
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 254–263
November 4-9, 2025 ©2025 Association for Computational Linguistics

PromptSuite: A Task-Agnostic Framework for Multi-Prompt
Generation

Eliya Habba* Noam Dahan∗ Gili Lior Gabriel Stanovsky
The Hebrew University of Jerusalem

eliya.habba@mail.huji.ac.il

Abstract

Evaluating LLMs with a single prompt has
proven unreliable, with small changes leading
to significant performance differences. How-
ever, generating the prompt variations needed
for a more robust multi-prompt evaluation is
challenging, limiting its adoption in practice.
To address this, we introduce PromptSuite, a
framework that enables the automatic genera-
tion of various prompts. PromptSuite is flexi-
ble – working out of the box on a wide range
of tasks and benchmarks. It follows a mod-
ular prompt design, allowing controlled per-
turbations to each component, and is extensi-
ble, supporting the addition of new components
and perturbation types. Through a series of
case studies, we show that PromptSuite pro-
vides meaningful variations to support strong
evaluation practices. All resources, includ-
ing the Python API, source code, user-friendly
web interface, and demonstration video, are
available at: https://eliyahabba.github.
io/PromptSuite/.

1 Introduction

Recent studies have demonstrated that LLMs are
highly sensitive to small, meaning-preserving vari-
ations in task formulation. Minor changes, rang-
ing from adding white spaces to instruction para-
phrasing, lead to substantial differences in per-
formance and model ranking (Sclar et al., 2023;
Mizrahi et al., 2024). This sensitivity has been
explored in the evaluation of many NLP tasks in
zero and few shot settings, such as text classifica-
tions (Chakraborty et al., 2023; Reif and Schwartz,
2024); multiple-choice question answering (Habba
et al., 2025; Alzahrani et al., 2024); and text gener-
ation tasks (Resendiz and Klinger, 2024), raising
concerns about the validity of evaluation performed
using a single prompt.

*Equal contribution.

Evaluating over multiple prompts is currently
challenging because there is no standard way to ex-
tend existing benchmarks, which were largely com-
piled using a single prompt. Evidently, despite its
major limitation, single-prompt evaluations are still
prevalent in many NLP tasks (Gu et al., 2024a,b;
Lior et al., 2025).

To address this major challenge standing in the
way of meaningful evaluation in NLP, we present
PromptSuite, a framework that generates multiple
prompts, employing both LLMs as well as rule-
based heuristics to generate variations along dimen-
sions that were found to affect model performance.
PromptSuite is built around three core principles,
presented in Section 2. First, PromptSuite is flex-
ible, designed to work out of the box on a wide
range of benchmarks. Second, PromptSuite fol-
lows a modular design that decomposes prompts
into four components: instruction, prompt format,
demonstration, and instance content, and Prompt-
Suite enables targeted perturbations to each com-
ponent, making it easy to evaluate their impact and
adapt to new tasks. Finally, PromptSuite is exten-
sible, supporting future LLM evaluation research
with easy extensions for new prompt components
and perturbations.

PromptSuite provides different types of perturba-
tions to each prompt component, including format-
ting, paraphrasing, context addition, and few-shot
demonstration editing, as illustrated in Figure 1. In
Section 3, we provide further details on the per-
turbation types, as well as demonstrate how to use
our API to transform raw data into multiple prompt
variations with just a few lines of code.

In Section 4, we demonstrate the flexibility of
our framework through a series of case studies. We
assess the impact of prompt variation on nine di-
verse tasks with two SOTA LLMs, highlighting the
utility of PromptSuite for multi-prompt evaluation.

Our contributions are as follows:

254

mailto:eliya.habba@mail.huji.ac.il
https://eliyahabba.github.io/PromptSuite/
https://eliyahabba.github.io/PromptSuite/

Who composed Hamilton?
Lin-Manuel Miranda
What genre is Antigone?
Tragedy

Answer the following question:

Instruction:

Demonstrations:

Instance content:

Prompt Components Perturbations

Formatting

Paraphrase

Formatting

Context addition

Demonstration
 Editing

PromptSuite Output

Answer the question

Think carefully and reply

Who wrote Romeo and Juliet?

Who wrote A Doll’s
House?
Henrik Ibsen

Question:
Answer:

Prompt Format:

QUESTION ||
ANSWER ||

This romantic tragedy tells
the story of two young lovers
from feuding families. Who
wrote Romeo and Juliet?

Perturb
each

component
& combine

Figure 1: PromptSuite framework: configure a modular prompt, and apply component-wise perturbations. This
modularity enables PromptSuite to generalize across tasks and adapt to diverse data.

1. We present PromptSuite, an easy-to-use frame-
work that provides the prompt variations
needed for multi-prompt evaluation across a
wide range of tasks, working out of the box
with diverse benchmarks and datasets.

2. We evaluate PromptSuite’s capabilities
through a series of case studies that demon-
strate its ability to reveal LLM sensitivity
to prompt variations across a diverse set of
tasks.

3. We show PromptSuite’s modular design en-
ables isolating the effect of individual prompt
component perturbations, enabling future re-
search into the causes of LLM sensitivity.

2 PromptSuite’s Principles

We build PromptSuite on three core principles to
make it useful across a variety of use cases and
applicable over time.

Flexible PromptSuite must be able to support a
diverse range of tasks out of the box. We achieve
this by relying only on the prompt structure and
not its content. We demonstrate this flexibility in
Section 4, where we use PromptSuite to get prompt
variations in 9 different tasks, including question
answering, multiple-choice reasoning, translation,
summarization, and code generation.

Modular PromptSuite is built around a modular
representation, treating each prompt as a combi-
nation of independent components, as shown in
Figure 1. This design enables targeted perturba-
tions to specific components, supporting evaluation
of their impact on model performance and allowing
adaptation to new tasks, formats, or datasets.

Extensible PromptSuite is built to support future
research in the field of LLM evaluation. In particu-
lar, it is easy to add new prompt components and
new types of perturbations through our open-source
code.1

3 PromptSuite

PromptSuite is a flexible, modular and extensible
framework that generates diverse prompts needed
for robust evaluation. For a given dataset, it outputs
a set of prompt variations for few-shot or zero-
shot settings, where each sample from the dataset
appears multiple times with different prompts. For
example, in Listing 1, we load SQuAD (Rajpurkar
et al., 2016a) through Hugging Face, set up the
prompt and choose to paraphrase the instruction
and apply formatting to the prompt format. This
results in 9 prompt variations per sample, with just
a few lines of code, and minimal information about
the dataset.

1https://www.github.com/eliyahabba/PromptSuite

255

https://www.github.com/eliyahabba/PromptSuite

from promptsuite import PromptSuite

Initialize
ps = PromptSuite ()

1) Load dataset directly from HF
ps.load_dataset("rajpurkar/squad")

2) Setup template and 3) Choose
perturbations

template = {
'instruction ': 'Please␣answer␣the␣

following␣questions.',
'prompt␣format ': 'Q:␣{question }\nA:␣{

answer}',
"instruction␣variations": ["

paraphrase_with_llm"],
"prompt␣format␣variations": ["format␣

structure"],
}
ps.set_template(template)

4) Generate variations
ps.configure(variations_per_field =3,

api_platform="OpenAI", model_name="
gpt -4o-mini")

variations = mp.generate(verbose=True)

Export results
ps.export("output.json", format="json")

Listing 1: Code snippet for using PromptSuite API.
Here we apply paraphrasing to the instruction with an
LLM and formatting to the prompt format.

In this section, we briefly describe the modu-
lar prompt design and the supported perturbations,
followed by an overview of how PromptSuite is
used.

3.1 Modular Prompt and Perturbations

PromptSuite treats each prompt as a concatenation
of components, allowing controlled perturbations
to each part, as illustrated in Figure 1. This inter-
pretation of prompt structure is an integration of
several recent works that identified prompt compo-
nents that affect overall performance (Sclar et al.,
2023; Mondshine et al., 2025). Specifically, each
prompt is comprised of: instruction (e.g., “Answer
the following question”, “Summarize the following
text”); prompt format (e.g, “Question:, Answer:”,
“Text:, Summary:”); demonstrations; and instance
content – the current sample the model is evaluated
on (“Who wrote Romeo and Juliet?”).

Each component can be subjected to different
perturbations, as detailed in Table 1. All of the
perturbations preserve the original meaning of the
prompt, as well as the intended output. Formatting
refers to changes that modify either the structure of

the prompt or the appearance of its textual content.
These are rule-based perturbations which can be
applied to all prompt components2 and include for
example: inserting extra spaces; introducing typos
(e.g., “apple” → “aplpe”); changing letter casing,
and altering punctuation. This form of noise mim-
ics the kind of variation found in real-world user
inputs (Ravichander et al., 2021), and has been
shown to affect model performance (Sclar et al.,
2023).

Paraphrasing is an LLM-based perturbation that
changes the wording of the instruction. We use the
prompting method of Mizrahi et al. (2024), which
has been shown to produce paraphrases that surface
models’ sensitivity.

Context addition perturbation adds thematically
related text to the prompt without changing the gold
answer or providing additional hints. While the
task remains unchanged, the added content makes
the prompt longer and potentially more challenging
for the model (Levy et al., 2024).

Lastly, Demonstration Editing refers to changes
to the few-shot demonstration – namely, the num-
ber of examples, which ones are included, and their
order, following (Lu et al., 2021). In addition to
the general perturbation strategies, we also sup-
port task-specific features for common setups (e.g.,
changing enumerators in multi-answer questions).
These are described in Appendix A.1.

3.2 Using PromptSuite
We provide a detailed overview of using Prompt-
Suite. The package containing PromptSuite can be
installed in the desired environment using pip:

pip install promptsuite

PromptSuite transforms raw data into diverse
prompt variations in four steps, as can be seen in
Listing 1.

(1) Load datasets: PromptSuite supports data
from HuggingFace Datasets Library or local
sources, including pandas DataFrames, JSON, and
CSV files.

(2) Setup template: To apply the desired pertur-
bations, PromptSuite requires the structure of the
prompt and which dataset columns should be used
in it. The Instruction, like “Please answer the fol-
lowing question”, is given as a plain string. The
Prompt format, such as Q: question A: answer,

2Different implementations are applied to different com-
ponents

256

Perturbation Type Applicable Components Description

Formatting Instruction, prompt format,
demonstrations,
instance content

Adds surface-level noise to the text It includes inserting
extra spaces, introducing typos, changing letter casing,
and altering punctuation. Following (Sclar et al., 2023).

Paraphrase Instruction Creates semantically equivalent variations to the instruc-
tion that differ in phrasing and style. Following (Mizrahi
et al., 2024).

Context addition Instance content Uses an LLM to add text related to the instance con-
tent without revealing or changing the answer. Follow-
ing (Liu et al., 2023; Levy et al., 2024).

Demonstration Editing Demonstrations Changes the few-shot examples, their order and their
number. Following (Lu et al., 2021).

Table 1: Overview of the perturbation types supported by PromptSuite. The “Applicable Components” column
specifies which prompt components each perturbation can be applied to. For example, paraphrasing is applicable to
the instruction component.

is written using Python’s f-string syntax. Each
placeholder (e.g., question) must match a column
name in the dataset. For example, in Listing 1, the
columns are ’question’ and ’answer’.

(3) Choose perturbations: Each component
may be subjected to different perturbations, accord-
ing to the user’s choice, as described in Table 1.
These choices are added to the template setup, by
specifying the name of the component and the vari-
ation. For example, in Listing 1, we choose to cre-
ate LLM-based paraphrase on the instruction and
apply formatting to the prompt format. To ensure
maximum flexibility, users can not only modify
the prompt components (i.e, instruction, prompt
format, demonstrations, and instance content) but
also apply alterations to any column included as a
placeholder in the prompt template.

(4) Generate variations: Lastly, the user can
specify the number of perturbations per component.
To ensure the dataset remains manageable in terms
of cost and memory, users can also limit the total
number of generated rows. Since each component
supports multiple perturbations, the number of pos-
sible dataset variations grows exponentially with
the number of chosen perturbations. To produce a
manageable dataset size, we provide an option to
randomly select a combination of the desired per-
turbations and apply them across the entire dataset,
following the approach of Habba et al. (2025).

PromptSuite is also available via a web inter-
face. We offer the full capabilities of PromptSuite
through a web UI, as illustrated in Figure 2.3 Users

3https://promptsuite.streamlit.app/

follow the same steps described above: first, up-
load their single-prompt dataset, then configure the
prompt components and select the desired pertur-
bations for each component. As shown in the fig-
ure, PromptSuite’s web UI allows users to explore
the generated variations, highlighting the changes
applied to each row. The interface also provides
several predefined templates for popular tasks, in-
cluding multiple-choice QA, sentiment analysis,
open-ended QA, and text classification, enabling a
quick and easy plug-and-play setup for users who
wish to automatically generate multi-prompt ver-
sions of their datasets.

4 Evaluation

We demonstrate that PromptSuite is flexible and
generalizes across a wide range of tasks by ap-
plying it to nine diverse benchmarks. Our results
show that multi-prompt evaluation reveals substan-
tial performance variance that would have been
missed using a single prompt. We further assess
the impact of perturbations to individual prompt
components on model performance by leveraging
PromptSuite’s modular design.

4.1 Experimental Setup
Tasks and datasets. We evaluate PromptSuite
on: (1) MMLU (Hendrycks et al., 2021) for
multiple-choice reasoning across 12 subjects; (2)
GSM8K (Cobbe et al., 2021) for mathemati-
cal problem solving; (3) SST (Socher et al.,
2013) for sentiment analysis; (4) WMT14 (Bo-
jar et al., 2014) for translation across 6 lan-
guage pairs (CS/HI/RU↔EN); (5) CNN/Daily-
Mail (Hermann et al., 2015) for summarization;
(6) MuSiQue (Trivedi et al., 2022) for multi-hop

257

https://promptsuite.streamlit.app/

Figure 2: PromptSuite’s web UI. Left-to-right: uploading a dataset; configuring the template and choosing
perturbations; and generating a multi-prompt dataset. The presented example demonstrates a single prompt variation,
with changes to the prompt format and instance content.

question answering; (7) SQuAD (Rajpurkar et al.,
2016b) for reading comprehension; (8) GPQA-
Diamond (Rein et al., 2024) for graduate-level rea-
soning; and (9) HumanEval (Chen et al., 2021) for
code generation.

Models. We evaluate GPT-4o-mini and Llama-
3.3-70B, representing closed and open-source
LLMs. Temperature is set to 0 to ensure consistent
and deterministic outputs. For code generation, we
use a temperature of 0.8, since Pass@k relies on
generating multiple candidate solutions, and a non-
zero temperature is essential to ensure a diverse
set of outputs across multiple runs for the same
prompt, as demonstrated in (Chen et al., 2021).

Prompt variations. For each task, we generate
variations using: paraphrasing, formatting applied
to the prompt format and demonstration editing.
We process 50 rows per dataset with up to 25 varia-
tions per row, resulting in approximately 1,250 eval-
uated prompts per task and a total of 37,000 LLM
outputs (detailed calculations in Appendix A.1, Ta-
ble 3, and token counts in Table 4). This yields
comprehensive coverage while remaining compu-
tationally tractable.

Manual validation. To validate our results, we
conducted human validation of a subset of 100
LLM-based paraphrases. Two in-house annotators
independently annotated all 100 samples, reach-
ing 95% agreement (Cohen’s k = 0.593). They
judged that 96% of the paraphrases preserved the
original meaning of the instruction. The samples
that were tagged as incorrect were either due to the
use of a less accurate synonym (e.g., for sentiment
analysis instruction, it rephrased “sentiment” into

“emotional tone”, which can be ambiguous, or the
omission of the system message, such as “you are
an expert in QA”).

4.2 Results
Below we outline interesting conclusions derived
from our experiments using PromptSuite.

Models exhibit sensitivity to the prompt pertur-
bations across all tasks, underscoring the utility
of PromptSuite. Figures 3a and 3b show perfor-
mance distributions across prompt variations for
Llama-3.3-70B and GPT-4o-mini, respectively. We
observe substantial variability. For instance, on
GPQA-Diamond, GPT-4o-mini’s accuracy ranges
from 20% to 50% across variations. This vari-
ance is particularly striking when compared to typ-
ical performance differences between competing
models, which often amount to just a few percent-
age points (Lior et al., 2025). The consistency of
this pattern across diverse tasks demonstrates that
prompt sensitivity is not limited to specific domains
but represents a general challenge in LLM evalua-
tion.

PromptSuite’s modularity enables systematic
ablation, showing that the impact of prompt
component perturbations varies across tasks
and models. PromptSuite’s modularity allows
a systematic ablation study that assesses the im-
pact of changes in specific prompt components
on model performance. We perturb one prompt
component at a time to measure its specific effect,
testing instruction paraphrasing, formatting applied
to either the prompt format or the instance content
and demonstrations editing. We conduct this exper-
iment on GPQA-Diamond, SQuAD and GSM8K.

258

0 20 40 60 80 100

Performance (%)

MMLU
Multiple Choice
(Accuracy)

GPQA Diamond
Proof Math

(Accuracy)

GSM8K
Open Math Problems

(Accuracy)

HumanEval
Code Generation

(Pass@1)

SST
Sentiment Analysis

(MAE)

WMT14
Translation
(BLEU)

CNNDaily Mail
Summarization
(ROUGE 1)

SQuAD
Reading Comprehension

(WordF1)

MuSiQue
Multihop Questions

(WordF1)

(a) Llama-3.3-70B

0 20 40 60 80 100

Performance (%)

MMLU
Multiple Choice
(Accuracy)

GPQA Diamond
Proof Math

(Accuracy)

GSM8K
Open Math Problems

(Accuracy)

HumanEval
Code Generation

(Pass@1)

SST
Sentiment Analysis

(MAE)

WMT14
Translation
(BLEU)

CNNDaily Mail
Summarization
(ROUGE 1)

SQuAD
Reading Comprehension

(WordF1)

MuSiQue
Multihop Questions

(WordF1)

(b) GPT-4o-mini

Figure 3: Multi-prompt evaluation results using PromptSuite. The boxplots illustrate variance across different
prompt perturbations, revealing models’ sensitivity to prompt variations and underscoring the utility of PromptSuite
for deriving robust and meaningful evaluations of LLM capabilities.

Each perturbation was evaluated on 50 examples
with 20 variations per example, yielding 1000 eval-
uated prompts per component-task combination for
each model. Figure 4 presents the performance
distributions across perturbation types in GPQA-
Diamond. For example, we observe that demon-
stration editing caused high variance in Llama-3.3-
70B’s performance, whereas for other tasks (Fig-
ure 5 in the Appendix), demonstration editing had
almost no effect on Llama-3.3-70B’s performance.
Similarly, for GPT-4o-mini, prompt formatting had
almost no effect on GPQA-Diamond (Figure 4),
but showed a more significant effect for SQuAD
(Figure 5). These inconsistencies across models
and tasks underscore the importance of a flexible
and modular framework like PromptSuite, which
enables systematic analysis of prompt component
effects. For example, practitioners can leverage
PromptSuite for a more efficient evaluation strat-
egy, by first experimenting on a small subset of the
data to identify the most influential prompt compo-
nents, and then conducting a focused large-scale
evaluation that concentrates only on the perturba-
tions with the most significant impact.

5 Related Work

A few existing frameworks support a subset
of PromptSuite’s capabilities. To the best of
our knowledge, they are task-specific and re-
quire manual control over input variations. NL-

Demonstrations
Editing

Prompt Format
Formatting

Instruction
Paraphrase

Instance Content
Formatting

0

10

20

30

40

50

A
cc

ur
ac

y
(%

)

GPQA-Diamond
GPT-4o mini
Llama-3.3-70B

Figure 4: Analysis of how perturbations to individual
prompt components affect model sensitivity on GPQA-
Diamond. Each boxplot represents an experiment in
which a single prompt component was varied while all
others remained fixed.

Augmenter (Dhole et al., 2021) is a crowd-sourced
repository for perturbations. While it provides a
wide range of task-specific transformations and
filters, it operates solely on the input data and
does not account for instructions or templates, both
of which are critical for robust few-shot evalua-
tion. Unitxt (Bandel et al., 2024) is a library for
data preparation and evaluation, with some tasks
supporting a limited number of data alterations.
Prompt-Agnostic Fine-Tuning (PAFT) (Wei et al.,
2025) also seeks to reduce prompt sensitivity by
generating diverse prompts, but incorporates them
during finetuning rather than at evaluation time.

259

6 Conclusion

We introduce PromptSuite, a framework that gen-
erates prompt variations needed for multi-prompt
evaluation. It is flexible, uses a modular design
for controlled perturbations, and is easily extensi-
ble. Through case studies, we show that the vari-
ations generated by PromptSuite are sufficient to
test model sensitivity.

7 Limitations

While PromptSuite provides a general, task-
agnostic framework for multi-prompt evaluation,
this generality comes with a tradeoff. Some tasks
may involve specific variations or prompt struc-
tures that PromptSuite does not currently support.
Specifically, this limitation arises in cases where
evaluation is not straightforward (e.g., multi-turn
chat). To mitigate this limitation, we designed
our code to be easily extensible, allowing users
to add additional prompt components or variations
as needed.

References
Norah Alzahrani, Hisham Alyahya, Yazeed Alnumay,

Sultan AlRashed, Shaykhah Alsubaie, Yousef Al-
mushayqih, Faisal Mirza, Nouf Alotaibi, Nora Al-
Twairesh, Areeb Alowisheq, M Saiful Bari, and
Haidar Khan. 2024. When benchmarks are targets:
Revealing the sensitivity of large language model
leaderboards. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 13787–
13805, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Elron Bandel, Yotam Perlitz, Elad Venezian, Roni
Friedman-Melamed, Ofir Arviv, Matan Orbach,
Shachar Don-Yehyia, Dafna Sheinwald, Ariel Gera,
Leshem Choshen, and 1 others. 2024. Unitxt:
Flexible, shareable and reusable data preparation
and evaluation for generative ai. arXiv preprint
arXiv:2401.14019.

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and Aleš Tam-
chyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12–58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Mohna Chakraborty, Adithya Kulkarni, and Qi Li. 2023.
Zero-shot approach to overcome perturbation sensi-
tivity of prompts. arXiv preprint arXiv:2305.15689.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. Preprint, arXiv:2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Kaustubh D Dhole, Varun Gangal, Sebastian Gehrmann,
Aadesh Gupta, Zhenhao Li, Saad Mahamood, Abi-
naya Mahendiran, Simon Mille, Ashish Shrivastava,
Samson Tan, and 1 others. 2021. Nl-augmenter: A
framework for task-sensitive natural language aug-
mentation. arXiv preprint arXiv:2112.02721.

Alex Gu, Wen-Ding Li, Naman Jain, Theo Olausson, Ce-
line Lee, Koushik Sen, and Armando Solar-Lezama.
2024a. The counterfeit conundrum: Can code lan-
guage models grasp the nuances of their incorrect
generations? In Findings of the Association for Com-
putational Linguistics: ACL 2024, pages 74–117,
Bangkok, Thailand. Association for Computational
Linguistics.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando
Solar-Lezama, Gabriel Synnaeve, and Sida I Wang.
2024b. Cruxeval: A benchmark for code reason-
ing, understanding and execution. arXiv preprint
arXiv:2401.03065.

Eliya Habba, Ofir Arviv, Itay Itzhak, Yotam Perlitz,
Elron Bandel, Leshem Choshen, Michal Shmueli-
Scheuer, and Gabriel Stanovsky. 2025. Dove: A
large-scale multi-dimensional predictions dataset
towards meaningful llm evaluation. Preprint,
arXiv:2503.01622.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

Karl Moritz Hermann, Tomáš Kočiský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. Preprint, arXiv:1506.03340.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. 2024.
Same task, more tokens: the impact of input length on
the reasoning performance of large language models.
arXiv preprint arXiv:2402.14848.

Gili Lior, Eliya Habba, Shahar Levy, Avi Caciularu,
and Gabriel Stanovsky. 2025. Reliableeval: A recipe
for stochastic llm evaluation via method of moments.
arXiv preprint arXiv:2505.22169.

260

https://doi.org/10.18653/v1/2024.acl-long.744
https://doi.org/10.18653/v1/2024.acl-long.744
https://doi.org/10.18653/v1/2024.acl-long.744
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.18653/v1/2024.findings-acl.7
https://doi.org/10.18653/v1/2024.findings-acl.7
https://doi.org/10.18653/v1/2024.findings-acl.7
https://arxiv.org/abs/2503.01622
https://arxiv.org/abs/2503.01622
https://arxiv.org/abs/2503.01622
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/1506.03340
https://arxiv.org/abs/1506.03340

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How language mod-
els use long contexts. Preprint, arXiv:2307.03172.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021. Fantastically ordered
prompts and where to find them: Overcoming
few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786.

Moran Mizrahi, Guy Kaplan, Dan Malkin, Rotem Dror,
Dafna Shahaf, and Gabriel Stanovsky. 2024. State
of what art? a call for multi-prompt llm evaluation.
Transactions of the Association for Computational
Linguistics, 12:933–949.

Itai Mondshine, Tzuf Paz-Argaman, and Reut Tsarfaty.
2025. Beyond english: The impact of prompt trans-
lation strategies across languages and tasks in multi-
lingual llms. arXiv preprint arXiv:2502.09331.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016a. Squad: 100,000+ ques-
tions for machine comprehension of text. Preprint,
arXiv:1606.05250.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016b. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Abhilasha Ravichander, Siddharth Dalmia, Maria
Ryskina, Florian Metze, Eduard Hovy, and Alan W
Black. 2021. Noiseqa: Challenge set evalua-
tion for user-centric question answering. Preprint,
arXiv:2102.08345.

Yuval Reif and Roy Schwartz. 2024. Beyond perfor-
mance: Quantifying and mitigating label bias in llms.
Preprint, arXiv:2405.02743.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R Bowman. 2024. Gpqa:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Yarik Menchaca Resendiz and Roman Klinger.
2024. Mopo: Multi-objective prompt optimiza-
tion for affective text generation. arXiv preprint
arXiv:2412.12948.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane
Suhr. 2023. Quantifying language models’ sensitiv-
ity to spurious features in prompt design or: How i
learned to start worrying about prompt formatting.
arXiv preprint arXiv:2310.11324.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.

In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. Musique: Multi-
hop questions via single-hop question composition.
Preprint, arXiv:2108.00573.

Chenxing Wei, Yao Shu, Mingwen Ou, Ying Tiffany
He, and Fei Richard Yu. 2025. Paft: Prompt-agnostic
fine-tuning. Preprint, arXiv:2502.12859.

A Example Appendix

A.1 Task-Specific Perturbations
For multiple choice questions, multi-document or
any tasks that includes a list as input we offer per-
turbations of said list, presented in Table 2. This
includes support for enumerating the list items, as
well as shuffling the order (while changing the gold
answer accordingly, if applicable).

261

https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1606.05250
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://arxiv.org/abs/2102.08345
https://arxiv.org/abs/2102.08345
https://arxiv.org/abs/2405.02743
https://arxiv.org/abs/2405.02743
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://arxiv.org/abs/2108.00573
https://arxiv.org/abs/2108.00573
https://arxiv.org/abs/2502.12859
https://arxiv.org/abs/2502.12859

Perturbation Type Applicable
Fields

Description

Enumerate lists, comma
separated val-
ues

adds enumeration to a specified field, such as multiple-
choice options, by prepending each item with a number
or letter (e.g., 1., A., a.). Following (Habba et al., 2025)

Shuffle lists shuffles the items in a list and updates the gold field to
reflect the new index of the correct answer. For example,
if the correct answer was originally at position B and
is moved to position C after shuffling, the gold label is
updated accordingly. Following (Habba et al., 2025)

Table 2: Task-specific perturbation types in PromptSuite. The "Applicable Fields" column indicates which types of
data column the perturbation works on.

Benchmark/Task Questions Variations Total (Q × V)

MMLU Multiple Choice(12 subjects, 10 questions each) 120 50 6000
GSM8K Open Math Problems 50 25 1250
HumanEval Code Generation 50 25 1250
SST Sentiment Analysis 50 50 2500
WMT14 Translation (CS/HI/RU ↔ EN) 60 50 3000
CNN-DailyMail Summarization 50 25 1250
MuSiQue Multihop Questions 50 25 1250
SQuAD Reading Comprehension 50 25 1250
GPQA–Diamond Google-Proof Math 50 25 1250

Total across both models – – 37,375

Table 3: Number of evaluated examples per benchmark. Each row indicates the number of base questions and
variations, with the total computed as their product. Note: Values shown reflect the GPT-4o mini configuration.
For LLaMA-3-3.7B, the MuSiQue dataset included only 25 base questions (instead of 50) due to limited context
window constraints, yielding a total of 625 examples for that task. Total reflects the combined number of evaluations
across both models.

Demonstrations
Editing

Prompt Format
Formatting

Instruction
Paraphrase

Instance Content
Formatting

45

50

55

60

65

70

75

W
or

d
F1

 (%
)

SQuAD
GPT-4o mini
Llama-3.3-70B

Demonstrations
Editing

Prompt Format
Formatting

Instruction
Paraphrase

Instance Content
Formatting

70

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)

GSM8K
GPT-4o mini
Llama-3.3-70B

Figure 5: Analysis of how perturbations to individual prompt components affect model sensitivity on SQuAD and
GSM8K. Each boxplot represents an experiment in which a single prompt component was varied while all others
remained fixed.

262

Benchmark/Task Input Tokens Output Tokens
GPT-4o mini Llama-3.3 70B GPT-4o mini Llama-3.3 70B

MMLU Multiple Choice 1389791 1391104 68403 173011
GSM8K Open Math Problems 722880 731987 223225 135769
HumanEval Code Generation 7259990 7228940 285569 285313
SST Sentiment Analysis 479750 487721 10934 108987
WMT14 Translation 409989 422709 34478 95237
CNN-DailyMail Summarization 3888319 3940895 167329 155074
MuSiQue Multihop Questions 8586023 8102151 17371 14525
SQuAD Reading Comprehension 1279578 1288793 10099 9787
GPQA–Diamond Google-Proof Math 1658817 1679053 384586 461600

Table 4: Token usage per benchmark across GPT-4o mini and Llama-3.3 70B. The table shows the number of input
and output tokens consumed for each benchmark.

263

