@inproceedings{kong-macken-2025-peter,
title = "Can Peter Pan Survive {MT}? A Stylometric Study of {LLM}s, {NMT}s, and {HT}s in Children{'}s Literature Translation",
author = "Kong, Delu and
Macken, Lieve",
editor = "Vanroy, Bram and
Lefer, Marie-Aude and
Macken, Lieve and
Ruffo, Paola and
Arenas, Ana Guerberof and
Hansen, Damien",
booktitle = "Proceedings of the Second Workshop on Creative-text Translation and Technology (CTT)",
month = jun,
year = "2025",
address = "Geneva, Switzerland",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2025.ctt-1.5/",
pages = "52--70",
ISBN = "978-2-9701897-6-3",
abstract = "This study focuses on evaluating the performance of machine translations (MTs) compared to human translations (HTs) in children{'}s literature translation (CLT) from a stylometric perspective. The research constructs a extitPeter Pan corpus, comprising 21 translations: 7 human translations (HTs), 7 large language model translations (LLMs), and 7 neural machine translation outputs (NMTs). The analysis employs a generic feature set (including lexical, syntactic, readability, and n-gram features) and a creative text translation (CTT-specific) feature set, which captures repetition, rhyme, translatability, and miscellaneous levels, yielding 447 linguistic features in total. Using classification and clustering techniques in machine learning, we conduct a stylometric analysis of these translations. Results reveal that in generic features, HTs and MTs exhibit significant differences in conjunction word distributions and the ratio of 1-word-gram-一样, while NMTs and LLMs show significant variation in descriptive words usage and adverb ratios. Regarding CTT-specific features, LLMs outperform NMTs in distribution, aligning more closely with HTs in stylistic characteristics, demonstrating the potential of LLMs in CLT."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kong-macken-2025-peter">
<titleInfo>
<title>Can Peter Pan Survive MT? A Stylometric Study of LLMs, NMTs, and HTs in Children’s Literature Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Delu</namePart>
<namePart type="family">Kong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lieve</namePart>
<namePart type="family">Macken</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Creative-text Translation and Technology (CTT)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bram</namePart>
<namePart type="family">Vanroy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Aude</namePart>
<namePart type="family">Lefer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lieve</namePart>
<namePart type="family">Macken</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paola</namePart>
<namePart type="family">Ruffo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ana</namePart>
<namePart type="given">Guerberof</namePart>
<namePart type="family">Arenas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Damien</namePart>
<namePart type="family">Hansen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Association for Machine Translation</publisher>
<place>
<placeTerm type="text">Geneva, Switzerland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">978-2-9701897-6-3</identifier>
</relatedItem>
<abstract>This study focuses on evaluating the performance of machine translations (MTs) compared to human translations (HTs) in children’s literature translation (CLT) from a stylometric perspective. The research constructs a extitPeter Pan corpus, comprising 21 translations: 7 human translations (HTs), 7 large language model translations (LLMs), and 7 neural machine translation outputs (NMTs). The analysis employs a generic feature set (including lexical, syntactic, readability, and n-gram features) and a creative text translation (CTT-specific) feature set, which captures repetition, rhyme, translatability, and miscellaneous levels, yielding 447 linguistic features in total. Using classification and clustering techniques in machine learning, we conduct a stylometric analysis of these translations. Results reveal that in generic features, HTs and MTs exhibit significant differences in conjunction word distributions and the ratio of 1-word-gram-一样, while NMTs and LLMs show significant variation in descriptive words usage and adverb ratios. Regarding CTT-specific features, LLMs outperform NMTs in distribution, aligning more closely with HTs in stylistic characteristics, demonstrating the potential of LLMs in CLT.</abstract>
<identifier type="citekey">kong-macken-2025-peter</identifier>
<location>
<url>https://aclanthology.org/2025.ctt-1.5/</url>
</location>
<part>
<date>2025-06</date>
<extent unit="page">
<start>52</start>
<end>70</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Can Peter Pan Survive MT? A Stylometric Study of LLMs, NMTs, and HTs in Children’s Literature Translation
%A Kong, Delu
%A Macken, Lieve
%Y Vanroy, Bram
%Y Lefer, Marie-Aude
%Y Macken, Lieve
%Y Ruffo, Paola
%Y Arenas, Ana Guerberof
%Y Hansen, Damien
%S Proceedings of the Second Workshop on Creative-text Translation and Technology (CTT)
%D 2025
%8 June
%I European Association for Machine Translation
%C Geneva, Switzerland
%@ 978-2-9701897-6-3
%F kong-macken-2025-peter
%X This study focuses on evaluating the performance of machine translations (MTs) compared to human translations (HTs) in children’s literature translation (CLT) from a stylometric perspective. The research constructs a extitPeter Pan corpus, comprising 21 translations: 7 human translations (HTs), 7 large language model translations (LLMs), and 7 neural machine translation outputs (NMTs). The analysis employs a generic feature set (including lexical, syntactic, readability, and n-gram features) and a creative text translation (CTT-specific) feature set, which captures repetition, rhyme, translatability, and miscellaneous levels, yielding 447 linguistic features in total. Using classification and clustering techniques in machine learning, we conduct a stylometric analysis of these translations. Results reveal that in generic features, HTs and MTs exhibit significant differences in conjunction word distributions and the ratio of 1-word-gram-一样, while NMTs and LLMs show significant variation in descriptive words usage and adverb ratios. Regarding CTT-specific features, LLMs outperform NMTs in distribution, aligning more closely with HTs in stylistic characteristics, demonstrating the potential of LLMs in CLT.
%U https://aclanthology.org/2025.ctt-1.5/
%P 52-70
Markdown (Informal)
[Can Peter Pan Survive MT? A Stylometric Study of LLMs, NMTs, and HTs in Children’s Literature Translation](https://aclanthology.org/2025.ctt-1.5/) (Kong & Macken, CTT 2025)
ACL