@inproceedings{nayel-etal-2025-nayel,
title = "{NAYEL}@{D}ravidian{L}ang{T}ech-2025: Character N-gram and Machine Learning Coordination for Fake News Detection in {D}ravidian Languages",
author = "Nayel, Hamada and
Aldawsari, Mohammed and
Shashirekha, Hosahalli Lakshmaiah",
editor = "Chakravarthi, Bharathi Raja and
Priyadharshini, Ruba and
Madasamy, Anand Kumar and
Thavareesan, Sajeetha and
Sherly, Elizabeth and
Rajiakodi, Saranya and
Palani, Balasubramanian and
Subramanian, Malliga and
Cn, Subalalitha and
Chinnappa, Dhivya",
booktitle = "Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages",
month = may,
year = "2025",
address = "Acoma, The Albuquerque Convention Center, Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.dravidianlangtech-1.103/",
doi = "10.18653/v1/2025.dravidianlangtech-1.103",
pages = "605--608",
ISBN = "979-8-89176-228-2",
abstract = "This paper introduces the detailed description of the submitted model by the team NAYEL to Fake News Detection in Dravidian Languages shared task. The proposed model uses a simple character n-gram TF-IDF as a feature extraction approach integrated with an ensemble of various classical machine learning classification algorithms. While the simplicity of the proposed model structure, although it outperforms other complex structure models as the shared task results observed. The proposed model achieved a f1-score of 87.5{\%} and secured the 5th rank."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nayel-etal-2025-nayel">
<titleInfo>
<title>NAYEL@DravidianLangTech-2025: Character N-gram and Machine Learning Coordination for Fake News Detection in Dravidian Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hamada</namePart>
<namePart type="family">Nayel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammed</namePart>
<namePart type="family">Aldawsari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hosahalli</namePart>
<namePart type="given">Lakshmaiah</namePart>
<namePart type="family">Shashirekha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bharathi</namePart>
<namePart type="given">Raja</namePart>
<namePart type="family">Chakravarthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruba</namePart>
<namePart type="family">Priyadharshini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anand</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Madasamy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sajeetha</namePart>
<namePart type="family">Thavareesan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Sherly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saranya</namePart>
<namePart type="family">Rajiakodi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Balasubramanian</namePart>
<namePart type="family">Palani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malliga</namePart>
<namePart type="family">Subramanian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Subalalitha</namePart>
<namePart type="family">Cn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dhivya</namePart>
<namePart type="family">Chinnappa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Acoma, The Albuquerque Convention Center, Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-228-2</identifier>
</relatedItem>
<abstract>This paper introduces the detailed description of the submitted model by the team NAYEL to Fake News Detection in Dravidian Languages shared task. The proposed model uses a simple character n-gram TF-IDF as a feature extraction approach integrated with an ensemble of various classical machine learning classification algorithms. While the simplicity of the proposed model structure, although it outperforms other complex structure models as the shared task results observed. The proposed model achieved a f1-score of 87.5% and secured the 5th rank.</abstract>
<identifier type="citekey">nayel-etal-2025-nayel</identifier>
<identifier type="doi">10.18653/v1/2025.dravidianlangtech-1.103</identifier>
<location>
<url>https://aclanthology.org/2025.dravidianlangtech-1.103/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>605</start>
<end>608</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NAYEL@DravidianLangTech-2025: Character N-gram and Machine Learning Coordination for Fake News Detection in Dravidian Languages
%A Nayel, Hamada
%A Aldawsari, Mohammed
%A Shashirekha, Hosahalli Lakshmaiah
%Y Chakravarthi, Bharathi Raja
%Y Priyadharshini, Ruba
%Y Madasamy, Anand Kumar
%Y Thavareesan, Sajeetha
%Y Sherly, Elizabeth
%Y Rajiakodi, Saranya
%Y Palani, Balasubramanian
%Y Subramanian, Malliga
%Y Cn, Subalalitha
%Y Chinnappa, Dhivya
%S Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages
%D 2025
%8 May
%I Association for Computational Linguistics
%C Acoma, The Albuquerque Convention Center, Albuquerque, New Mexico
%@ 979-8-89176-228-2
%F nayel-etal-2025-nayel
%X This paper introduces the detailed description of the submitted model by the team NAYEL to Fake News Detection in Dravidian Languages shared task. The proposed model uses a simple character n-gram TF-IDF as a feature extraction approach integrated with an ensemble of various classical machine learning classification algorithms. While the simplicity of the proposed model structure, although it outperforms other complex structure models as the shared task results observed. The proposed model achieved a f1-score of 87.5% and secured the 5th rank.
%R 10.18653/v1/2025.dravidianlangtech-1.103
%U https://aclanthology.org/2025.dravidianlangtech-1.103/
%U https://doi.org/10.18653/v1/2025.dravidianlangtech-1.103
%P 605-608
Markdown (Informal)
[NAYEL@DravidianLangTech-2025: Character N-gram and Machine Learning Coordination for Fake News Detection in Dravidian Languages](https://aclanthology.org/2025.dravidianlangtech-1.103/) (Nayel et al., DravidianLangTech 2025)
ACL