7

Ratio 8/8 –0.13 –0.3 +0.3 +0.5 –0.4 –0.9 –0.7 +0.0 +0.2 +0.0 –0.5 –1.7 +1.4 –0.1 +0.5 –0.4 –0.9 –0.6 +0.5 +0.0 +0.2 –0.3 +0.1
73.13 81.0 74.1 77.5 57.3 74.4 73.4 75.9 81.9 74.9 69.2 70.4 66.6 79.6 66.9 68.3 66.8 79.4 77.7 77.5 77.0 75.9 62.9

F) VARIOUS SAMPLING RATIOS OF UMT5-XL MODEL

Ratio 4/8 75.66 83.4 76.3 80.2 62.7 77.2 76.9 79.1 84.0 78.8 71.8 75.6 65.5 80.6 68.1 71.8 68.3 80.3 79.5 79.4 79.5 78.6 66.8

Ratio 0/8 –0.15 +0.4 –0.4 –0.9 +0.9 –0.4 –0.7 +0.7 –0.2 –0.6 –0.2 +1.6 +0.3 +0.3 +0.0 –0.8 +0.2 –0.5 –0.4 –0.1 –0.7 +0.1 –1.6
75.51 83.8 75.9 79.3 63.6 76.8 76.2 79.8 83.8 78.2 71.6 77.2 65.8 80.9 68.1 71.0 68.5 79.8 79.1 79.3 78.8 78.7 65.2

Ratio 1/8 –0.11 +0.3 –0.7 –0.4 +0.4 –0.8 –0.2 +0.9 –0.2 –0.8 +0.2 +0.3 –0.2 +0.3 +0.4 +0.2 –0.1 –0.5 –0.2 –0.3 –0.5 +0.7 –1.3
75.55 83.7 75.6 79.8 63.1 76.4 76.7 80.0 83.8 78.0 72.0 75.9 65.3 80.9 68.5 72.0 68.2 79.8 79.3 79.1 79.0 79.3 65.5

Ratio 2/8 +0.06 +0.4 +0.1 +0.2 +0.8 –0.3 –0.4 +1.1 +0.0 –0.4 +0.5+0.6 +0.1 +0.6 +0.9 –0.5 –0.2 –1.0 +0.0 +0.4 –0.3 +0.6 –1.6
75.72 83.8 76.4 80.4 63.5 76.9 76.5 80.2 84.0 78.4 72.3 76.2 65.6 81.2 69.0 71.3 68.1 79.3 79.5 79.8 79.2 79.2 65.2

Ratio 3/8 –0.04 +0.2 –0.1 –0.1 +0.4 –0.3 –0.3 +0.5 +0.1 –0.3 +0.1 +0.2 +0.4 +0.4 +1.2 –0.5 +0.4 –0.9 –0.3 –0.2 –0.2 –0.1 –1.2
75.62 83.6 76.2 80.1 63.1 76.9 76.6 79.6 84.1 78.5 71.9 75.8 65.9 81.0 69.3 71.3 68.7 79.4 79.2 79.2 79.3 78.5 65.6

Ratio 5/8 +0.00 +0.3 +0.2 +0.4 –0.3 –0.2 –0.3 +0.5 +0.0 +0.2 –0.5 +0.3 –0.1 +0.2 –0.2 +0.1 +0.1 –0.4 +0.4 +0.1 –0.1 +0.1 –0.7
75.66 83.7 76.5 80.6 62.4 77.0 76.6 79.6 84.0 79.0 71.3 75.9 65.4 80.8 67.9 71.9 68.5 79.9 79.9 79.5 79.4 78.7 66.1

Ratio 6/8 –0.05 +0.1 +0.5 +0.3 –0.9 +0.2 –0.2 +0.5 –0.2 –0.1 +0.4 –1.7 +0.8 +0.6 +0.0 –0.1 –0.3 +0.1 +0.4 +0.3 –0.6 +0.2 –1.2
75.61 83.5 76.8 80.5 61.8 77.4 76.7 79.6 83.8 78.7 72.2 73.9 66.3 81.2 68.1 71.7 68.0 80.4 79.9 79.7 78.9 78.8 65.6

Ratio 7/8 –0.12 +0.1 +0.6 +0.3 –0.9 –2.1 +0.1 +0.4 +0.3 –0.1 +0.6 –1.4 +1.3 +0.3 +0.0 +0.5 +0.1 –0.4 –0.2 –0.4 –0.2 –0.2 –1.0
75.54 83.5 76.9 80.5 61.8 75.1 77.0 79.5 84.3 78.7 72.4 74.2 66.8 80.9 68.1 72.3 68.4 79.9 79.3 79.0 79.3 78.4 65.8

Ratio 8/8 –0.07 –0.1 +0.4 +0.3 –1.8 –3.2 –0.1 +0.0 +0.0 +0.4 +0.8 –3.1 +0.8 +0.9 –0.1 +0.7 +0.3 +1.4 +0.5 +0.4 –0.1 +0.0 +0.2
75.59 83.3 76.7 80.5 60.9 74.0 76.8 79.1 84.0 79.2 72.6 72.5 66.3 81.5 68.0 72.5 68.6 81.7 80.0 79.8 79.4 78.6 67.0

Table 6: Ablations experiments on the CorefUD 1.3 minidev set (CoNLL score in %). The results are averages of 3
or more runs and for every run the epoch with best average score over the whole CorefUD is used.

Cross-Lingual Zero-Shot Evaluation Given
that our model is multilingual, it can be used to
perform coreference resolution in languages not
exposed to during training. In order to evaluate
the performance of our model in such a setting, we

train several multilingual models on corpora from
all but one language, and then evaluate their per-
formance on the excluded corpora. The results are
summarized in Table 6.A for the mT5-large model
and in Table 6.B for the umT5-xl model. While
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Model
TensorFlow PyTorch

Compile Training Max Cold-start Warm-start Eager Compiled Max
time throughput batch compile compile throughput throughput batch

mT5 base 50s 7.1batch/s 39 55s 27s 8.0batch/s 10.3batch/s 58
mT5 large 91s 3.1batch/s 13 92s 50s 3.3batch/s 4.4batch/s 21
mT5 xl 95s 2.5batch/s 5 97s 51s 2.3batch/s 2.9batch/s 9

Table 7: Comparison of compilation and training times of CorPipe using the latest TensorFlow 2.19 and PyTorch
2.7 with the latest transformers 4.52.4 on a single A100 40GB GPU. The training throughput is measured using
batch size of 4 for the xl model and 8 otherwise.

the cross-lingual zero-shot performance is substan-
tially lower by roughly 14 percentage points, it is
still higher than the baseline system of Pražák et al.
(2021) and on par with the best LLM-track submis-
sion. Interestingly, the performance of umT5-xl is
higher by more than 2 points, an increase consistent
with the results in the supervised setting.

Segment Size The effect of context larger than
the usual 512 tokens is quantified in Table 6.C
for the mT5-large model and in Table 6.D for the
umT5-xl model. The results show that the increase
from 512 to 1 024 tokens leads to a significant
performance increase of more than 2 percentage
points, and the further increase to 2 560 tokens
brings a smaller increase by less than 0.5 points.

Sampling Ratio During training, we sample
sentences from the training corpora proportionally
to the square root of their size, following for ex-
ample van der Goot et al. (2021); Straka (2024);
Straka et al. (2024). We quantify the impact of
using different exponents (sampling ratios) in Ta-
ble 6.E for the mT5-large model and in Table 6.F
for the umT5-xl model. The results show that while
the choice of 0.5 is reasonable, the sampling ratio
has very little impact on the average performance.
However, we can see a minor effect of the sampling
ratio on the performance of the two largest corpora
(the Czech ones), with the decrease of 0.5 to 1.5
percentage points for uniform sampling (sampling
ratio 0) to the increase of 0.3 to 0.5 percentage
points for proportional sampling (sampling ratio 1).

6 PyTorch vs TensorFlow

Having both PyTorch and TensorFlow implementa-
tions of CorPipe, we can compare the two variants
in terms of training throughput and memory usage.
To this end, we compare the CorPipe 23 using the
latest TensorFlow 2.19 and CorPipe 25 utilizing the
latest PyTorch 2.7, both with the latest transformers
library 4.52.4, on a single A100 40GB GPU.

The results are presented in Table 7. For all the
base, large, and xl sizes, the PyTorch implementa-
tion outperforms the TensorFlow implementation:

• The training throughput is higher by 16% for
the xxl model up to 45% for the base model,
when comparing compiled PyTorch models to
compiled TensorFlow models.

• The PyTorch model cold-start compilation
time is quite similar to TensorFlow; however,
the warm-start compilation (reusing cached
compilation files from preceding executions;
happens automatically) is significantly shorter,
being circa half of the TensorFlow time.

• The eager PyTorch model has comparable or
slightly better performance than the compiled
TensorFlow model.

• The PyTorch implementation has lower mem-
ory requirements, allowing batches larger by
at least 50% to fit into the GPU memory.

Note that the difference might stem just from dif-
ferent mT5 implementations (FlashAttention, etc.),
not necessarily from the frameworks themselves.

7 Conclusions

We introduced CorPipe 25, the winning submis-
sion to the CRAC 2025 Shared Task on Multilin-
gual Coreference Resolution (Novák et al., 2025a).
Our approach employs a three-stage pipeline ar-
chitecture that first predicts empty nodes using
a dedicated pretrained encoder model, then per-
forms mention detection and coreference link-
ing through a jointly trained system utilizing
another pretrained encoder. This complete Py-
Torch reimplementation significantly outperforms
all other submissions by substantial margins of
7 and 8 percentage points for our single model
and ensemble variants, respectively. The source
code and trained models are publicly available at
https://github.com/ufal/crac2025-corpipe.
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Abstract
This paper describes our approach to the CRAC
2025 Shared Task on Multilingual Coreference
Resolution. We compete in the LLM track,
where the systems are limited to generative
text-to-text approaches. Our system is based
on Llama 3.1-8B, fine-tuned to tag the docu-
ment with coreference annotations. We have
made one significant modification to the text
format provided by the organizers: The model
relies on the syntactic head for mention span
representation. Additionally, we use joint pre-
training, and we train the model to generate
empty nodes. We provide an in-depth analy-
sis of the performance of our models, which
reveals several implementation problems. Al-
though our system ended up in last place, we
achieved the best performance on 10 datasets
out of 22 within the track. By fixing the discov-
ered problems in the post-evaluation phase, we
improved our results substantially, outperform-
ing all the systems in the LLM track and even
some unconstrained track systems.

1 Introduction

Coreference resolution is the task of identifying
mentions of entities and grouping the mentions of
the same real-world entity together. It is a fun-
damental NLP task that is increasingly left to the
implicit understanding of LLMs rather than being
explicitly computed as an intermediate step of an
NLP pipeline. As such, investigating the models’
ability to accurately identify entities in real-world
scenarios is a direct way of ensuring that their un-
derstanding of the material is robust. Additionally,
coreference resolution is an unsolved task, and find-
ings from it may well contribute to progress in
related NLP problems. This task can be very chal-
lenging, especially in cases where coreferences
span the whole document.

CorefUD (Nedoluzhko et al., 2022) is an ex-
tension of Universal Dependencies (Nivre et al.,
2020) to include coreference harmonized across

multiple languages. The recent version of Core-
fUD 1.3 (Novák et al., 2025b) contains 24 datasets
in 17 languages. All data is stored in the CoNLL-
U format, which stores the pretokenized text, de-
pendency trees, and entity annotations within the
miscellaneous column in a unified format. Basic
statistics of individual datasets are shown in Table
1. CRAC shared task on multilingual coreference
resolution is built upon this dataset, and 2025 is the
fourth year this task has been running.

For generative LLMs, the coreference resolution
task is still challenging, and standard benchmarks
like SuperGLUE are mostly limited to the Wino-
grad Schema Challenge (WSC) (Levesque et al.,
2012). WSC was originally proposed as an alter-
native to the Turing test. It is a pronoun resolution
problem that cannot easily be solved based on sta-
tistical patterns. General coreference resolution is
typically not present in standard multi-task LLM
benchmarks, yet there are many papers focusing on
coreference resolution with LLMs. However, the
experiments are often limited to a single dataset
(Zhang et al., 2023; Stano and Horák, 2025).

As suggested last year (Novák et al., 2024), the
CRAC 2025 coreference resolution shared task in-
cludes the LLM track, where the participants are
asked to use a pure text-to-text approach to solve
the task. The organizers also provide a recom-
mended plaintext format of the CorefUD dataset
together with the conversion tool. There are sev-
eral other differences from previous years. As
every year, several new datasets were added into
CorefUD. The smallest datasets (en_parcorfull and
de_parcorfull) were discarded due to very unstable
results of all the systems across previous years.

This paper describes how we fine-tune Llama
3.1-8B in a text-to-text manner to participate in this
track. Our approach relies on mention head predic-
tion, joint pre-training, and empty node generation.
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total number of entities mentions

dataset total per 1k length total per 1k length

docs sents words empty n. count words max avg. count words max avg.

ca_ancora 1,298 13,613 429,313 6,377 17,558 41 101 3.6 62,417 145 141 4.8
cs_pcedt 2,312 49,208 1,155,755 35,654 49,225 43 236 3.4 168,055 145 79 3.6
cs_pdt 3,165 49,419 834,707 21,092 46,460 56 173 3.3 154,437 185 99 3.1
cu_proiel 26 6,832 61,759 6,289 3,396 55 134 6.5 22,116 358 52 1.5
de_potsdam 176 2,238 33,222 0 880 26 15 2.9 2,519 76 34 2.6
en_gum 237 13,263 233,926 119 9,200 39 131 4.4 40,656 174 95 2.6
en_litbank 100 8,560 210,530 0 2,164 10 261 10.8 23,340 111 129 1.6
es_ancora 1,356 14,159 458,418 8,112 19,445 42 110 3.6 70,663 154 101 4.8
fr_ancor 455 31,761 454,577 0 13,204 29 103 4.3 56,459 124 17 1.9
fr_democrat 126 13,057 284,883 0 7,162 25 895 6.5 46,487 163 71 1.7
grc_proiel 19 6,475 64,111 6,283 3,215 50 332 6.6 21,354 333 52 1.7
hbo_ptnk 40 1,161 28,485 0 870 31 102 7.2 6,247 219 22 1.5
hi_hdtb 271 3,479 76,282 0 3,148 41 36 3.8 12,082 158 43 1.8
hu_korkor 94 1,351 24,568 1,569 1,122 46 41 3.6 4,091 167 42 2.2
hu_szegedkoref 400 8,820 123,968 4,857 4,769 38 36 3.2 15,165 122 36 1.6
ko_ecmt 1,470 30,784 482,986 0 16,536 34 55 3.4 56,538 117 12 1.3
lt_lcc 100 1,714 37,014 0 1,087 29 23 4.0 4,337 117 19 1.5
no_bokmaal 346 15,742 245,515 0 5,658 23 298 4.7 26,611 108 51 1.9
no_nynorsk 394 12,481 206,660 0 5,079 25 84 4.3 21,847 106 57 2.1
pl_pcc 1,828 35,874 538,885 18,615 22,143 41 135 3.7 82,706 153 108 1.9
ru_rucor 181 9,035 156,636 0 3,515 22 141 4.6 16,193 103 18 1.7
tr_itcc 24 4,732 55,358 11,584 4,019 73 369 5.4 21,569 390 31 1.1

Table 1: CorefUD 1.3 data sizes in terms of the total number of documents, sentences, words (i.e. non-empty
nodes), empty nodes (empty words), coreference entities (total count, relative count per 1000 words, average and
maximal length in number of mentions) and coreference mentions (total count, relative count per 1000 words,
average and maximal length in number of words). All the counts are excluding singletons and for the concatenation
of train+dev+test. Train/dev/test splits of these datasets roughly follow the 8/1/1 ratio. Taken from Novák et al.
(2025a)

2 Related Work

Neural coreference resolution has traditionally
been approached using encoder-only models (Joshi
et al., 2020; Straka, 2023; Pražák et al., 2021;
Pražák and Konopik, 2022) and Higher-Order In-
ference (HOI) (Xu and Choi, 2020). Recently, text-
to-text models have gained popularity for this task
(Zhang et al., 2023).

The most commonly used model for multilingual
coreference resolution is mT5 (Raffel et al., 2020),
which has been applied in both end-to-end (Straka,
2023) and text-to-text approaches (Bohnet et al.,
2023; Stano and Horák, 2025; Skachkova, 2024). It
was also utilized by the top system at CRAC 2024
(Novák et al., 2024).

A notable text-to-text approach is the Link-
Append method proposed by Bohnet et al. (2023),
which avoids an intermediate mention detection
step by training a seq2seq model to predict actions
that incrementally build coreference clusters.

Skachkova (2024) introduced a direct annotation

scheme where the model generates document text
along with brackets and cluster identifiers. Their
system employs prompt tuning and incremental
generation to label entities progressively, along
with data augmentations to address common failure
modes such as unchanged inputs, repeated outputs,
and duplicate mentions.

Zhang et al. (2023) propose an output scheme
which combines tag generation with a second op-
erator that copies tokens from the input to avoid
repetition.

An alternative direction to fine-tuning is prompt-
ing. Stano and Horák (2025) demonstrate this ap-
proach on the simpler anaphora resolution task.
This result suggests that some LLMs possess in-
context learning capabilities powerful enough to
tackle coreference resolution without any special-
ized training.

Dobrovolskii (2021) suggested reducing the
mention space by selecting a single word to rep-
resent each mention, using the syntactic head as
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the representative word. Their experiments were
conducted on the English OntoNotes corpus. In
the next step, after antecedent prediction, they em-
ploy a CNN-based span predictor to reconstruct the
original mentions.

3 Model

We use the provided CoNLL-U-to-Text converter
and train the model to generate document texts with
entity tags inserted. Our model benefits from joint
cross-lingual training, headword mention represen-
tation, and zero-mentions modeling.

Inspired by word-level coreference resolution
and by previous CorefUD experiments (Pražák
et al., 2024; Prazak and Konopík, 2024), we also
evaluate the model with headword mention repre-
sentation. Here, we represent mentions only by
their syntactic heads (highest nodes in a depen-
dency tree). The plaintext format suggested by the
organizers does not include any syntactic informa-
tion, so we modified the converter to extract syntac-
tic heads of mentions from CoNLL-U. Considering
that the official evaluation metric uses head-match,
we do not need to reconstruct the original spans for
evaluation. But this step would be fairly straight-
forward and can be done similarly to Dobrovolskii
(2021).

We implement an optional document splitting
pre-processing step to deal with datasets domi-
nated by documents that are too long to train on in
our setup. The documents are split hierarchically
first by paragraphs, then by sentences, and then by
words to fit into a limit of 250 words. We chose
this limit empirically to fit all the datasets into our
training context length. We manually enable this
step for datasets that are problematic otherwise.

We train a joint model on a concatenation of all
the datasets in the CorefUD 1.3 collection in the
first step. In the second step, we fine-tune the joint
model on each dataset separately.

Our model also predicts empty nodes and zero
mentions. We fine-tune the model to insert empty
nodes into the text, directly following its syntactic
parent, as suggested by the provided CoNLL-U-to-
Text converter.

4 Training & Inference

We fine-tune pre-trained Llama 3.1 8B (Grattafiori
et al., 2024) using QLoRA (Dettmers et al., 2023)
on a single NVIDIA A40 GPU. The frozen foun-
dational model is quantized to 8 bits, and a LoRA

adapter with a rank of 64 is optimized. We use
completion-only training, which means that gradi-
ents are computed only on completion tokens and
not on prompt tokens. This ensures that the model
focuses on filling in the entity annotations instead
of predicting the original document text.

Our models are trained with a maximum se-
quence length of 4096 tokens. Sequences that sur-
pass the sequence length limit are filtered from the
dataset before training starts. For some datasets,
this leads to the removal of all documents from ei-
ther the evaluation or training split. In these cases,
we split the samples so that we effectively utilize
the dataset as described in Section 3.

When generating the model’s predictions, we
use an increased sequence length. For most exper-
iments and datasets, we allow up to 2048 tokens
in the prompt and 4096 generated tokens because
some datasets contain documents that are, on aver-
age, about 2 times longer with labels than without
them (more in Section 5.3). For certain datasets,
we increase the limits up to 8,192 for the prompt
and 16,384 for generation. We do not observe is-
sues with these implicit sequence length extensions
between training and inference; scores continue to
improve as inference context increases up to the
maximum document length.

5 Results & Discussion

Table 2 shows the results of our system on devel-
opment sets. It is split into two parts: submitted
predictions and post-evaluation experiments. Since
we did not have enough time to search a complete
hyperparameter grid during the evaluation period,
we evaluated just two variants of the model:

1. standard model – Full-span mention repre-
sentation, zero mentions are ignored.

2. heads_zeros model – Headword mention rep-
resentation, empty nodes generated, zero men-
tion coreference predicted.

5.1 Submission-time Problems
We performed post-evaluation experiments to ad-
dress the system’s main shortcomings, since we
could not resolve all the dataset-specific issues be-
fore the deadline. Our original submission exhib-
ited the following problems:

1. Improper training continuation for joint
pre-training – Due to a bug, joint pre-training
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dataset submitted post-evaluation experiments

standard heads_zeros from joint + heads_zeros + long

ca_ancora 73.27 79.91 74.49 82.19 82.19
cs_pcedt 57.27 0 59 67.38 68.89
cs_pdt 68.75 0 71.24 76.37 76.37
cu_proiel 14 29 34.5 34.36 42.95
de_potsdam 74.4 77 78.95 80.14 82.83
en_gum 73.7 76.05 76.57 76.96 77.16
en_litbank 81.5 83 82.1 82.1 84.75
es_ancora 74.57 0 75.47 80.45 81.68
fr_ancor 25.5 26.06 30.7 35.5 59.95
fr_democrat 33.89 37.58 49.64 47.78 57.65
grc_proiel 50.33 0 54.26 51.61 65.48
hbo_ptnk 0 0 46.7 38.04 69.45
hi_hdtb 75.7 78.83 75.9 79.92 80.95
hu_korkor 40.94 0 46.91 64.72 65.14
hu_szegedkoref 62.88 68.52 62.92 67.83 69.58
ko_ecmt 66.46 62.02 65.7 63.75 65.7
lt_lcc 78.26 74.93 79.33 76.84 79.33
no_bokmaal 77.05 79.12 80.27 80.11 80.69
no_nynorsk 74.61 77.63 78.43 79.72 82.06
pl_pcc 61.85 0 60.27 72.3 72.3
ru_rucor 53.96 55.28 59.22 62.53 63.71
tr_itcc 24.72 30.76 - - 59.4

avg 56.53 41.13 63.93 66.70 71.28
median 64.67 46.43 65.7 72.3 70.94

Table 2: Results on development splits. Best results are bold. The results on which the best submission is based are
underlined. Results marked as ’-’ could not be evaluated due to massive overfitting and degradation of the output
format.

did not improve performance and was there-
fore omitted from all dataset submissions.

2. Conversion to CoNLL-U fails if there are
more than nine subsequent empty nodes –
this is why there are many 0 scores for the
heads_zeros model at evaluation time.

3. Insufficient sequence length – Causes 0 re-
sults for hbo_ptnk dataset and very low results
for tr_itcc.

We solved all the above-mentioned problems
later,1 and the improvement achieved is shown in
the second part of Table 2.

1Note that test data evaluation is still available only through
CodaLab submission, so the post-evaluation entries have ex-
actly the same conditions as the regular ones, except for the
extended deadline. We made only 4 test submissions overall,
when the limit is 10.

5.2 General Discussion

Table 2 shows that our baseline system achieves
satisfactory performance (over 60%) on half of
the evaluated datasets. For most of the remaining
datasets, the main problem was insufficient maxi-
mum sequence length (for details, see Section 5.3).

Joint pre-training helps, but the improvements
are somewhat modest (mostly 1-4%). This is a
very different result compared to the participating
systems from previous years. One factor is the
difference in datasets. The two smallest datasets
in CorefUD: en_parcorfull and de_parcorfull
were removed from this year’s CRAC competition.
Such small datasets typically see the largest gain
from joint pre-training, because the models tend to
overfit more easily without it. The second factor
is the difference in model architecture. Previous
results make use of Transformers with task-specific
heads, but our system trains only an adapter. The
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difference here comes from the ability to leverage
the pre-trained models’ representations. A ran-
domly initialized head has no connection to the
knowledge from pre-training, while the adapted
transformer can quickly adjust by reusing its latent
knowledge.

After fixing all the evaluation issues, we achieve
reasonable performance (over 60%) for almost all
the datasets with a few exceptions. For both French
datasets, our performance is relatively low. We be-
lieve the main reason is still in long sequences and
long-distance coreferences. The last problematic
dataset is Turkish, where we achieve significantly
better results on the test set than on the develop-
ment set. We believe there is an issue with a doc-
ument in the development set, which contains just
two documents.

5.3 Sequence Lengths and Non-Latin Scripts
In our original submission, we had issues with doc-
uments or entire datasets surpassing our training
context length limit. This limit was originally set
to 4096 to compromise between the practical feasi-
bility of the training and processing enough docu-
ments to efficiently train the models. More exten-
sive analysis of the actual dataset sequence lengths
and tokenization, whose main results are shown
in Table 3, shows that this proves problematic for
certain datasets.

The average sample length in a majority of
datasets within CorefUD fits well into our origi-
nal context length limit. In all cases except for
fr_democrat, the median samples happen to fit
exactly when the average sample length does too,
guaranteeing a suitable amount of data to suffi-
ciently train our models. In the case of fr_democrat,
the average is swayed heavily by exceedingly long
samples, and the dataset is, in principle, trainable
under these conditions as well.

The datasets with training issues due to se-
quence length issues are cu_proiel, en_litbank,
grc_proiel, hbo_ptnk, and tr_itcc. In the case
of en_litbank and tr_itcc, this can be resolved
either by increasing the training sequence length up
to 8,192 or by splitting the documents for training.

For cu_proiel, grc_proiel, and hbo_ptnk,
the excessive sequence lengths can be attributed
to using non-Latin scripts and vocabulary that was
not prevalent in the training data of the tokenizer.
All three datasets suffer from high number of sub-
word tokens per word, with Hebrew in hbo_ptnk
reaching 7.7 tokens per word. This comes from

the fact that some of the scripts’ code points do
not have a dedicated token and fall back to byte
encoding.

Context length limitations cause issues during
inference as well. Having some documents that are
truncated by a small amount for inference does not
lower model performance as drastically as having a
large amount of unused training documents. Trun-
cated documents during inference will decrease
the maximum achievable score proportionally to
the truncated length, but missing training docu-
ments may lead to drastic over-fitting and near-
zero scores. In addition, increasing the inference
sequence length is less memory-intensive than in-
creasing the training sequence length, and we man-
age to run inference at up to 8,192 input tokens and
16,384 output tokens while still recovering addi-
tional score points. Because long-context inference
is much more practical than long-context training,
we settled on running inference for entire docu-
ments and invested our time in other optimizations.

5.4 Effective Context Length

To determine how much context is truly neces-
sary for coreference resolution in the CorefUD
datasets, we investigate the distances between en-
tity mentions within documents. We compute the
distance between all consecutive pairs of mentions
of each entity within each document. To match
our results with the application, we use the outer
bounds, from the beginning of the first mention to
the end of the second mention.2 The distribution of
these distances across all datasets is heavily right-
skewed. The median distance is 16 words, with
partial medians spanning between 6 (tr_itcc) and
25 (es_ancora). The 90%, 95%, and 99% quan-
tiles are 118, 220, and 728 words, respectively. The
longest distance in any dataset is 12,398 words in
fr_democrat.

These values suggest that most mentions of an
entity are close together, but there are some long-
distance dependencies that require large context
windows. Generally, a sliding context window of
4096 tokens should be sufficient for 95-99% of
most datasets if implemented carefully. This way,
just about all mentions would have at least one
other mention within their context window. How-
ever, the remaining 1-5% of mentions would still
need a larger context window. Without a method

2Our processing of discontinuous mentions is simplified.
Zero mentions are counted as full words. Each part of a
discontinuous mention counts as a separate mention.
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dataset name toks/word word length max text max label mean text mean label

ca_ancora 1.60 5.18 5,404 8,152 528.4 782.5
cs_pcedt 1.78 5.90 7,255 9,831 888.5 1,230.8
cs_pdt 1.84 5.85 5,231 8,415 473.7 761.4
cu_proiel 3.56 5.55 42,169 56,978 15,507.5 21,134.8
de_potsdamcc 1.70 6.24 420 746 319.0 503.6
en_gum 1.10 5.02 2,152 5,403 1,103.4 2,629.0
en_litbank 1.09 4.86 3,624 5,958 2,301.0 3,747.6
es_ancora 1.43 5.35 2,471 3,765 485.7 755.4
fr_ancor 1.34 4.90 20,768 41,700 1,362.7 2,679.0
fr_democrat 1.45 4.98 23,161 51,495 6,619.8 14,166.1
grc_proiel 3.53 5.87 53,486 71,886 22,042.8 29,976.9
hbo_ptnk 7.70 5.55 10,317 11,876 5,951.6 6,918.5
hi_hdtb 2.53 4.83 1,682 2,286 742.2 1,004.9
hu_korkor 2.67 6.55 1,493 1,844 683.2 861.9
hu_szegedkoref 2.28 5.77 4,152 4,836 715.6 905.0
ko_ecmt 2.49 3.98 4,433 6,433 817.9 1,230.9
lt_lcc 2.70 6.37 2,217 2,773 1,016.5 1,244.5
no_bokmaalnarc 1.71 5.46 10,989 21,353 1,221.1 2,356.5
no_nynorsknarc 1.81 5.50 4,812 8,846 932.5 1,743.1
pl_pcc 2.13 5.85 5,784 11,327 629.2 1,126.3
ru_rucor 1.83 5.93 6,449 8,514 1,562.2 1,987.0
tr_itcc 1.86 6.38 4,920 7,181 4,411.8 6,634.8

Table 3: All statistics are computed on the train split of the dataset, using the meta-llama/Llama-3.1-8B tokenizer.
Token counts above 10,000 tokens are highlighted in bold red, samples that fit into our initial training context length
are colored blue and underlined. The "toks/word" column contains the average number of tokens per word in the
data. Because of how the text is pre-tokenized, punctuation such as periods and commas count as words as well.
The "word length" column contains the mean word length in Unicode code points. The last four columns contain
the maximum number of tokens in a sample and the average sample length in tokens for both the model input and
completion. Note that the training sequences actually consist of the concatenation of both sequences along with
additional overhead for the completion marker.

to recover broken chains in long documents, these
long-distance mentions could account for a dispro-
portionately large portion of the final score.

The main factor in long context mentions and
document length appears to be the type and source
of the data. The longest distance comes from the
short story "Sarrasine" by Honoré de Balzac, which
is present in fr_democrat. The entity in question
refers to the Lanty family and has many mentions
throughout the story.

This analysis suggests that while most co-
reference relations occur within manageable con-
text windows, a certain portion of datasets contain
long-distance dependencies that prove challeng-
ing to our approach. These long-distance coref-
erences are especially prevalent in both French
datasets. In contrast, other datasets with shorter av-
erage document length tend to have their mentions

closer together. This raises the question of whether
modeling long-distance mentions separately would
improve efficiency and possibly performance, or
whether simply scaling the context window is more
practical.

5.5 Dataset Discrimination Capabilities

Our experiments included joint models trained on
a mixture of all datasets without dataset-specific
fine-tuning. We never invested the resources to
fully evaluate these models. Partial results sug-
gest that this general version of the model is typ-
ically weaker than the specialized models trained
on each dataset individually. Investigating the joint
approach gives insights into how a single model is
able to generalize between datasets.

The originally employed prompt template does
not explicitly contain information about which
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corpipe-best 84.20 76.94 80.64 62.63 78.71 77.38 80.91 84.64 80.03 73.26 76.80 67.27 81.90 70.24 73.16 69.21 82.61 80.10 80.74 80.31 79.71 67.51 76.77
corpipe-ens 84.09 76.92 81.08 64.20 77.89 77.48 80.04 85.07 79.64 72.51 76.14 66.75 81.99 69.72 73.09 69.44 81.62 80.09 79.66 80.29 80.05 65.50 76.51
corpipe-1 83.25 75.94 80.22 62.66 76.90 76.54 80.09 84.23 78.97 71.93 76.18 66.02 80.64 68.11 71.86 67.59 80.22 79.20 80.33 79.23 78.30 66.69 75.69
ours_post* 81.35 72.12 74.97 56.69 69.78 75.76 82.67 82.01 58.56 49.14 60.53 48.20 77.42 65.76 69.81 67.83 69.17 76.78 72.06 76.56 84.41 69.09 70.03
stanza 80.30 72.83 74.49 37.95 77.97 70.74 72.96 79.53 69.75 63.22 54.07 63.57 78.87 65.32 68.61 64.86 78.81 74.93 75.32 74.10 78.42 49.48 69.37
antoine.b 68.92 61.85 62.88 39.95 63.95 65.20 72.12 68.82 69.00 65.02 54.08 57.83 72.11 52.52 60.39 60.59 74.21 69.80 70.30 65.00 67.80 42.80 62.96
oseminck 73.45 65.12 71.33 58.25 59.60 58.73 69.01 74.43 66.74 60.43 65.75 43.96 56.36 52.53 59.82 63.04 62.55 64.74 61.63 72.55 68.79 56.23 62.96
moizsajid 60.87 51.36 54.30 58.48 48.74 69.78 70.38 61.75 71.94 57.59 57.85 80.15 71.32 43.49 52.27 66.05 59.16 72.76 68.86 70.83 71.40 39.00 61.74
PuxAI 68.01 56.94 62.96 43.74 57.41 61.71 69.12 70.52 63.77 61.54 47.86 45.31 66.85 50.58 61.61 50.32 65.35 65.18 63.00 66.55 67.59 56.06 60.09
ours 79.17 61.02 68.17 25.34 67.63 73.64 84.05 73.63 58.56 49.14 47.64 0.00 75.84 38.91 67.32 68.30 63.44 73.77 71.96 64.49 80.12 24.31 59.84

baseline-gz 70.53 68.00 67.43 27.69 57.90 64.97 66.59 71.71 65.37 56.27 29.78 23.77 69.86 49.86 59.05 63.04 69.32 66.11 66.76 65.63 63.39 47.14 58.64
baseline 69.94 57.32 63.20 24.10 57.90 64.96 66.59 71.32 65.37 56.27 26.98 23.77 69.86 46.61 58.34 48.34 69.32 66.11 66.76 64.08 63.39 40.06 56.39

Table 4: Results of all competing models in both tracks on the test set. Best overall scores are bold. Best scores
within the LLM track are underlined (if they are not already bold). Row marked with * shows post-evaluation
experiments. Post-evaluation results are also highlighted in the same manner, in addition to the official results. LLM
track systems have names in bold.

dataset the current sample comes from. There are
differences between how the individual datasets are
annotated, and using a model trained on one while
evaluating on another usually degrades model per-
formance significantly. If the model did not know
which annotation rule set to apply to each sample,
it would be at a disadvantage. There are two op-
tions: either the fine-tuned LLMs already implicitly
model the distinction between the datasets, or their
performance can be further improved by giving
them this information.

We hypothesize that it is possible that the dif-
ferent datasets are easily distinguishable due to
factors like the length or domain of the docu-
ment, or the tokenization used. Of the 22 datasets,
only 5 pairs share language: cs_pcedt and
cs_pdt, en_gum and en_litbank, fr_ancor and
fr_democrat, hu_korkor and hu_szegedkoref,
no_bokmaalnarc and no_nynorsknarc. We train
a model to predict the dataset name before com-
pleting the annotations and find that it achieves
100% accuracy in classifying all datasets’ evalua-
tion splits. This result confirms that it is possible to
distinguish all datasets based on the input text alone
and that, when necessary, the LLM will implicitly
utilize this information.

5.6 Final Results

Table 4 shows the final results on test sets. The
column ours_post* shows scores from our post-
evaluation experiments, which are not a part of
the official competition. From the results, we can
see that though our system ended up in the last
place, we achieved the best results within the LLM
track for 10 datasets out of 22, which is the high-
est number of datasets won by a single system in

this track. The reason for our low average score
was in dataset-specific problems, which led to very
low performance on these datasets. After fixing all
issues in the post-evaluation phase, our system out-
performed all other systems within the LLM track
by a large margin. It would take the fourth place
overall and become the second unique system (the
first three Corpipe entries are variants of the same
system by a single team).

6 Conclusion

We proposed a Llama-based text-to-text multilin-
gual coreference resolution system with headword
mention representation and joint pre-training for
the CRAC 2025 shared task. We provide an ex-
tended analysis of different model configurations.

We found that generative tagging approaches
struggle with large documents due to limited se-
quence length when running an open-weight model
on a single machine. Languages with non-Latin
scripts often tokenize inefficiently, leading to very
long sequences.

Our system ended up in last place. However, we
achieved the best results on 10 datasets out of 22.
The main problem of our submission was the very
low performance for a small subset of datasets,
which was caused by some mistakes we did not
manage to fix on time. After fixing all identified
issues in the post-evaluation phase, we achieved
the best results in the LLM track by a large margin,
and we even outperformed some systems in the
unconstrained track.

Considering the relatively small size of our
model, we believe LLMs can achieve state-of-the-
art results on CorefUD in the near future.
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Zdeněk Žabokrtskỳ, Amir Zeldes, and Daniel Zeman.
2022. Corefud 1.0: Coreference meets universal de-
pendencies. In Proceedings of LREC.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
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Abstract

This paper presents our submission to the
CRAC 2025 Shared Task on Multilingual
Coreference Resolution in the LLM track. We
propose a prompt-based few-shot coreference
resolution system where the final inference is
performed by Grok-3 using in-context learning.
The core of our methodology is a difficulty-
aware sample selection pipeline that leverages
Gemini Flash 2.0 to compute semantic diffi-
culty metrics, including mention dissimilarity
and pronoun ambiguity. By identifying and
selecting the most challenging training sam-
ples for each language, we construct highly
informative prompts to guide Grok-3 in predict-
ing coreference chains and reconstructing zero
anaphora. Our approach secured 3rd place in
the CRAC 2025 shared task.

1 Introduction

Coreference resolution is the task of identifying
and grouping linguistic expressions in a text that
refer to the same real-world entity or event, which
may occur within the same sentence or be sepa-
rated across multiple sentences, sometimes requir-
ing analysis of the entire document for accurate
identification. This task involves two subtasks:
identifying entity mentions (including zero men-
tions such as pro-drops) and clustering them into
groups corresponding to actual entities or events.

This paper describes our approach to the CRAC
2025 Shared Task on Multilingual Coreference Res-
olution, which is the fourth iteration of this ongo-
ing challenge organized in conjunction with the
CODI-CRAC 2025 Workshop at EMNLP 2025.
Building on the successes of previous editions in
2022 (Žabokrtský and Ogrodniczuk, 2022), 2023
(Žabokrtský and Ogrodniczuk, 2023), and 2024
(Novák et al., 2024), the 2025 shared task em-
phasizes multilingual capabilities and introduces
a dedicated LLM Track to explore the potential of
large language models (LLMs) in handling corefer-

ence across typologically diverse languages. Par-
ticipants are tasked with developing systems that
not only detect mentions, including the reconstruc-
tion of zero mentions but also accurately cluster
them, while accommodating linguistic variations
such as different annotation styles and the presence
of pro-drops.

The data for the shared task is based on the pub-
lic edition of CorefUD 1.3 (Novák et al., 2025),
comprises 22 different datasets across 17 languages
in a harmonized scheme. Compared to CRAC 2024,
two additional languages, Korean and Hindi, with
a new French dataset, while excluding the English-
ParCorFull and German-ParCorFull datasets. The
data is provided in CoNLL-U format, with coref-
erence annotations in the MISC column, and a
plaintext variant is available for LLM-based ap-
proaches to facilitate prompt engineering and in-
context learning. To promote realism, development
and test sets are reduced to mini-dev and mini-
test splits (approximately 25,000 words each), and
morpho-syntactic features in input data are gener-
ated using UDPipe 2 (Straka, 2018), simulating
scenarios without gold annotations.

A key innovation in CRAC 2025 is the bifur-
cation into two tracks: the LLM Track, which re-
stricts systems to primarily LLM-driven methods
such as fine-tuning, in-context learning, prompt
tuning, and constrained decoding, and the Uncon-
strained Track, which allows hybrid or non-LLM
approaches. Our participation in the LLM Track
leverages to address the challenges of multilingual
coreference, including zero mention reconstruction
and cross-lingual transfer. The evaluation employs
the CorefUD scorer1, with the primary metric be-
ing the macro-averaged CoNLL F1 score across
all datasets, using head-matching for mentions and
excluding singletons. This setup encourages the de-
velopment of robust, multilingual systems capable

1https://github.com/ufal/corefud-scorer
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of handling diverse linguistic phenomena.

2 Related Work

The field of coreference resolution has evolved
from early rule-based and statistical models (Sny-
der et al., 2009) to end-to-end neural architectures
that framed the task as a span-ranking problem
(Wang et al., 2017). The advent of pre-trained
language models like BERT (Devlin et al., 2019)
further advanced the state-of-the-art, with models
like SpanBERT (Joshi et al., 2020) achieving new
performance benchmarks by capturing richer con-
textual information. However, these models still
largely rely on a fine-tuning paradigm, which re-
quires substantial annotated data, a resource scarce
for most languages.

More recently, the landscape has shifted with the
emergence of LLMs such as GPT-3 (Brown et al.,
2020), which excel at zero-shot and few-shot learn-
ing. These models can perform complex NLP tasks
through in-context learning (ICL) (Dong et al.,
2024) without parameter updates, often guided by a
few examples in a prompt (Chen et al., 2023). The
effectiveness of ICL, however, is highly sensitive to
the quality and relevance of the selected exemplars
(Nie et al., 2022). While most work has relied on
random or heuristic-based sample selection, our
approach focuses on a difficulty-aware strategy to
curate the most informative examples.

3 Method

Our approach for the LLM Track employs in-
context learning through few-shot prompting and
carefully designed instructions to enable LLMs to
perform multilingual coreference resolution. To
construct effective few-shot demonstrations, we
curate samples from the mini-dev sets, which con-
tain both raw text inputs and corresponding gold-
standard annotations, making them ideal for in-
structional purposes.

The selection of exemplars is guided by a custom
difficulty metric designed to identify challenging
instances that reflect diverse linguistic phenomena,
such as nominal ambiguity, pronominal interfer-
ence, and zero mentions (e.g., pro-drops). This
approach ensures that few-shot examples expose
the LLM to complex scenarios, enhancing its ro-
bustness across the 17 languages in the dataset and
potential unseen languages in the mini-test set. The
difficulty score is computed as a weighted linear
combination of three components: the Nominal

Dissimilarity Score, the Pronoun Ambiguity Score,
and the Zero Mention Score. Each component is
detailed below, followed by its integration method-
ology.

3.1 Nominal Dissimilarity Score

The Nominal Dissimilarity Score quantifies seman-
tic dissimilarity within coreference clusters, reflect-
ing the resolution challenge posed by diverse or
partial matches between mentions. For each text
sample (in plaintext format with annotations such
as [eX mention|eX]), we employ the Gemini Flash
2.0 API to execute a multi-step analysis as follows:

• Mention Extraction: A regular expression-
based parser extracts all mentions and their
corresponding cluster assignments from the
annotated plaintext, producing structured
JSON output containing mention spans and
entity identifiers.

• Representative Phrase Selection: Using the
extracted mentions, the LLM identifies a rep-
resentative phrase for each cluster (e.g., the
most descriptive or head noun phrase).

• Semantic Similarity Computation: For each
cluster, we use Gemini Flash 2.0 with a tai-
lored instruction prompt to compute a seman-
tic similarity score (on a 0-100 scale) between
each mention and its representative phrase, us-
ing LLM embeddings. The overall Nominal
Dissimilarity Score is the average of inverted
similarity scores (100 - similarity) across all
mentions in the sample, reflecting resolution
difficulty.

This score identifies instances where mentions
within a cluster exhibit low semantic similarity,
increasing resolution difficulty. In cases of pro-
cessing errors (e.g., invalid LLM output), the score
defaults to 0.0 in case of processing errors.

3.2 Pronoun Ambiguity Score

The Pronoun Ambiguity Score evaluates pronom-
inal ambiguity by measuring the level of interfer-
ence from distracting antecedents for pronouns
within the text. We utilize the Gemini Flash 2.0
API for this analysis:

Pronoun Extraction The LLM extracts all pro-
nouns, recording their positions and contexts, and
outputs them in structured JSON format.
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Relationship Analysis For each pronoun, the
LLM identifies potential antecedents within a ±150
character window, categorizing them as either sup-
porting” (those that align with the correct corefer-
ential entity) or distracting” (plausible but incorrect
alternatives based on gender, number, or semantic
agreement). The ambiguity score for each pronoun
is calculated as: distracting count minus supporting
count (higher values indicate greater ambiguity).

Aggregation The overall Pronoun Ambiguity
Score is the average of positive per-pronoun scores
(where distractors outnumber supporters), normal-
ized to a 0–100 scale by dividing by the maximum
observed score in the mini-dev set and multiply-
ing by 100. This focuses on genuinely ambiguous
cases. Summary statistics, including total pronoun
count and score distribution, are computed for vali-
dation purposes. In cases of processing errors (e.g.,
invalid LLM output), the score defaults to 0.0. This
metric captures discourse-level challenges where
multiple candidate antecedents can mislead the res-
olution process.

3.3 Zero Mention Score

The Zero Mention Score quantifies the difficulty
posed by implicit references (e.g., pro-drops),
which require significant syntactic and semantic
inference for reconstruction. These are marked by
”##” in the plaintext format. Instead of using a
tiered system with arbitrary boundaries, we employ
a continuous function to provide a more robust
and principled score. The score is calculated as
a capped linear function of the number of zero-
mention occurrences (Nzero) within the sample:

Szero = min(Nzero × C, 100)

where C is a scaling factor chosen to make the
score’s magnitude comparable to the other two met-
rics. For our experiments, we set C = 2.

3.4 Difficulty Score Integration

The final difficulty score (Sdiff) is computed as a
weighted linear combination of the three compo-
nent scores:

Sdiff = 0.4 · Snom + 0.4 · Spron + 0.2 · Szero

where Snom, Spron, and Szero represent the Nomi-
nal Dissimilarity, Pronoun Ambiguity, and Zero
Mention scores, respectively. The final score is
capped at 100. The weights for this combination

were established to reflect the distinct nature of the
challenges that each metric captures.

Nominal Dissimilarity (Snom) and Pronoun
Ambiguity (Spron) were assigned equal, high
weights of 0.4. We posit that these metrics are
the primary indicators of deep inferential complex-
ity. Snom reflects semantic challenges requiring
world knowledge, while Spron captures structural
ambiguity at the discourse level. Prioritizing these
equally ensures that we select for samples rich in
complex reasoning tasks, which are most beneficial
for challenging the LLM in a few-shot setting.

The Zero Mention score (Szero) was assigned
a lower weight of 0.2. While identifying zero
anaphora is crucial, this metric primarily quantifies
the frequency of the phenomenon rather than the
reasoning complexity of a single instance. There-
fore, it serves as an important secondary factor
that modulates the final score but is weighted less
than the core semantic and discourse challenges.
This weighting scheme is deliberately designed to
favour exemplars that are structurally and seman-
tically complex, aiming to maximize the learning
signal provided to the LLM.

3.5 Sample Selection and Final Inference

To accommodate linguistic diversity, we compute
difficulty scores and perform sample selection on
a per-language basis. For each language, we rank
its mini-dev samples by their difficulty scores and
select the top 3 most challenging examples as few-
shot demonstrations. For unseen languages, we
employ a zero-shot prompt.

The prompts are tailored to each language. Fi-
nally, the constructed prompt, containing instruc-
tions and the selected few-shot examples, is fed to
Grok-3. Grok-3 processes the input test data to
generate coreference predictions, which are subse-
quently converted back to CoNLL-U format using
the provided text2text-coref 2 tool for evaluation.

4 Results and Discussion

Our system secured the third position among four
submissions in the LLM Track, with an average
CoNLL F1-score of 60.09 across all datasets. This
result places our system 2.87 points behind the
top-performing entry’s score of 62.96. Detailed
per-dataset results are presented in Table 1 in the
Appendix.

2https://github.com/ondfa/text2text-coref
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Table 1: Results and rankings of our method on the datasets in the competition.

Dataset F1-score Dataset F1-score Dataset F1-score Dataset F1-score
ca_ancora 68.01 (3) pl_pcc 66.55 (3) no_bokmaalnarc 65.18 (3) hbo_ptnk 45.31 (2)
cs_pcedt 56.94 (3) es_ancora 70.52 (3) no_nynorsknarc 63.00 (3) fr_ancor 63.77 (3)
cs_pdt 62.96 (3) fr_democrat 61.54 (1) tr_itcc 56.06 (2) hi_hdtb 66.85 (3)
de_potsdamcc 57.41 (3) hu_szegedkoref 61.61 (2) cu_proiel 43.74 (3) ko_ecmt 50.32 (4)
en_gum 61.71 (3) ru_rucor 67.59 (4) en_litbank 69.12 (3)
lt_lcc 65.35 (1) hu_korkor 50.58 (2) grc_proiel 47.86 (3)

The strongest performance of our system was ob-
served on the fr_democrat and lt_lcc datasets,
where it achieved the top rank. We attribute this
success to our use of in-context learning with pre-
selected examples, which proved particularly effec-
tive for identifying essential mentions. Similarly,
the system demonstrated competitive performance
on datasets characterized by a high frequency of
zero mentions—such as tr_itcc, ca_ancora, and
hu_szegedkoref securing ranks from 2 to 3. The
high CoNLL F1 scores on these datasets suggest
that our few-shot approach successfully captured
zero-mentions, a key objective of the shared task.

Limitations and Ablation Analysis Despite
these successes, our approach has several limita-
tions that warrant discussion. A key limitation in
our post-hoc analysis is the absence of a direct
baseline comparing our difficulty-aware selection
against a random sampling strategy using the same
Grok-3 model. Such a comparison would have pre-
cisely quantified the performance gain attributable
solely to our selection methodology. While time
and resource constraints of the shared task pre-
vented this ablation study, we acknowledge its im-
portance for a more thorough evaluation. This lack
of a direct baseline is a primary area for future
work.

Beyond the need for a baseline, the overall
performance was constrained by several factors.
Firstly, the model struggled with long input con-
texts, particularly evident in datasets like fr_ancor.
When faced with extensive texts, the model often
failed to maintain context over long distances, lead-
ing to the fragmentation of coreference chains and
an inability to resolve long-distance dependencies.
This issue was compounded by occasional failures
to adhere to the specified output format, which
caused critical errors during the text2conllu con-
version phase and prevented the establishment of
semantic links between distant mentions.

Secondly, our strategy’s reliance on only three
few-shot examples per language, while computa-

tionally efficient, likely provided the LLM with
an insufficient representation of linguistic diversity.
Although our metrics aimed to select the most infor-
mative examples, this low quantity may have con-
strained the model’s ability to generalize across the
full spectrum of coreference phenomena present in
the test data.

Finally, performance was impacted by domain
and language mismatches. The ko_ecmt dataset,
with its admixture of Korean, English, and Chinese
text, posed a significant challenge for our cluster-
ing algorithm. Similarly, the presence of ancient
languages (hbo_ptnk, cu_proiel, grc_proiel),
which are out-of-domain relative to the LLM’s pre-
training data, highlighted the difficulty of adapting
modern LLMs to historically distant linguistic con-
texts, even with targeted few-shot prompting.

5 Conclusion

In this paper, we introduced a few-shot coreference
resolution system for the CRAC 2025 Shared Task
using difficulty-aware in-context learning, achiev-
ing third place in the LLM track. Our approach
demonstrated the viability of no-fine-tuning meth-
ods but was limited by using only three training ex-
emplars per language. This led to coreference chain
fragmentation and reduced performance on long
documents and out-of-domain ancient languages.
Future work will focus on two key areas: first, es-
tablishing a clear baseline against random sampling
to rigorously validate the impact of our difficulty
metrics; and second, exploring methods to incorpo-
rate a larger, yet still curated, set of diverse training
examples to improve generalization and overall
performance.
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Daniel Zeman. 2024. Findings of the third shared
task on multilingual coreference resolution. In Pro-
ceedings of the Seventh Workshop on Computational
Models of Reference, Anaphora and Coreference,
pages 78–96.

Michal Novák, Martin Popel, Daniel Zeman, Zdeněk
Žabokrtský, Anna Nedoluzhko, Kutay Acar, David
Bamman, Peter Bourgonje, Silvie Cinková, Hanne
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Zdeněk Žabokrtský and Maciej Ogrodniczuk, editors.
2022. Proceedings of the CRAC 2022 Shared Task
on Multilingual Coreference Resolution.
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Abstract

In this work, we present our system, which
ranked second in the CRAC 2025 Shared Task
on Multilingual Coreference Resolution (LLM
Track). For multilingual coreference resolu-
tion, our system mainly uses long-context large
language models (LLMs) in a few-shot in-
context learning setting. Among the various
approaches we explored, few-shot prompting
proved to be the most effective, particularly due
to the complexity of the task and the availabil-
ity of high-quality data with referential rela-
tionships provided as part of the competition.
We employed Gemini 2.5 Pro, one of the best
available closed-source long-context LLMs at
the time of submission. Our system achieved
a CoNLL F1 score of 61.74 on the mini-test
set, demonstrating that performance improves
significantly with the number of few-shot exam-
ples provided, thanks to the model’s extended
context window. While this approach comes
with trade-offs in terms of inference cost and
response latency, it highlights the potential of
long-context LLMs for tackling multilingual
coreference without task-specific fine-tuning.
Although direct comparisons with traditional
supervised systems are not straightforward, our
findings provide valuable insights and open av-
enues for future work, particularly in expanding
support for low-resource languages.

1 Introduction

Ever since the work of (Brown et al., 2020) showed
that a general-purpose language model, trained
on diverse internet-scale data, could perform well
across a vast range of NLP tasks, most complex
NLP tasks are now tackled first through text gen-
eration LLMs. However, there have been only a
handful of works on the task of coreference res-
olution using text generation LLMs. This work
presents the second-best approach on the CRAC
2025 Shared Task on Multilingual Coreference Res-
olution (LLM Track) that utilizes the current state-

of-the-art LLM model named Gemini 2.5 Pro (Co-
manici et al., 2025) from Google. This is the fourth
edition of the shared task. Previous editions of the
shared task were conducted successfully in 2022
(Žabokrtský et al., 2022), 2023 (Žabokrtský et al.,
2023), and 2024 (Novák et al., 2024).

Coreference resolution remains one of the most
challenging tasks in natural language processing
(NLP), as it requires a comprehensive understand-
ing of language at multiple levels, including seman-
tics, syntax, discourse structure, and pragmatics.
The complexity of this task is further amplified in
multilingual settings, where variations in linguistic
phenomena, grammatical structures, and referential
expressions across languages introduce additional
challenges. Despite its importance, research on
multilingual coreference resolution remains rela-
tively limited, leaving significant gaps in method-
ologies and resources for addressing this problem
effectively.

Our work is, to the best of our knowledge, the
first to leverage large language models (LLMs)
with extended context lengths for the task of mul-
tilingual coreference resolution. Inspired by prior
approaches that formulate coreference resolution
as a text generation problem (Skachkova, 2024) (Le
and Ritter, 2023) (Gan et al., 2024), our method
processes raw text as input and directly generates
text annotated with coreference clusters as output.

The main contributions of this work are as fol-
lows:

• We present the second-best performing sys-
tem in the CRAC 2025 Shared Task on Multi-
lingual Coreference Resolution (LLM Track),
trailing the top submission by a margin of only
1.22.

• We model multilingual coreference resolution
as an end-to-end text generation task, enabling
the system to learn from few-shot examples
with long context spans.
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• We utilized the current state-of-the-art Gem-
ini 2.5 Pro model for this challenging task,
demonstrating its effectiveness in handling
large-context, multilingual coreference reso-
lution.

2 Related Work

Early approaches to coreference resolution typi-
cally adopted a two-stage framework, first iden-
tifying coreferent mentions and then using these
mentions to construct coreference clusters. This
paradigm was also employed by last year’s shared
task winner (Straka, 2024). In contrast, several
subsequent studies have explored coreference reso-
lution as an end-to-end problem, jointly perform-
ing mention detection and coreference clustering.
Notable contributions in this direction include the
works of (Lee et al., 2017), (Lee et al., 2018), (Joshi
et al., 2019), and (Joshi et al., 2020). Most end-
to-end methods build upon the foundational work
of (Lee et al., 2017), which was the first to train
a coreference model in a fully end-to-end manner,
unlike prior approaches that relied on external sys-
tems for mention detection or clustering.

(Liu et al., 2022) explicitly models the structure
of coreference resolution using language models,
achieving state-of-the-art results on the OntoNotes
benchmark from the CoNLL-12 English shared
task dataset (Pradhan et al., 2013). Similarly,
(Bohnet et al., 2023) demonstrates strong perfor-
mance on the same benchmark through a text-to-
text generation paradigm, where the text is pro-
cessed in an autoregressive manner. Their approach
employs a Link-Append transition system that en-
codes previously established coreference links and
incrementally predicts new ones.

Our approach leverages end-to-end text gener-
ation LLMs for multilingual coreference resolu-
tion, enabling the effective application of few-shot
prompting strategies on raw input texts paired with
their gold annotations from the training split. Fur-
thermore, we extend this methodology by utiliz-
ing recent long-context LLMs, which have demon-
strated state-of-the-art performance across a wide
range of NLP tasks.

3 Experiments

3.1 Dataset
The data utilized in this work is derived from the
CRAC 2025 Shared Task, now in its fourth edition,
and based on the CorefUD 1.3 collection. This

LLM Few-Shot Ex-
amples Token
Count

en gum en
litbank

Gemini 2.5 0 32.10 45.65
Flash 100,000 46.68 63.14

200,000 47.25 51.61
300,000 50.84 44.16

Table 1: Results on the English-GUM and English-
LitBank development sets when varying the token
counts of few-shot examples are reported below. In cer-
tain cases, Gemini 2.5 Flash returned empty responses,
which contributed to the observed performance degra-
dation.

Figure 1: A sample raw text instance from the English-
GUM training split.

year’s dataset encompasses 17 languages, repre-
senting an increase of 6, 4, and 1 languages com-
pared to the 2022, 2023, and 2024 editions, respec-
tively. To facilitate the use of large language mod-
els (LLMs) such as GPT-4o, LLaMA, and Claude
for the coreference resolution task, the organiz-
ers released a text-to-text version of the dataset in
addition to the standard CoNLL-U format. This
alternative representation proved advantageous for
our method, as it enabled the effective application
of few-shot prompting strategies. Examples of in-
put–output pairs employed in our system for few-
shot prompting are provided in Figures 1 and 2.
The token counts for the 22 datasets across the
training, development, and test splits are reported
in Appendix A.1.

3.2 Approach

As mentioned earlier, we adopted an end-to-end
text-to-text approach, where the model receives
an input text and is required to return the same
text with coreference annotations. Initially, we
experimented with zero-shot prompting; however,
this strategy yielded poor results since our prompt
failed to capture all the complexities necessary for
effective coreference resolution. We then moved
to a 4-shot prompting setup using the same in-
structions, which produced more reasonable results.
These four-shot examples were incorporated into
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Figure 2: A gold-annotated version of the same text
shown in Figure 1, taken from the English-GUM train-
ing split.

the system prompt used for all our experiments and
submissions, with the complete prompt provided in
Appendix A.2. These early experiments suggested
that few-shot prompting, supported by well-curated
examples, could be a more effective approach to
this problem.

To validate our hypothesis that incorporating a
large number of well-curated few-shot examples en-
hances model performance, we conducted a small
ablation study on the development splits of the
English-GUM and English-LitBank datasets from
the shared task. The token count distributions for
these datasets, along with others used in the task,
are provided in Appendix A.1. For this experiment,
we employed Gemini 2.5 Flash, as it offers a more
cost-efficient alternative to Gemini 2.5 Pro, partic-
ularly when handling long context lengths. The
results, shown in Table 1, indicate that increasing
the number of high-quality examples generally im-
proves performance, although occasional instances
where Gemini 2.5 Flash produced empty outputs
adversely impacted the overall outcomes of the
ablation study.

To build on this insight, we employed a dynamic
few-shot learning strategy using Google’s Gem-
ini 2.5 Pro model for coreference resolution tasks.
For each test instance, the system dynamically con-
structs a context window by selecting language-
specific training examples and their corresponding
gold-standard annotations, then shuffling them ran-
domly to avoid ordering bias. For instance, we
combined multiple training datasets of the same
language before selecting them as few-shot ex-
amples. The approach leverages adaptive context
management, progressively adding training exam-
ples as human-AI dialogue pairs until reaching a
300,000-token limit, ensuring optimal use of the
model’s context window while maintaining com-

putational efficiency. For certain datasets, such as
Czech-PCEDT, English-GUM, English-LitBank,
and Hungarian-KorKor, we utilized up to 500,000
tokens for few-shot examples, while for the remain-
ing datasets, we limited the few-shot examples to
300,000 tokens in our submission. It is important
to note that we did not use a fixed number of shots
across all datasets.

Each test query is processed within a structured
prompt framework that includes a system prompt, a
few randomized few-shot examples, and the target
input, enabling the model to learn task-specific pat-
terns in-context without parameter updates. This
methodology supports language-adaptive process-
ing by automatically selecting relevant examples
for the target language and provides a scalable,
multilingual framework for evaluating coreference
resolution across diverse linguistic settings. We set
the temperature parameter to zero across all experi-
ments to ensure deterministic outputs and suppress
stochastic or creative variations in the LLM’s re-
sponses.

The complete system prompt used in our ap-
proach is provided in Appendix A.2. Our prompt
design did not capture all the intricacies required
for effectively solving the coreference resolution
task. We included only a limited set of instructions
and omitted explicit guidance for handling zero
mentions. Nevertheless, through few-shot prompt-
ing strategies, our system was able to implicitly
learn and annotate zero mentions successfully.

4 Shared Task Results

The official results of the shared task are summa-
rized in Table 2. Our system, NUST-FewShot,
ranked second among four participating submis-
sions, achieving an average CoNLL F1 score of
61.74, the primary evaluation metric of the task.
The CoNLL F1 score is computed as the un-
weighted average of the F1 scores from MUC, B-
cubed, and CEAFe. Given the multilingual nature
of the datasets, the final score is reported as the
macro-average of the individual CoNLL F1 scores
across all languages.

In addition to the primary CoNLL F1 metric,
three alternative evaluation metrics are reported
in Table 2: partial matching, exact matching, and
head matching with singletons included. Under
partial matching without singletons, our system
performs nearly on par with the top-ranked system.
However, the performance gap becomes slightly
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System head
match

partial
match

exact
match

head
match
(with
single-
tons)

GLaRef-
CRAC25

62.96 61.66 58.98 65.61

NUST-
FewShot

61.74 61.14 56.34 63.44

PUXCRAC2025 60.09 59.68 55.22 54.77
UWB 59.84 59.55 38.81 62.77

Table 2: The table presents the results of all systems
participating in the CRAC 2025 Shared Task on Mul-
tilingual Coreference Resolution (LLM Track). The
primary evaluation metric is the CoNLL F1 score, re-
ported in the second column labeled head-match. Our
system, NUST-FewShot, achieved the second-best over-
all performance among the submitted systems.

more pronounced under the exact matching with-
out singletons and head matching with singletons
metrics.

Table 3 reports our system’s official test re-
sults on the shared-task language-specific datasets,
whereas Table 5 (A.3) reports those of the three best
overall systems. Our system achieved the best per-
formance on 10 out of the 22 datasets. Nonetheless,
a notable performance gap remains between our
system and the top-performing language-specific
models for several datasets, particularly Catalan-
AnCora, Czech-PCEDT, and Czech-PDT. We hy-
pothesize that this discrepancy may be due to our
model’s limited ability to capture fine-grained lin-
guistic nuances unique to these languages, despite
the availability of a substantial number of gold-
annotated examples in their training sets. Overall,
while our approach demonstrates competitive re-
sults on nearly half of the datasets, further abla-
tion studies are necessary to better understand its
strengths and weaknesses and to explore strategies
for improving cross-linguistic adaptability.

5 Conclusion

This paper presented the second-best performing
system in the CRAC 2025 Shared Task (LLM
Track). Our approach achieved top performance on
10 out of the 22 datasets in the competition. We
employed an end-to-end text generation framework
leveraging few-shot learning with Gemini 2.5 Pro,
a state-of-the-art long-context LLM, which pro-
cesses raw text as input and produces coreference-
annotated text as output. Coreference resolution
with LLMs remains a nascent area of research, with
only a handful of recent studies addressing this

Dataset CoNLL score
ca anc 60.87
cs pce 51.36
cs pdt 54.30
cu pro 58.48
de pot 48.74
en gum 69.78
en lit 70.38
es anc 61.75
fr anc 71.94
fr dem 57.59
grc pro 57.85
hbo ptn 80.15
hi hdt 71.32
hu kor 43.49
hu sze 52.27
ko ecm 66.05
lt lcc 59.16

no bok 72.76
no nyn 68.86
pl pcc 70.83
ru ruc 71.40
tr itc 39.00

Table 3: The table shows CoNLL scores for our system
across the 22 test datasets from the CRAC 2025 Shared
Task.

challenge. We hope that our work not only demon-
strates the potential of LLM-based approaches for
this task but also paves the way for future research
exploring this promising direction.
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Limitations

The primary limitations of our work are the re-
liance on multiple LLM calls and the associated
computational cost, which can become significant.
Our approach utilizes Gemini 2.5 Pro with a large
context window via an API interface, leading to
high costs due to the extensive token usage from
few-shot examples, lengthy input texts, and gener-
ated outputs with predictions. Furthermore, we did
not investigate other advanced long-context mod-
els, such as OpenAI’s GPT-4.1 and Meta’s LLaMA
4 Scout, which support context lengths of up to 1
million and 10 million tokens, respectively.
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A Appendix

A.1 Data Distribution
Table 4 presents the token count distribution across
the various datasets included in the shared task.
The token counts are computed specifically using
the Gemini 2.5 Pro tokenizer1, as our submission
was based on this model. Token counts may vary
slightly when calculated with alternative tokenizers
due to differences in their tokenization strategies.

A.2 Prompt
We used the following system prompt in all our
experiments and results:

"""
You are a coreference resolution annotator.

Your job is to read a multilingual passage and
annotate all mentions that refer to the same
underlying entity (could be a word or many
words) using a unique identifier with a brack-
eted pipe-based format. Understand proper
context of the text before making the annota-
tions. Prioritize resolving pronouns based on
proximity and grammatical role, but consider
the semantic context to avoid incorrect annotations.

### Format Rules:

1. Surround every span referring to a shared entity
with the format: ‘mention text|[eID]‘ where eID is
a unique entity ID (e1, e2, ...).

2. If an entity contain multiple words, start the
annotation with a single pipe as ‘|[eID‘ and close it
with a single pipe as ‘|eID]‘ for example ‘|[eID -

1https://ai.google.dev/gemini-api/docs/tokens

entity comes here|eID]‘

3. If a span refers to **multiple entities**, use:
‘text|[eA,[eB] tail|eA],eB]‘ (notice )

4. Use the **same ID** consistently for all men-
tions of the same entity, even across paragraphs.

5. Do **not annotate singleton mentions** (those
that appear only once in the text).

6. Annotate **all types of coreference**: full
noun phrases, pronouns, nested noun mentions,
and even abstract or generic references like "such
outcomes", "it", etc.

7. If there is **nested structure**, use proper
nesting with comma-separated closing IDs.

8. Do not resolve ’it’ if it refers to an implied or
abstract concept (e.g., ’It is widely believed...’).

Example 1:

Original:
Alice went to the park . She brought her dog .

Annotated:
Alice|[e1] went to the park|[e2] . She|[e1] brought
her|[e1] dog|[e3] to the park|[e2] .

Example 2:

Original:
Education and early loves Alina gained her early
formal education at Aberdeen Grammar School
, and in August 1799 entered the school of Dr.
William Glennie , in Dulwich . [ 17 ] Placed under
the care of a Dr. Bailey , she was encouraged to
exercise in moderation but not restrain herself from
" violent " bouts in an attempt to overcompensate
for her deformed foot .

Annotated:
Education|[e1] and early|[e2 loves|e2] Alina|[e3]
gained her|[e1,[e3] early formal education at
Aberdeen|[e4],[e5 Grammar School|e1],e5] , and in
August|[e6 1799|[e7],e6] entered the|[e8 school of
Dr.|[e9 William Glennie|e9] , in Dulwich|[e10],e8]
. [ 17|[e11] ] Placed under the|[e12 care of a|[e13
Dr. Bailey|e12],e13] , she|[e3] was encouraged to
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Language Train Val Test Train Val
(including (including

gold gold
annotations) annotations)

Catalan 483,179 36,371 36,363 795,896 60,446
Czech 2,947,128 92,391 91,706 4,785,013 156,544
Old Church Slavonic 150,355 24,262 18,980 272,045 41,028
German 38,405 4,841 4,623 68,321 8,613
English 375,074 49,229 49,547 864,829 113,484
Spanish 448,164 30,796 30,909 806,930 56,228
French 728,738 61,596 61,100 1,972,972 159,321
Ancient Greek 170,245 10,787 13,288 311,317 18,477
Ancient Hebrew 35,346 48,014 46,851 46,473 63,500
Hindi 48,633 12,482 28,728 88,993 21,456
Hungarian 234,845 28,304 27,543 333,437 40,497
Korean 957,191 61,049 60,973 1,557,657 99,991
Lithuanian 63,638 7,353 7,500 82,708 9,231
Norwegian 595,703 61,901 59,054 1,399,765 143,566
Polish 747,247 43,515 43,105 1,739,784 102,615
Russian 194,110 33,118 18,434 262,653 45,792
Turkish 81,379 8,757 9,523 196,850 20,726
Total 8,299,380 614,766 608,227 15,585,643 1,161,515

Table 4: The token counts for all languages in the shared task, after merging datasets for languages with multiple
sources, are reported on a split-wise basis. The last two columns additionally account for tokens from the gold
annotations.
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exercise in moderation but not restrain herself|[e3]
from "|[e14 violent " bouts|e14] in an|[e15 attempt
to overcompensate for her|[e16,[e3] deformed
foot|e15],e16] .

Example 3:

Original:
Los jugadores de el Espanyol aseguraron hoy que
prefieren enfrentar se a el Barcelona en la final de
la Copa de el Rey en lugar de en las semifinales
, tras clasificar se ayer ambos equipos catalanes
para esta ronda . La mayoría de los jugadores
españolistas expresaron su opinión de que sería
más fácil vencer a su máximo rival en un solo
partido que tener que enfrentar se a el conjunto de
Louis Van Gaal en las semifinales , donde tendrían
que disputar una eliminatoria de ida y vuelta .

Annotated:
Los|[e1 jugadores de el Espanyol|[e2],e1] ase-
guraron hoy que prefieren ##|[e1] enfrentar
se a el Barcelona|[e3] en la|[e4 final de la|[e5
Copa de el Rey|e4],e5] en lugar de en las|[e6
semifinales|e6] , tras clasificar se ayer ambos|[e7
equipos catalanes|e7] para esta|[e6 ronda|e6] .
La|[e1 mayoría de los jugadores españolistas|e1]
expresaron su|[e1] opinión de que sería más fácil
vencer a su|[e2],[e3 máximo rival|e3] en un solo
partido que tener que enfrentar se a el conjunto|[e3
de Louis Van Gaal|e3] en las|[e6 semifinales ,
donde|[e6] tendrían ##|[e7] que disputar una|[e8
eliminatoria de ida y vuelta|e6],e8] .

Example 4:

Original:
Zèbre Zèbre est un nom vernaculaire , ambigu
en français , pouvant désigner plusieurs espèces
différentes d’ herbivores de la famille de les
équidés , et de le genre Equus , vivant en Afrique .
Ils se trouvent principalement en Afrique centrale
et australe . Ces animaux se caractérisent par
des bandes de rayures verticales noires et blanches .

Annotated:
Zèbre|[e1] Zèbre|[e1] est un|[e2 nom vernaculaire
, ambigu|e2] en français|[e3] , pouvant désigner
plusieurs|[e4 espèces différentes d’ herbivores|[e5]
de la|[e6 famille de les|[e7 équidés|e6],e7] , et de

le|[e8 genre Equus|e8] , vivant en Afrique|[e9],e4] .
Ils|[e4] se trouvent principalement en Afrique|[e10
centrale et australe|e10] .
"""

A.3 Top Systems Results
Table 5 presents the CoNLL scores for the top three
overall best-performing systems across the 22 test
datasets from the CRAC 2025 Shared Task.
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System ca anc cs pce cs pdt cu pro de pot en
gum

en lit es anc fr anc

GLaRef-CRAC25 73.45 65.12 71.33 58.25 59.60 58.73 69.01 74.43 66.74
NUST-FewShot 60.87 51.36 54.30 58.48 48.74 69.78 70.38 61.75 71.94
PUXCRAC2025 68.01 56.94 62.96 43.74 57.41 61.71 69.12 70.52 63.77
System fr dem grc

pro
hbo
ptn

hi hdt hu kor hu sze ko
ecm

lt lcc no
bok

GLaRef-CRAC25 60.43 65.75 43.96 56.36 52.53 59.82 63.04 62.55 64.74
NUST-FewShot 57.59 57.85 80.15 71.32 43.49 52.27 66.05 59.16 72.76
PUXCRAC2025 61.54 47.86 45.31 66.85 50.58 61.61 50.32 65.35 65.18

System no
nyn

pl pcc ru ruc tr itc

GLaRef-CRAC25 61.63 72.55 68.79 56.23
NUST-FewShot 68.86 70.83 71.40 39.00
PUXCRAC2025 63.00 66.55 67.59 56.06

Table 5: The table shows the CoNLL scores for the top three overall best-performing systems across the 22 test
datasets from the CRAC 2025 Shared Task. Our system, NUST-FewShot, achieved the best performance on 10 of
the 22 datasets, surpassing the overall top-ranked system, GLaRef-CRAC25, which led on 9 of the 22 datasets.
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