@inproceedings{braud-etal-2025-disrpt,
title = "The {DISRPT} 2025 Shared Task on Elementary Discourse Unit Segmentation, Connective Detection, and Relation Classification",
author = "Braud, Chlo{\'e} and
Zeldes, Amir and
Li, Chuyuan and
Liu, Yang Janet and
Muller, Philippe",
editor = "Braud, Chlo{\'e} and
Liu, Yang Janet and
Muller, Philippe and
Zeldes, Amir and
Li, Chuyuan",
booktitle = "Proceedings of the 4th Shared Task on Discourse Relation Parsing and Treebanking (DISRPT 2025)",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.disrpt-1.1/",
pages = "1--20",
ISBN = "979-8-89176-344-9",
abstract = "In 2025, we held the fourth iteration of the DISRPT Shared Task (Discourse Relation Parsing and Treebanking) dedicated to discourse parsing across formalisms. Following the success of the 2019, 2021, and 2023 tasks on Elementary Discourse Unit Segmentation, Connective Detection, and Relation Classification, this iteration added 13 new datasets, including three new languages (Czech, Polish, Nigerian Pidgin) and two new frameworks: the ISO framework and Enhanced Rhetorical Structure Theory, in addition to the previously included frameworks: RST, SDRT, DEP, and PDTB. In this paper, we review the data included in DISRPT 2025, which covers 39 datasets across 16 languages, survey and compare submitted systems, and report on system performance on each task for both treebanked and plain-tokenized versions of the data. The best systems obtain a mean accuracy of 71.19{\%} for relation classification, a mean F1 of 91.57 (Treebanked Track) and 87.38 (Plain Track) for segmentation, and a mean F1 of 81.53 (Treebanked Track) and 79.92 (Plain Track) for connective identification. The data and trained models of several participants can be found at https://huggingface.co/multilingual-discourse-hub."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="braud-etal-2025-disrpt">
<titleInfo>
<title>The DISRPT 2025 Shared Task on Elementary Discourse Unit Segmentation, Connective Detection, and Relation Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chloé</namePart>
<namePart type="family">Braud</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amir</namePart>
<namePart type="family">Zeldes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chuyuan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="given">Janet</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Muller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Shared Task on Discourse Relation Parsing and Treebanking (DISRPT 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chloé</namePart>
<namePart type="family">Braud</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="given">Janet</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Muller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amir</namePart>
<namePart type="family">Zeldes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chuyuan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-344-9</identifier>
</relatedItem>
<abstract>In 2025, we held the fourth iteration of the DISRPT Shared Task (Discourse Relation Parsing and Treebanking) dedicated to discourse parsing across formalisms. Following the success of the 2019, 2021, and 2023 tasks on Elementary Discourse Unit Segmentation, Connective Detection, and Relation Classification, this iteration added 13 new datasets, including three new languages (Czech, Polish, Nigerian Pidgin) and two new frameworks: the ISO framework and Enhanced Rhetorical Structure Theory, in addition to the previously included frameworks: RST, SDRT, DEP, and PDTB. In this paper, we review the data included in DISRPT 2025, which covers 39 datasets across 16 languages, survey and compare submitted systems, and report on system performance on each task for both treebanked and plain-tokenized versions of the data. The best systems obtain a mean accuracy of 71.19% for relation classification, a mean F1 of 91.57 (Treebanked Track) and 87.38 (Plain Track) for segmentation, and a mean F1 of 81.53 (Treebanked Track) and 79.92 (Plain Track) for connective identification. The data and trained models of several participants can be found at https://huggingface.co/multilingual-discourse-hub.</abstract>
<identifier type="citekey">braud-etal-2025-disrpt</identifier>
<location>
<url>https://aclanthology.org/2025.disrpt-1.1/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>1</start>
<end>20</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The DISRPT 2025 Shared Task on Elementary Discourse Unit Segmentation, Connective Detection, and Relation Classification
%A Braud, Chloé
%A Zeldes, Amir
%A Li, Chuyuan
%A Liu, Yang Janet
%A Muller, Philippe
%Y Braud, Chloé
%Y Liu, Yang Janet
%Y Muller, Philippe
%Y Zeldes, Amir
%Y Li, Chuyuan
%S Proceedings of the 4th Shared Task on Discourse Relation Parsing and Treebanking (DISRPT 2025)
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-344-9
%F braud-etal-2025-disrpt
%X In 2025, we held the fourth iteration of the DISRPT Shared Task (Discourse Relation Parsing and Treebanking) dedicated to discourse parsing across formalisms. Following the success of the 2019, 2021, and 2023 tasks on Elementary Discourse Unit Segmentation, Connective Detection, and Relation Classification, this iteration added 13 new datasets, including three new languages (Czech, Polish, Nigerian Pidgin) and two new frameworks: the ISO framework and Enhanced Rhetorical Structure Theory, in addition to the previously included frameworks: RST, SDRT, DEP, and PDTB. In this paper, we review the data included in DISRPT 2025, which covers 39 datasets across 16 languages, survey and compare submitted systems, and report on system performance on each task for both treebanked and plain-tokenized versions of the data. The best systems obtain a mean accuracy of 71.19% for relation classification, a mean F1 of 91.57 (Treebanked Track) and 87.38 (Plain Track) for segmentation, and a mean F1 of 81.53 (Treebanked Track) and 79.92 (Plain Track) for connective identification. The data and trained models of several participants can be found at https://huggingface.co/multilingual-discourse-hub.
%U https://aclanthology.org/2025.disrpt-1.1/
%P 1-20
Markdown (Informal)
[The DISRPT 2025 Shared Task on Elementary Discourse Unit Segmentation, Connective Detection, and Relation Classification](https://aclanthology.org/2025.disrpt-1.1/) (Braud et al., DISRPT 2025)
ACL