@inproceedings{t-t-etal-2025-ssntrio,
title = "{SSNT}rio@{D}ravidian{L}ang{T}ech2025: {LLM} Based Techniques for Detection of Abusive Text Targeting Women",
author = "T T, Mirnalinee and
Bhuvana, J and
Koushik, Avaneesh and
Seshan, Diya and
R, Rohan",
editor = "Chakravarthi, Bharathi Raja and
Priyadharshini, Ruba and
Madasamy, Anand Kumar and
Thavareesan, Sajeetha and
Sherly, Elizabeth and
Rajiakodi, Saranya and
Palani, Balasubramanian and
Subramanian, Malliga and
Cn, Subalalitha and
Chinnappa, Dhivya",
booktitle = "Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages",
month = may,
year = "2025",
address = "Acoma, The Albuquerque Convention Center, Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.dravidianlangtech-1.74/",
doi = "10.18653/v1/2025.dravidianlangtech-1.74",
pages = "415--419",
ISBN = "979-8-89176-228-2",
abstract = "This study focuses on developing a solution for detecting abusive texts on social media against women in Tamil and Malayalam, two low-resource Dravidian languages in South India. As the usage of social media for communication and idea sharing has increased significantly, these platforms are being used to target and victimize women. Hence an automated solution becomes necessary to screen the huge volume of content generated. This work is part of the shared Task on Abusive Tamil and Malayalam Text targeting Women on Social MediaDravidianLangTech@NAACL 2025. The approach used to tackle this problem involves utilizing LLM based techniques for classifying abusive text. The Macro Average F1-Score for the Tamil BERT model was 0.76 securing the 11th position, while the Malayalam BERT model for Malayalam obtained a score of 0.30 and secured the 33rd rank. The proposed solution can be extended further to incorporate other regional languages as well based on similar techniques."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="t-t-etal-2025-ssntrio">
<titleInfo>
<title>SSNTrio@DravidianLangTech2025: LLM Based Techniques for Detection of Abusive Text Targeting Women</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirnalinee</namePart>
<namePart type="family">T T</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Bhuvana</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Avaneesh</namePart>
<namePart type="family">Koushik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diya</namePart>
<namePart type="family">Seshan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rohan</namePart>
<namePart type="family">R</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bharathi</namePart>
<namePart type="given">Raja</namePart>
<namePart type="family">Chakravarthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruba</namePart>
<namePart type="family">Priyadharshini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anand</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Madasamy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sajeetha</namePart>
<namePart type="family">Thavareesan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Sherly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saranya</namePart>
<namePart type="family">Rajiakodi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Balasubramanian</namePart>
<namePart type="family">Palani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malliga</namePart>
<namePart type="family">Subramanian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Subalalitha</namePart>
<namePart type="family">Cn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dhivya</namePart>
<namePart type="family">Chinnappa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Acoma, The Albuquerque Convention Center, Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-228-2</identifier>
</relatedItem>
<abstract>This study focuses on developing a solution for detecting abusive texts on social media against women in Tamil and Malayalam, two low-resource Dravidian languages in South India. As the usage of social media for communication and idea sharing has increased significantly, these platforms are being used to target and victimize women. Hence an automated solution becomes necessary to screen the huge volume of content generated. This work is part of the shared Task on Abusive Tamil and Malayalam Text targeting Women on Social MediaDravidianLangTech@NAACL 2025. The approach used to tackle this problem involves utilizing LLM based techniques for classifying abusive text. The Macro Average F1-Score for the Tamil BERT model was 0.76 securing the 11th position, while the Malayalam BERT model for Malayalam obtained a score of 0.30 and secured the 33rd rank. The proposed solution can be extended further to incorporate other regional languages as well based on similar techniques.</abstract>
<identifier type="citekey">t-t-etal-2025-ssntrio</identifier>
<identifier type="doi">10.18653/v1/2025.dravidianlangtech-1.74</identifier>
<location>
<url>https://aclanthology.org/2025.dravidianlangtech-1.74/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>415</start>
<end>419</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SSNTrio@DravidianLangTech2025: LLM Based Techniques for Detection of Abusive Text Targeting Women
%A T T, Mirnalinee
%A Bhuvana, J.
%A Koushik, Avaneesh
%A Seshan, Diya
%A R, Rohan
%Y Chakravarthi, Bharathi Raja
%Y Priyadharshini, Ruba
%Y Madasamy, Anand Kumar
%Y Thavareesan, Sajeetha
%Y Sherly, Elizabeth
%Y Rajiakodi, Saranya
%Y Palani, Balasubramanian
%Y Subramanian, Malliga
%Y Cn, Subalalitha
%Y Chinnappa, Dhivya
%S Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages
%D 2025
%8 May
%I Association for Computational Linguistics
%C Acoma, The Albuquerque Convention Center, Albuquerque, New Mexico
%@ 979-8-89176-228-2
%F t-t-etal-2025-ssntrio
%X This study focuses on developing a solution for detecting abusive texts on social media against women in Tamil and Malayalam, two low-resource Dravidian languages in South India. As the usage of social media for communication and idea sharing has increased significantly, these platforms are being used to target and victimize women. Hence an automated solution becomes necessary to screen the huge volume of content generated. This work is part of the shared Task on Abusive Tamil and Malayalam Text targeting Women on Social MediaDravidianLangTech@NAACL 2025. The approach used to tackle this problem involves utilizing LLM based techniques for classifying abusive text. The Macro Average F1-Score for the Tamil BERT model was 0.76 securing the 11th position, while the Malayalam BERT model for Malayalam obtained a score of 0.30 and secured the 33rd rank. The proposed solution can be extended further to incorporate other regional languages as well based on similar techniques.
%R 10.18653/v1/2025.dravidianlangtech-1.74
%U https://aclanthology.org/2025.dravidianlangtech-1.74/
%U https://doi.org/10.18653/v1/2025.dravidianlangtech-1.74
%P 415-419
Markdown (Informal)
[SSNTrio@DravidianLangTech2025: LLM Based Techniques for Detection of Abusive Text Targeting Women](https://aclanthology.org/2025.dravidianlangtech-1.74/) (T T et al., DravidianLangTech 2025)
ACL
- Mirnalinee T T, J Bhuvana, Avaneesh Koushik, Diya Seshan, and Rohan R. 2025. SSNTrio@DravidianLangTech2025: LLM Based Techniques for Detection of Abusive Text Targeting Women. In Proceedings of the Fifth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages, pages 415–419, Acoma, The Albuquerque Convention Center, Albuquerque, New Mexico. Association for Computational Linguistics.