@inproceedings{hevia-etal-2025-roboto2,
title = "{ROBOTO}2: An Interactive System and Dataset for {LLM}-assisted Clinical Trial Risk of Bias Assessment",
author = "Hevia, Anthony and
Chintalapati, Sanjana and
Lai, Veronica Ka Wai and
Tam, Nguyen Thanh and
Wong, Wai-Tat and
Klassen, Terry P and
Wang, Lucy Lu",
editor = {Habernal, Ivan and
Schulam, Peter and
Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-demos.2/",
pages = "12--25",
ISBN = "979-8-89176-334-0",
abstract = "We present ROBoto2, an open-source, web-based platform for large language model (LLM)-assisted risk of bias (ROB) assessment of clinical trials. ROBoto2 streamlines the traditionally labor-intensive ROB v2 (ROB2) annotation process via an interactive interface that combines PDF parsing, retrieval-augmented LLM prompting, and human-in-the-loop review. Users can upload clinical trial reports, receive preliminary answers and supporting evidence for ROB2 signaling questions, and provide real-time feedback or corrections to system suggestions. ROBoto2 is publicly available at https://roboto2.vercel.app/, with code and data released to foster reproducibility and adoption. We construct and release a dataset of 521 pediatric clinical trial reports (8954 signaling questions with 1202 evidence passages), annotated using both manually and LLM-assisted methods, serving as a benchmark and enabling future research. Using this dataset, we benchmark ROB2 performance for 4 LLMs and provide an analysis into current model capabilities and ongoing challenges in automating this critical aspect of systematic review."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hevia-etal-2025-roboto2">
<titleInfo>
<title>ROBOTO2: An Interactive System and Dataset for LLM-assisted Clinical Trial Risk of Bias Assessment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anthony</namePart>
<namePart type="family">Hevia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sanjana</namePart>
<namePart type="family">Chintalapati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronica</namePart>
<namePart type="given">Ka</namePart>
<namePart type="given">Wai</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nguyen</namePart>
<namePart type="given">Thanh</namePart>
<namePart type="family">Tam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wai-Tat</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Terry</namePart>
<namePart type="given">P</namePart>
<namePart type="family">Klassen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucy</namePart>
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Habernal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Schulam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-334-0</identifier>
</relatedItem>
<abstract>We present ROBoto2, an open-source, web-based platform for large language model (LLM)-assisted risk of bias (ROB) assessment of clinical trials. ROBoto2 streamlines the traditionally labor-intensive ROB v2 (ROB2) annotation process via an interactive interface that combines PDF parsing, retrieval-augmented LLM prompting, and human-in-the-loop review. Users can upload clinical trial reports, receive preliminary answers and supporting evidence for ROB2 signaling questions, and provide real-time feedback or corrections to system suggestions. ROBoto2 is publicly available at https://roboto2.vercel.app/, with code and data released to foster reproducibility and adoption. We construct and release a dataset of 521 pediatric clinical trial reports (8954 signaling questions with 1202 evidence passages), annotated using both manually and LLM-assisted methods, serving as a benchmark and enabling future research. Using this dataset, we benchmark ROB2 performance for 4 LLMs and provide an analysis into current model capabilities and ongoing challenges in automating this critical aspect of systematic review.</abstract>
<identifier type="citekey">hevia-etal-2025-roboto2</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-demos.2/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>12</start>
<end>25</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ROBOTO2: An Interactive System and Dataset for LLM-assisted Clinical Trial Risk of Bias Assessment
%A Hevia, Anthony
%A Chintalapati, Sanjana
%A Lai, Veronica Ka Wai
%A Tam, Nguyen Thanh
%A Wong, Wai-Tat
%A Klassen, Terry P.
%A Wang, Lucy Lu
%Y Habernal, Ivan
%Y Schulam, Peter
%Y Tiedemann, Jörg
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-334-0
%F hevia-etal-2025-roboto2
%X We present ROBoto2, an open-source, web-based platform for large language model (LLM)-assisted risk of bias (ROB) assessment of clinical trials. ROBoto2 streamlines the traditionally labor-intensive ROB v2 (ROB2) annotation process via an interactive interface that combines PDF parsing, retrieval-augmented LLM prompting, and human-in-the-loop review. Users can upload clinical trial reports, receive preliminary answers and supporting evidence for ROB2 signaling questions, and provide real-time feedback or corrections to system suggestions. ROBoto2 is publicly available at https://roboto2.vercel.app/, with code and data released to foster reproducibility and adoption. We construct and release a dataset of 521 pediatric clinical trial reports (8954 signaling questions with 1202 evidence passages), annotated using both manually and LLM-assisted methods, serving as a benchmark and enabling future research. Using this dataset, we benchmark ROB2 performance for 4 LLMs and provide an analysis into current model capabilities and ongoing challenges in automating this critical aspect of systematic review.
%U https://aclanthology.org/2025.emnlp-demos.2/
%P 12-25
Markdown (Informal)
[ROBOTO2: An Interactive System and Dataset for LLM-assisted Clinical Trial Risk of Bias Assessment](https://aclanthology.org/2025.emnlp-demos.2/) (Hevia et al., EMNLP 2025)
ACL