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Abstract

Language models trained with a fixed vocabu-
lary struggle to generalize to novel or out-of-
vocabulary words, limiting their flexibility in
handling diverse token combinations. Existing
dynamic vocabulary approaches attempt to ad-
dress this limitation but face challenges such
as fragmented codebases, lack of support for
modern LLMs, and limited inference scalabil-
ity. To overcome these issues, we introduce
DVAGEN, a fully open-source, unified frame-
work designed for training, evaluation, and vi-
sualization of dynamic vocabulary-augmented
language models. Our framework modularizes
the pipeline for ease of customization, inte-
grates seamlessly with open-source LLMs, and
is the first to provide both CLI and WebUI tools
for real-time result inspection. We validate the
effectiveness of dynamic vocabulary methods
on modern LLMs and demonstrate support for
batch inference, significantly improving infer-
ence throughput.1

1 Introduction

Most language models (Grattafiori et al., 2024;
Yang et al., 2025) are typically trained on a fixed
vocabulary, which constrains their ability to gen-
eralize beyond the training corpus. This limita-
tion becomes apparent when encountering novel
(out-of-vocabulary) words or when attempting to
efficiently generate phrases composed of arbitrary
token combinations.

Instead of relying solely on a pre-trained tok-
enizer with a static vocabulary, recent studies have
adopted dynamic vocabulary approaches to aug-
ment the generation process, thereby enhancing
modeling capabilities for natural languages (Lan
et al., 2023; Cao et al., 2024; Liu et al., 2024) and
even protein languages (Liu et al., 2025).

* Equal Contribution
† Corresponding Author
1Codes are publicly available at https://github.com/

AntNLP/DVAGen.

However, these prior works rely on diverse code-
bases, some of which are not yet fully open sourced,
and lack a unified framework for training, infer-
ence, and visualization of results augmented by
dynamic vocabulary. Furthermore, they primarily
focus on GPT-2 based language models (Radford
et al., 2019; Ferruz et al., 2022), without validation
on Large Language Models (LLMs). Additionally,
the absence of support for batch inference further
increases inference latency, despite the methods
demonstrating promising inference speed when pro-
cessing a single input at a time.

To address these issues, we present DVAGEN

and our key contributions are highlighted below.

A fully open-source, unified framework for
training, evaluation, and visualization. We pro-
pose a unified framework that decouples individual
modules, allowing users to customize each com-
ponent. The framework supports the full training
and inference pipeline (train, chat, and eval)
for developing dynamic vocabulary-augmented ap-
plications. Furthermore, we are the first to offer
both command-line tools and a WebUI interface
for visualizing generation results.

Integration of existing open-source LLMs and
their validation. Existing open-source LLMs can
be easily integrated into DVAGEN in a plug-and-
play manner. We further evaluate the language
modeling performance of LLMs using our frame-
work and validate the effectiveness of employing
dynamic vocabulary methods on LLMs.

Supports batch inference to enhance infer-
ence throughput. Dynamic vocabulary methods
demonstrate promising capabilities in reducing to-
ken usage during decoding. Owing to their se-
quence compression abilities, these methods ex-
hibit low inference latency. Building on this foun-
dation, DVAGEN supports batch inference, further
maximizing inference speed.
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2 Background

Research on dynamic vocabulary generation ad-
dresses key limitations of standard language mod-
els that rely on static tokenization. Traditional ap-
proaches like Byte-Pair Encoding (BPE) and Word-
Piece employ fixed vocabularies (Radford et al.,
2019; Devlin et al., 2019), which struggle to in-
corporate domain-specific phrases or multi-token
expressions during generation. Efforts to enhance
static vocabularies, such as Multi-Word Tokeniza-
tion (MWT) (Gee et al., 2023), expand vocabularies
with frequent n-grams but remain inflexible post-
training.

Retrieval-augmented methods have emerged
as alternatives. Document-level approaches like
RETRO (Borgeaud et al., 2022) integrate retrieved
passages via cross-attention but incur high la-
tency. The Copy-is-All-You-Need (CoG) frame-
work (Lan et al., 2023) pioneered phrase-level re-
trieval through a two-stage pipeline: first retriev-
ing relevant documents, then extracting candidate
phrases. While CoG supports variable-length gen-
eration, it processes phrases as token sequences
during input, creating inconsistency between in-
put and output representations. CoG-2 (Cao et al.,
2024) advanced this paradigm by enabling direct
phrase retrieval without document pre-filtering. Us-
ing syntactic heuristics and self-reinforced training,
CoG-2 improved knowledge-intensive task perfor-
mance but maintains the output-only phrase han-
dling limitation of its predecessor.

The dynamic vocabulary approach (Liu et al.,
2024) constitutes a fundamental architectural shift.
It introduces a causal Transformer-based phrase en-
coder that maps arbitrary text spans to atomic units,
unifying their treatment in both input and output
layers. This eliminates the token-phrase inconsis-
tency seen in CoG variants. The method operates
plug-and-play, requiring no model retraining when
incorporating new phrases. The dynamic vocab-
ulary’s end-to-end atomic processing provides a
more unified solution for fluency, efficiency, and
verifiability in text generation.

3 DVAGEN

In this section, we introduce the overall architecture
of DVAGEN, as illustrated in Figure 1.

3.1 DVAModel

The DVA framework integrates a dynamic phrase
encoder with a standard language model (LM)

through a projection layer, enabling on-the-fly
vocabulary expansion. Formally, given a static
vocabulary V and a phrase candidate set P =
{p1, . . . , pm} from PhraseSampler, the model
operates as follows:

Phrase Encoding For each phrase pi ∈ P , to-
kenize it into subwords [w1, . . . , ws] using the
Phrase Encoder’s static tokenizer (e.g., GPT-2’s
BPE), then compute its embedding via the Phrase
Encoder:

epi = Projector (PhraseEncoder(w1:s)s)

where w1:s denotes subword embeddings of pi, and
the last token’s hidden state is taken as the vector
representation of pi. A Projector then maps this to
the LM’s embedding space. Typically, the Phrase
Encoder is a causal Transformer model, and the
Projector is an MLP.

Vocabulary Expansion Concatenate phrase em-
beddings with LM’s original input/output embed-
ding matrices:

E′
in = [Ein,EP ] , E′

out = [Eout,EP ]

where EP = [ep1 , . . . , epm ] ∈ Rd×m. The expan-
sion is dynamic, that is for each sentence, we can
attach different EP for generation.

Generation The DVAModel then generate on
the expanded dynamic vocabulary. At step t, we
compute logits on both token vocabulary V and
phrase candidates P , and choose the output yt ∈
V ∪ P accordingly:

yt ∼ Softmax(htE′
out) ∈ R|V |+|P |

where ht is the last hidden state of the LM. We note
that DVAGEN allows each sentence in a batch to
have a different set of phrase candidates, in which
case a phrase mask is incorporated in DVA Logits
Processor to filter out a specific set in EP for that
sentence.

3.2 PhraseSampler

The PhraseSampler S extracts candidate phrases
P from retrieved documents D using configurable
strategies. DVAGEN provides a set of pre-defined
strategies:

• NToken: Samples n-gram token sequences from
tokenized text.
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Figure 1: The overall architecture of DVAGEN. The light color boxes represent modules, while the dashed boxes
indicate collections of modules with relevant functions.

• NWord: Extracts word-level n-grams via word
tokenization (e.g., using NLTK).

• FMM (Forward Maximum Matching): Suppose
the current position in the text is i from a corpus
C, then a segment C[i : i+m] is identified such
that it appears in at least one sentence of the
corpus C, and m is the maximum value satisfying
this condition. This segment will be extracted as
a phrase, and the process continues from position
i+m.

Custom samplers can be integrated by imple-
menting the interface P ← S(D, config).

3.3 DVATokenizer
Denote input text as X = x1, x2, ..., xL where L
is the length of input text. There are three main
function in DVATokenizer.

Tokenize This function can split text to phrases
and tokens according to P :

Tokenize(X,P ) = {x′1, x′2, ..., x′L′}, L′ ≤ L

where x′i ∈ P ∪X is original token or candidate
phrase.

Encode It can encode input text to input ids.

Encode(X,P ) = {id1, id2, ..., idL′}, L′ ≤ L

type(idi) =

{
token, if idi < |V |
phrase, otherwise

If the idi’s value exceeds the vocabulary size |V |,
it is a token ID; otherwise, it is a phrase ID.

Decode This function is the inverse function of
encode which can get the original text from the
mixed ids.

Decode(Encode(X,P)) = X

3.4 Training

DVAGEN supports full-parameter fine-tuning,
LoRA fine-tuning (Hu et al., 2022), and training
with a frozen language model backbone. Differ-
ent training strategies share a similar processing
paradigm, as illustrated in Figure 2. Given a train-
ing dataset D, we first sample a batch containing
m training samples. A PhraseSampler is then
applied to sample phrases from the batch. With an
arbitrary combination of tokens and phrases within
each training sample, we employ a DVATokenizer
to encode them into discrete token and phrase ids
for subsequent training.

Training Dataset

Phrase Sampler

Sample Sample Encode

DVATokenizer

Data Samples Phrase Candidates Encoded Samples

Training

Figure 2: The overall training pipline of DVAGEN.

3.5 Inference and Evaluation

Inference The inference paradigm differs from
the training process by incorporating the retrieval
of the top k most relevant supporting documents.
The overall inference pipeline is illustrated in Fig-
ure 3. Given an input prefix, we employ a Re-
triever implemented using an embedding model
with a FAISS backend (Douze et al., 2024) to en-
able efficient similarity search on dense vectors.
Building on top of LangChain2, we utilize the GPU
version of FAISS (Johnson et al., 2019) to acceler-
ate the retrieval process. The retrieved supporting
documents are then used to sample phrases using

2https://github.com/langchain-ai/langchain
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a PhraseSampler, and the sampled phrases serve
as candidates for constructing the dynamic vocab-
ulary. It is worth noting that for different input
prefixes, the phrase candidates vary according to
the retrieved supporting documents. Unlike pre-
vious studies (Lan et al., 2023; Liu et al., 2024)
that do not support batch inference, we implement
the DVALogitsProcessor to mask irrelevant log-
its (i.e., those corresponding to phrase ids associ-
ated with phrases unrelated to the current input).
The positions to be masked are determined based
on phrase candidates from other inputs within the
same batch.

Corpus

Retriever

Build

Index
Vector Index

Retrieve

Supporting 

Documents

Sample

Phrase Candidates

Encode

Encoded

Candidates

Phrase Sampler DVATokenizer

Inference

Figure 3: The overall inference pipline of DVAGEN.

Evaluation Evaluation across various tasks are
supported in DVAGEN, including basic language
modeling and a range of downstream tasks. To
ensure ease of use and fair comparisons, our frame-
work includes implementations of a wide array
of evaluation metrics. These metrics are catego-
rized into three types: (1) generation quality (e.g.,
MAUVE (Pillutla et al., 2021), Rep-N and Diver-
sity (Welleck et al., 2019), and Perplexity), (2) se-
quence compression (e.g., Normalized Sequence
Length and Bytes per Token (Dagan et al., 2024)),
and (3) downstream task performance (e.g., Recall,
Precision, F1, and ROUGE-L (Lin, 2004)).

3.6 Visualization

Our web application is developed using the
Django3, featuring a front-end interface built with
Bulma4 to provide a clean and responsive user ex-
perience, and DVAGEN handles all text generation
tasks in backend.

Figure 4 presents the input area of the front-
end interface. The brown input box allows users
to enter an initial query or prefix text, while the
yellow phrase input area beneath it is specifically
designed for defining dynamic vocabulary—users
can specify phrases that the model should prioritize
during generation. After completing the inputs,

3https://www.djangoproject.com/
4https://bulma.io/

users can click the "Generate" button to initiate the
generation process.

Figure 5 displays the output area of the inter-
face after generation is complete. The generated
text appears in the grey output box. By clicking
on any token or phrase in the box, users can view
a scrollable list of candidate alternatives for that
position, along with their associated probabilities.
Users may then select a preferred alternative to
replace the original token or phrase, thereby con-
structing a new prefix for controlled generation. To
support more targeted interaction, the interface also
offers filter options such as "Phrases", "Tokens &
Phrases" and "Tokens", enabling users to refine the
candidate list by category and focus on the specific
categoriy of alternatives.

Figure 4: The screenshot of the DVAGEN WebUI inter-
face.

Figure 5: The screenshot displays the generation outputs.
Phrases are highlighted in red, and the logit probabilities
for each token and phrase can be viewed by clicking on
the respective token or phrase.
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To intuitively present the complex outputs gener-
ated by our model, we have developed a powerful
visualization application.

Figure 6 illustrates the visualization generated
by the application, which accurately captures the
model’s interpretation of each token and phrase
within the generated text. Tokens and phrases are
distinguished using distinct color schemes—for in-
stance, blue represents tokens, while purple-red de-
notes phrases. The shade of each color reflects the
corresponding generation probability, with deeper
shades indicating higher probabilities. A heatmap
positioned at the top of the visualization clearly
maps probability values to color intensities. Addi-
tionally, the application offers extensive customiza-
tion options, enabling users to adjust token and
phrase colors, font sizes, and image resolution to
suit their specific analytical or presentation require-
ments.

Figure 6: Visualization of generation outputs is repre-
sented in blue for token distribution and red for phrase
distribution. The brightness of the colors reflects the
logit probabilities, with darker colors indicating higher
confidence.

4 Evaluation

4.1 Language Modeling

Setup We first show that DVAGEN can enhance
the basic language modeling capabilities of LLMs.
To evaluate this, we select the pre-trained base mod-

els Qwen3-0.6B5, Qwen3-1.7B6, Llama3.2-1B7,
and Llama3.2-3B8. These models are fine-tuned on
the WikiText-103 training set to serve as baselines.
To ensure a fair comparison across different model
families, a GPT-2 (Radford et al., 2019) tokenizer
is employed to extract the first 32 tokens from
each test sample as input. During inference with
DVAGEN, we utilize the NTokenPhraseSampler
to sample phrases from the given input prefixes.
Qwen3-Embedding-0.6B9 is used as the embed-
ding model for Retriever, and 32 documents are
retrieved for each sample.

Results As shown in Table 1, our key findings
can be summarized as follows:

(1) DVAGEN improves generation quality
while requiring fewer tokens to generate the
same content. DVAGEN helps maintain a lower
Rep-N score and higher diversity, particularly for
Llama models. The improvement in the MAUVE
score indicates the generation of more natural and
coherent language that closely matches human-
written text. More importantly, training with
DVAGEN significantly enhances sequence com-
pression capability, demonstrating improved effi-
ciency in reducing both tokens and decoding steps.

(2) Freezing the language model during train-
ing is memory-efficient and achieves perfor-
mance on par with that of a trainable backbone.
The results highlight that training with a frozen
language model backbone yields performance on
par with a trainable backbone while significantly
reducing memory requirements. The evaluations
offer insights for future research aimed at develop-
ing memory-efficient methods and reducing model
size to enable more efficient training and inference.

4.2 Inference Performance

Setup To evaluate the generation performance
of DVAGEN, we compare the tokens and UTF-8
bytes generated per second by Qwen3-0.6B and
DVAGEN-Qwen3-0.6B. For a fair comparison,
both models are evaluated on the WikiText-103
test set under identical settings. Each sample in
a batch consists of 32 tokens as input prefix, and

5https://huggingface.co/Qwen/Qwen3-0.6B-Base
6https://huggingface.co/Qwen/Qwen3-1.7B-Base
7https://huggingface.co/meta-llama/Llama-3.

2-1B
8https://huggingface.co/meta-llama/Llama-3.

2-3B
9https://huggingface.co/Qwen/

Qwen3-Embedding-0.6B
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Models MAUVE ↑ Rep-2 ↓ Rep-3 ↓ Rep-4 ↓ Diversity ↑ PPL ↓ NSL ↓ Bytes per
Token ↑

Qwen3-0.6B 21.70 11.46 5.07 3.05 81.49 51.09 1.00 3.17
DVAGEN-Qwen3-0.6B 24.31 19.68 10.92 7.59 66.12 22.29 0.87 4.84
DVAGEN-Qwen3-0.6B 24.41 14.81 6.46 3.61 76.82 24.19 0.85 4.89

Qwen3-1.7B 22.74 10.21 4.14 2.19 84.18 57.55 1.00 3.27
DVAGEN-Qwen3-1.7B 24.92 18.64 10.26 7.21 67.76 21.73 0.86 4.88
DVAGEN-Qwen3-1.7B 23.57 16.05 7.88 4.99 73.47 19.93 0.99 4.63

Llama3.2-1B 24.74 17.28 8.73 5.29 71.50 28.65 1.00 4.00
DVAGEN-Llama3.2-1B 24.64 15.70 7.41 4.46 74.57 81.66 0.88 4.90

Llama3.2-3B 25.61 15.62 7.64 4.58 74.35 63.04 1.00 4.01
DVAGEN-Llama3.2-3B 25.26 16.85 8.50 5.41 71.96 43.98 0.87 4.97
DVAGEN-Llama3.2-3B 26.40 14.30 6.49 3.79 77.09 37.19 0.93 4.90

Table 1: Evaluation results on the WikiText-103 test set. Qwen3-0.6B is used as the phrase encoder and remains
trainable across all settings. The and markers indicate whether the language model backbone is trainable or
frozen, respectively.

the models are required to generate exactly 128
new tokens (or phrases when using DVAGEN) by
setting both the minimum and maximum number
of generated tokens to the same value. Note that,
in alignment with previous work (Lan et al., 2023;
Liu et al., 2024), the retrieval cost is not included,
as the construction of phrase candidates can be con-
ducted offline. The evaluations are conducted using
a single NVIDIA RTX 4090 GPU.
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Figure 7: Evaluation of performance in generating to-
kens and UTF-8 encoded bytes per second.

Results The evaluation results are presented in
Figure 7, revealing two main findings:

(1) Compared to the base model, DVAGEN
achieves higher inference speed despite having
more parameters. DVAGEN-Qwen3-0.6B em-
ploys two Qwen3-0.6B models, serving as the lan-
guage model and phrase encoder, respectively, re-
sulting in a model twice the size of the base model.
However, due to phrases typically consisting of
multiple tokens and containing more UTF-8 bytes,
DVAGEN achieves faster inference than the base
model under the same settings.

(2) DVAGEN supports batch inference and

consistently maintains high inference speed as
the batch size increases. The implementation of
batch inference improves generation efficiency by
approximately 7× compared to processing one in-
put at a time, as in the original implementations
(Lan et al., 2023; Liu et al., 2024). Furthermore,
the consistent inference performance with larger
batch sizes demonstrates that DVAGEN effectively
scales with workload, increases throughput, and op-
timizes GPU memory utilization without incurring
additional latency.

4.3 Retrieval Performance

Setup In addition to the inference performance
(excluding the retrieval process) discussed in Sec-
tion 4.2, we also conduct experiments to compare
retrieval latency during inference. The experimen-
tal setup is similar to the previous one, except that
a single NVIDIA RTX 3090 GPU is used. Since
many real-time applications require longer contexts
and the Retriever requires substantial GPU mem-
ory during inference, we also evaluate its retrieval
performance on CPU devices. This experiment is
conducted on a server equipped with an Intel(R)
Xeon(R) Silver 4214R CPU @ 2.40 GHz and 512
GB of RAM.

Results The comparisons of the proportions of
different stages (primarily retrieval and generation)
during inference are shown in Figure 8. The key
observations are as follows:

(1) When a GPU is utilized for inference, the
generation stage consistently dominates the over-
all inference time, substantially exceeding the
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Figure 8: Evaluation of retrieval performance: (a) re-
trieval performed on a GPU device, (b) retrieval per-
formed on a CPU device.

time spent on retrieval. As discussed in Sec-
tion 3.5, DVAGEN retrieves relevant supporting
documents on the GPU by default, with the re-
trieval process accounting for approximately 7% of
the inference time when the batch size is set to 8. In
addition, since retrieval within a batch is performed
sequentially due to the independence of samples,
retrieval time increases with larger batch sizes.

(2) Compared with GPU-based retrieval,
CPU-based retrieval requires substantially more
time. When the batch size is set to 8, CPU-based re-
trieval accounts for approximately half of the total
inference time, slightly exceeding the duration of
the generation stage (performed on a GPU device).
This observation suggests that when using CPU-
based retrieval to save GPU memory, the trade-off
between batch size and inference latency should be
carefully considered.

5 Conclusion

In this work, we present a fully open-source, modu-
lar framework that unifies training, evaluation, and
visualization for dynamic vocabulary-augmented
applications. The framework enables seamless cus-
tomization of individual components and is the first
to provide both CLI and WebUI tools for generation
analysis. By supporting plug-and-play integration
of existing open-source LLMs, we demonstrate the
effectiveness of dynamic vocabulary methods in en-
hancing language modeling performance. Further-
more, with support for batch inference, our frame-
work significantly improves inference throughput,
offering a practical and scalable solution for de-
ploying efficient LLM-based systems.
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