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Abstract

Multi-agent debate (MAD) has demonstrated
the ability to augment collective intelligence
by scaling test-time compute and leveraging
expertise. Current frameworks for MAD are
often designed towards tool use, lack integrated
evaluation, or provide limited configurability
of agent personas, response generators,
discussion paradigms, and decision protocols.
We introduce MALLM (Multi-Agent Large
Language Models), an open-source framework
that enables systematic analysis of MAD
components. MALLM offers more than 144
unique configurations of MAD, including (1)
agent personas (e.g., Expert, Personality),
(2) response generators (e.g., Critical,
Reasoning), (3) discussion paradigms (e.g.,
Memory, Relay), and (4) decision protocols
(e.g., Voting, Consensus). MALLM uses
simple configuration files to define a debate.
Furthermore, MALLM can load any textual
Hugging Face dataset (e.g., MMLU-Pro,
WinoGrande) and provides an evaluation
pipeline for easy comparison of MAD
configurations. MALLM enables researchers
to systematically configure, run, and evaluate
debates for their problems, facilitating the
understanding of the components and their
interplay.

1 Introduction

Multi-agent debate (MAD) has emerged as a new
paradigm to solve complex tasks with multiple
large language models (LLMs) (Chan et al., 2024;
Du et al., 2023; Liang et al., 2024; Wang et al.,
2024b). Yet, we have not understood the exact
mechanisms of when and why MAD is successful.
Different hypotheses exist around whether MAD is
another way to scale test-time compute (Yang et al.,
2025), or whether the combination of individual
components has emergent capabilities (Liang et al.,
2024). Understanding these mechanisms requires

*Equal contribution.

a systematic evaluation, specifically code that
enables adjusting one variable of the MAD at a
time to measure its effect.

Recent work (Guo et al., 2024; Tran et al.,
2025; Tillmann, 2025) has identified several key
aspects influencing multi-agent discussions. We
focus on the following three main components:
(1) agents define “who” is participating in the
debate, meaning the personas of agents and their
response style (Wang et al., 2023; Xu et al., 2023);
(2) discussion paradigms determine “how” the
debate is taking place, including agent response
order and turn boundaries, structuring information
flow (Yin et al., 2023); (3) decision protocols
choose “what” the debate result will be, meaning
deciding when discussions end and determining a
final answer (Chen et al., 2023a; Kaesberg et al.,
2025). As later evaluations will demonstrate, each
of these components is crucial in downstream
tasks. Adjusting them individually is particularly
important for systematic investigations.

To satisfy the growing demand for MAD
applications, many frameworks have been
developed (Wu et al., 2023; Gao et al., 2024; Hong
et al., 2023). Yet these frameworks intertwine
the definitions of multiple components, such as
agents and discussion paradigms (Wu et al., 2023)
or do not allow for adjusting specific parts, such
as discussion paradigms or decision protocols
(Hong et al., 2023), hindering independent
experimentation. Existing approaches often
constrain experimentation by using predefined
agents, discussion paradigms, or decision protocols
(Zhuge et al., 2024; Gao et al., 2024). Some
frameworks also specialize in particular use cases,
such as tool usage (OpenAI, 2024), and typically
lack integrated evaluation pipelines for analyzing
individual MAD components systematically (Wu
et al., 2023; Gao et al., 2024). To the best of
our knowledge, no current framework exists to
evaluate the three core components of related
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Figure 1: Overview of the MALLM framework and its components.

works and their interactions for MAD: agents,
discussion paradigms, and decision protocols.

We propose the open-source Multi-Agent LLM
(MALLM) framework to address these limitations
(see Figure 1 for an overview). MALLM integrates
several MAD components from previous research.
Researchers can individually configure their debate
setup through parameter settings and easily extend
the framework by inheriting existing classes or
using template functions. Without additional
programming effort, MALLM supports more than
144 distinct MAD configurations. Thus, it enables
researchers to reproduce prior MAD experiments,
apply MAD methods to new datasets or tasks, and
systematically ablate individual MAD components
to analyze their impact. We present MALLM’s
capabilities on our demo website1.
The key contributions are:

• We propose MALLM, an open-source
framework that supports studies of MAD
by enabling controlled variation of agents,
discussion paradigms, and decision protocols.

• We allow researchers to experiment with 144
existing MAD configurations on a wide range
of text-based tasks through automated dataset
loading, preprocessing, and evaluation.

• We provide abstract classes and template
functions to implement new MAD
components and tasks, allowing others
to understand the best configuration for their
specific research goals.

1mallm.gipplab.org

2 Related Work

We identify three key components of related work
that are commonly discussed in MAD. Wang et al.
(2023); Xu et al. (2023) use agents with varying
personas and response styles. Yin et al. (2023);
Li et al. (2024) define discussion paradigms that
determine turn order and information flow. Chen
et al. (2023a); Yang et al. (2024) explain variations
in decision protocols that aggregate agent outputs
into a single solution.

Existing MAD frameworks vary across the
core components described previously: agents,
discussion paradigms, and decision protocols.
AutoGen supports multi-turn interactions between
customizable agents but does not separate
discussion paradigms from agent definitions,
hindering systematic studies of each component
(Wu et al., 2023). It also does not support
integrated evaluation pipelines, which need to be
coded externally. Similarly, MetaGPT assigns
tasks to specialized agents that follow standard
operating procedures, tightly coupling agent roles
and response styles, but restricting experimentation
with alternative discussion paradigms or decision
protocols (Hong et al., 2023).

Other frameworks offer alternative abstractions.
GPTSwarm models agent interactions as
optimizable computational graphs, focusing
on information flow rather than the modular
comparison of agents or decision protocols
(Zhuge et al., 2024). AgentScope simplifies
interactions using predefined pipelines (Gao et al.,
2024), constraining discussion paradigms and
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limiting evaluation of agent personas or decision
protocols. The OpenAI Agents SDK coordinates
tool-using agents (OpenAI, 2024), prioritizing
agent functionality but lacking customizable
decision protocols for MAD.

A common limitation across existing
frameworks is the tight coupling among agents,
discussion paradigms, and decision protocols,
which hinders the analysis of each component
independently or in combinations of choice.
This makes the investigation of which specific
components contribute and should be used for
particular use cases difficult. Most frameworks
provide fixed orchestration setups, restricting
experimentation with alternative decision protocols
or agent configurations (OpenAI, 2024; Zhuge
et al., 2024), and few include integrated evaluation
pipelines (Wu et al., 2023; Gao et al., 2024; Smit
et al., 2023). No current framework explicitly
supports the systematic analysis of individual
MAD components and their interactions. Our
proposed framework, MALLM, addresses these
limitations with a modular architecture clearly
separating agents, discussion paradigms, and
decision protocols into interchangeable modules.
This design enables a systematic study of
each component independently and combined,
supported by an integrated evaluation pipeline. A
comparison of MALLM and other frameworks for
MAD is included in Table 5 of Appendix C.

3 MALLM Framework

We propose MALLM, a framework for MAD. It
coordinates agents to solve text-based tasks (Guo
et al., 2024). MALLM receives an input task
and outputs a solution after performing a MAD.
Figure 1 illustrates the components of MALLM.

MALLM implements three agent personas
(None, Expert, IPIP), three agent response
generators (Simple, Critical, Reasoning),
four discussion paradigms (Memory, Relay,
Report, Debate), and three main decision
protocols (Voting, Consensus, Judge). Each
of the component variants can be parameterized
individually, allowing systematic comparison of
individual setups without additional code.

The agents participating in the debate can use
most proprietary and open models, as MALLM
supports any OpenAI-compatible API endpoint
for inference. The integrated evaluation pipeline
can be used to analyze the large amounts of

data generated by MAD in a unified way and
directly generate comparative charts to visualize
performance across different configurations. We
provide more details on the framework parameters
in Appendix E and prompts in Appendix G.

With MALLM, users can explore the effects of
changing components within MAD. The effects
of each variation in MAD can be measured
towards solving various text-based problems, such
as mathematical reasoning (Cobbe et al., 2021),
ethical question-answering (Hendrycks et al.,
2021a), and more. Our public demo includes
three persona generators, three response generators,
four discussion paradigms, and four decision
protocols2. Thus, users can explore 144 MAD
configurations directly, observing the effect of
parameter combinations. A screenshot of our
interactive demo is in Figure 6 of Appendix B.

3.1 Agents

An agent is defined by its role (persona generator)
and its answer style (response generator).

Persona Generator. The persona specifies agent
behavior by their system prompt, e.g., expertise
or personality (Xu et al., 2023; Wang et al.,
2023). Personas are created iteratively to be
complementary and unique. We include three
persona types: None, Expert, and IPIP.
None: Disables the persona generation. It
assigns each agent a generic name (“Participant
N”) for baseline experiments. Expert: Creates
domain-specific personas aligned with the task
description (Xu et al., 2023). Examples are
an “Educator” for machine learning explanations,
a “Software Developer” for app development,
or a “Chef” for cooking tasks. IPIP: Based
on the Big Five personality traits, using the
open-source IPIP-NEO classification (Costa and
McCrae, 1992; Goldberg, 1999). They cover
Extraversion, Agreeableness, Conscientiousness,
Neuroticism, and Openness. The items originate
from the International Personality Item Pool (IPIP),
frequently used in Psychology (Maples et al.,
2014). This enables the detailed modeling of
psychological diversity (Serapio-García et al.,
2023; Sorokovikova et al., 2024).

Response Generator. The response generator
produces agent responses in a specified format or
style, influencing how agents interact (e.g., neutral

2mallm.gipplab.org
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Figure 3: Overview of three main decision protocols.

or critical) (Mizrahi et al., 2024). They vary in how
the agents are prompted to generate a response
in the debate. MALLM includes the Simple,
Reasoning, and Critical response generators.
We include their prompts in Appendix G.3.
Simple: Produces free-text responses in a
neutral tone, explicitly indicating agreement or
disagreement. Reasoning: Responds step-by-step,
including analysis, alternatives, and conclusions.
Agents share their reasoning but not solutions,
encouraging independent idea generation. Critical:
Tasks the agent to identify weaknesses, question
assumptions, and suggest alternative approaches.

3.2 Discussion Paradigm

The discussion paradigm defines the structure
of agent interaction. It specifies turn-taking
and information access rules for the MAD. We
implement four paradigms (Yin et al., 2023):
Memory, Report, Relay, and Debate. Each
paradigm differs in information flow and visibility,
as illustrated in Figure 2.
Memory: All agents have full visibility into each
other’s messages across turns. Relay: Information
is passed sequentially between agents in a chain,
with only the last message visible to the next.
Report: Agents independently solve the tasks and
report back to a central agent. Debate: Agents
argue in pairs, taking turns to debate intermediate
conclusions before a central agent is consulted.

3.3 Decision Protocol

Each agent in a multi-agent system generates
solution drafts. Decision protocols systematically
determine when discussions end and combine
agent-generated solutions into a final decision.

The MALLM framework implements three

decision protocol families: Consensus, Voting,
and Judge, as illustrated in Figure 3. Debates can
run with a fixed number of turns or perform early
stopping upon a successful decision.
Consensus: Consensus decision protocols decide
on an answer by having the agents converge on
one solution. The solution is selected when
a required level of agreement among agents is
reached (Yin et al., 2023). MALLM includes three
agreement levels: Majority Consensus (over
50%), Supermajority Consensus (over 66%),
and Unanimity Consensus (100%). Voting:
Uses a fixed number of discussion rounds (default
three, following findings by Du et al. (2023))
before agents vote. In the event of a tie, we
run an additional round of debate and voting.
Variants are inspired by Yang et al. (2024) and
include Simple Voting (i.e., each agent votes for
their preferred solution), Approval Voting (i.e.,
multiple acceptable solutions per agent), Ranked
Voting (i.e., agents rank solutions, best cumulative
rank selected), and Cumulative Voting (i.e.,
agents allocate up to 25 points across solutions,
highest total points selected). Judge: Relies on
one agent reviewing all solutions, choosing either a
preferred one or synthesizing a new solution. The
effectiveness of the Judge protocol depends on the
model’s reasoning capabilities (Zheng et al., 2023).

3.4 Evaluation
The MALLM framework includes a pipeline
for evaluating MAD configurations, producing
statistics and charts for a dataset and its metrics.
Datasets. The pipeline provides integrated loaders
for reasoning tasks (e.g., WinoGrande (Sakaguchi
et al., 2020), StrategyQA (Geva et al., 2021))
and knowledge tasks (e.g., GPQA (Rein et al.,
2023), MMLU-Pro (Wang et al., 2024c)) as well
as core tasks of text generation (Becker et al.,
2024), such as paraphrasing (Kovatchev et al.,
2018) or summarization (Narayan et al., 2018). It
further supports any textual Hugging Face dataset
for problem-solving. Researchers can also add
their own dataset via subclassing. All datasets are
converted into a unified format for processing.
Metrics. We include question-answering and
free-text evaluations. For question-answering, we
compute accuracy by comparing selected response
letters against reference solutions via regex. For
free-text tasks, we include BERTScore (Zhang
et al., 2020) and textual overlap measures (BLEU
(Papineni et al., 2002), ROUGE-1/2/3/L (Lin,
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Figure 4: Example workflow of experimenting with MAD using MALLM. First, we can load a dataset. Second, a
config file defines the MAD. Third, the debates run and produce output logs. Last, the debates are evaluated. While
MALLM already comes with many parameters and components to test, researchers can optionally incorporate their
own components, which are tailored to their specific experiment.

2004), and METEOR (Banerjee and Lavie, 2005)).
Statistical variance. We find that several studies
on MAD do not account for statistical variance
(Wu et al., 2023; Talebirad and Nadiri, 2023), yet it
can have marked impacts on MAD (Smit et al.,
2023). MALLM enables repeated experiments
and calculates standard deviations between them,
thereby quantifying statistical dispersion.
Automatic charts. MALLM can visualize the
evaluation results of MAD configurations. For this,
researchers can pass a single file or a directory with
multiple evaluation results directly to an automatic
chart generator. Examples of the generated charts
by the evaluation pipeline can be seen in Figures 7
to 10 of Appendix F.

4 Application

We explain the workflow for using MALLM
to evaluate a specific MAD configuration.
First, we can load any text-based Hugging
Face dataset for problem-solving via our
dataset loader (e.g., MMLU-Pro (Wang et al.,
2024c)). Second, MALLM comes with a
configuration file (cf. Appendix H) that the
user can change to adjust parameters and
the components for the desired experiment
(e.g., using Llama-3.3-70B-Instruct as a
model and changing the configuration to four
debating agents, Relay discussion paradigm,
and Unanimity Consensus decision protocol).
Third, we can run the experiment specified by the
configuration file. MALLM keeps extensive logs
of all debates. They include each agent’s messages,
votes cast, used components, and configuration
parameters. Lastly, we can directly feed the logs
into our evaluation pipeline, computing metrics

(e.g., accuracy) and leveraging automatic chart
generation (cf. Figures 7 to 10 in Appendix F).

Each component (agent, discussion, decision)
comes with abstract base classes to describe
the pipeline of MAD. If necessary, a custom
component could be provided by inheriting features
from a component’s abstract base class. For
example, Sketch-of-Thought (Aytes et al., 2025)
is a variant of Chain-of-Thought (Wei et al.,
2023) that restructures how models express
intermediate steps of their reasoning. To
integrate with MALLM, we would create a custom
class SoTResponseGenerator inheriting from the
abstract base class ResponseGenerator. Then,
the components of MAD can be defined by a
configuration file as usual. Figure 4 provides
an overview of the workflow for conducting and
evaluating MAD with MALLM.

4.1 Use Cases

The following examples illustrate possible research
directions that can be realized using MALLM.
Agents on paradigms. The number of agents
for the MAD is modifiable. Researchers can
test the impact of this on the various discussion
paradigms. For example, a study could compare
two, three, four, or five agents on the memory and
relay paradigm. As these paradigms differ in their
information flow, it would be interesting to see how
this impacts task performance.
Testing new task. JailbreakBench (Chao et al.,
2024) measures the safety of LLMs against
jailbreaks. One avenue could be the comparison of
multi-agent safety with a single-agent setup. For
this, we can use MALLM, which is plug-and-play
with a template configuration set.
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Simple Critical Reasoning

58.6±1.6 61.4±3.3 52.2±2.8

Table 1: Comparison of accuracy averaged over
all voting-based decision protocols using the simple,
critical, and reasoning response generators on the
StrategyQA dataset. Best is bolded. ± shows standard
deviation over three runs.

CoT Memory Relay Report Debate

56.9±1.8 60.8±2.6 62.9±1.6 60.9±3.1 61.9±1.1

Table 2: Accuracy of MAD on StrategyQA with
different discussion paradigms. Best and worst are
bolded. ± shows standard deviation over five runs.

Finetuned agents. MALLM works with any
proprietary and open-source LLM, which means
that we can also provide our own model for the
agents. A promising direction is to finetune an
agent to enhance its argumentation skills, thereby
improving task performance on reasoning tasks
such as StrategyQA (Geva et al., 2021).
Moderated paradigm. A dynamic moderator
can be implemented by subclassing the abstract
base class DiscussionParadigm. We can define
logic for an LLM-based moderator agent to
adjust speaking order based on previous agent
contributions. This enables an investigation into
the effects of adaptive moderation.

4.2 Example Experiments with MALLM

MALLM can be applied to various use cases. To
demonstrate the opportunities for experimental
setups, we provide some example investigations.
Supplementary information, such as used models
and parameters, can be found in Appendix E.
Agents. Kaesberg et al. (2025) use MALLM
to experiment with response generators on the
StrategyQA dataset (Geva et al., 2021). Table 1
presents the average accuracy across all voting-
based decision protocols, using the Memory
discussion paradigm and Expert personas with
the Simple, Critical, and Reasoning response
generators. The Critical response generator
slightly improves performance by encouraging
agents to critically evaluate responses from others,
resulting in a 2.8% point increase. The Reasoning
response generator decreases performance by 6.4%
points, likely because it imposes a strict response
structure. Strictly structured responses can degrade
the task performance of MAD, a characteristic

Dataset Voting Consensus

Knowledge-Based
MMLU 51.7 ± 2.4 54.0 ± 2.7

MMLU-Pro 31.1 ± 3.5 36.0 ± 1.8

GPQA 29.7 ± 2.5 31.0 ± 2.4

Reasoning-Based
SQuAD 2.0 56.7 ± 1.6 43.6 ± 1.5

StrategyQA 58.6 ± 2.0 58.4 ± 1.6

MuSR 54.8 ± 1.9 28.4 ± 2.6

Table 3: Mean performance for voting and consensus
decision protocols on knowledge and reasoning tasks.
Best is bolded. ± shows standard deviation over three
runs.

that was previously noted in single-agent setups
(Tam et al., 2024). To summarize, invoking
strict response patterns from agents can harm
task performance, while prompting agents to think
critically can boost it.
Discussion Paradigms. Becker (2024) compares
discussion paradigms on the StrategyQA dataset
(Geva et al., 2021), using Expert personas,
the Simple response generator, and Majority
Consensus. MAD runs until the agent agrees to
a solution or until a maximum of seven turns is
reached. We find that, using Majority Consensus,
most debates reach an agreement and end within
the first three turns. Thus, seven turns provide
a reasonable headroom for this experiment. The
results reveal two findings. First, Table 2 compares
the discussion paradigms of MAD against a single
LLM baseline with Chain-of-Thought (Wei et al.,
2023). All paradigms outperform a single LLM
with Chain-of-Thought prompting on StrategyQA,
improving accuracy by up to 4.0%. Second, we
investigate the impact of information transparency
on convergence speed for MAD. We find that
the very transparent paradigm Memory enables
faster consensus (avg. 1.75 turns), while limited
visibility between agents in Relay slows it down
(avg. 2.61 turns). Thus, information transparency
can lead to quicker convergence in MAD without
sacrificing task performance. In summary, MAD
can outperform Chain-of-Thought on reasoning
tasks, such as StrategyQA, while the information
transparency of the discussion paradigm impacts
the convergence speed of MAD.
Decision Protocols. Investigations by Kaesberg
et al. (2025) compare the average of all Voting and
Consensus decision protocols across knowledge
and reasoning tasks, summarized in Table 3.
They use the Simple response generator and
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the Memory discussion paradigm. Consensus
consistently outperforms Voting on knowledge
tasks (MMLU (Hendrycks et al., 2021b), MMLU-
Pro (Wang et al., 2024c), GPQA (Rein et al.,
2023)), achieving approximately 2.8% higher
accuracy due to repeated verification steps. Voting
protocols significantly improve accuracy by about
13.2% on reasoning-intensive tasks (SQuAD 2.0
(Rajpurkar et al., 2018), StrategyQA (Geva et al.,
2021), MuSR (Sprague et al., 2024)), benefiting
from diverse reasoning paths. To summarize, the
selection of the decision protocol depends on the
specific task. When chosen correctly, it can notably
improve task performance.
Creating Demo Examples. For the demonstration
of MALLM, we create a set of 144 different
example configurations using MALLM’s batch
feature, called DEBATE (Diverse Exchanges
Between Autonomous Talking Entities). We
release the DEBATE dataset publicly3. Potential
uses for this data could be to (1) study how
agents debate as a proxy to humans; (2) study
the structural reasons why MAD can fail in some
scenarios, as identified by Becker et al. (2025);
(3) explore how prompting agents to assess prior
messages critically affects the speed of consensus-
building. More details on the DEBATE dataset are
in Appendix D.

5 Epilogue

We proposed MALLM, a framework specialized
in conversational problem-solving for MAD.
MALLM enables users to configure debates for
their specific problems and research objectives.
More specifically, our framework supports the
analysis of multiple components, including
agent personas, response generators, discussion
paradigms, and decision protocols.

MALLM works with most proprietary and open
models and can load any text-based Hugging Face
dataset for problem-solving. MALLM’s evaluation
pipeline offers pre-implemented metrics (e.g.,
Accuracy, BLEU, BERTScore) and automatic chart
generation, while accounting for the statistical
variance of MAD. A demo for the capabilities of
MALLM is publicly available4.

We described four potential use cases that
can be further developed: the number of agents
and their impact, the resilience of MAD against

3huggingface.co/datasets/Multi-Agent-LLMs/DEBATE
4mallm.gipplab.org

jailbreak attacks, finetuning specialized agents,
and adaptive moderation. Future work could also
expand MALLM with additional functionalities,
such as evaluating debates through any Hugging
Face metric. Beyond serving as a testbed for
MAD itself, MALLM provides researchers with
an environment to assess how variations in agents,
discussion paradigms, and decision protocols can
impact their specific problems.

Limitations

We provide the MALLM framework with pre-
implemented variants for personas, response
generators, discussion paradigms, and decision
protocols. While our goal was to include diverse
variants backed by literature (e.g., voting (Yang
et al., 2024), consensus (Yin et al., 2023), and
judge (Zheng et al., 2023) for decision protocols),
we could not account for all possible patterns
of agent orchestration. There is the possibility
that niche use cases with MAD and future
developments are not captured by our selection,
e.g., decisions by confidence-weighted voting
(Chen et al., 2023b). We publish our framework as
open-source, allowing and encouraging researchers
to develop custom components via subclassing and
apply MALLM to their specific use cases.
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Appendix
A MALLM Workflow

We provide an example of how MALLM could be
used to conduct experiments on MAD in Figure 4.
An example discussion can be seen in Figure 5.

B System Demonstration

We provide an interactive demonstration
website for MALLM. It is available under
mallm.gipplab.org. A screenshot can be seen in
Figure 6.

C Comparison With Other Frameworks

We compare the functionality of other commonly
used frameworks for MAD with MALLM. The
comparison can be seen in Table 5.

D DEBATE Examples

To demonstrate MALLM’s capabilities, we
construct a set of examples called DEBATE
(Diverse Exchanges Between Autonomous Talking
Entities), comprising 14,400 strategic problem-
solving debates based on the StrategyQA dataset

(Geva et al., 2021), generated using 144 distinct
MALLM configurations. Each configuration
combines specific settings of the framework’s
modular components listed in Table 4.

Parameter Values

Response Generators Simple, Critical, Reasoning
Persona Generators None, Expert, IPIP
Discussion Paradigms Memory, Relay, Report, Debate
Decision Protocols Majority Consensus, Unanimity

Consensus, Simple Voting,
Approval Voting

Table 4: Parameters used for creating DEBATE. The
example set comprises diverse data for each possible
combination of parameters.

For example, one setup uses the Simple
response generator, no personas, the Memory
discussion paradigm, and the Majority
Consensus decision protocol. Our rationale
for selecting the parameters is to ensure diversity
in the agent orchestration (e.g., two voting and two
consensus approaches for decision-making), while
keeping the computational effort manageable. All
debates involve three agents, up to seven turns,
and use the meta-llama/Llama-3.3-70B-Instruct

Persona Generator

Identify 3 participants who will
contribute to solving the task...

Task: Answer the given question.
Sample: What is the height of the

Eiffel Tower? 
Possible options are:

A: 101 meters, B: 41 meters, 
C: 787 meters, D: 312 meters

Identified Personas
Agent 1: Gustave Eiffel
(Architect and designer of the
Eiffel Tower)
Agent 2: French Citizen (Lives
for 25 years in france)
Agent 3: Engineer (Expertise in
civil engineering)

Persona
Assignment

(LLM)

Discussion

Memory
Paradigm

Message: I don't agree with ...
Solution: Option C

Message: I think that ...
Solution: Option D

Agent 1

Agent 2Agent 3

Decision Protocol

Agent 1 final answer:

I think option D solves the problem
the best.

Voting Points:
Agent 1: 10
Agent 2: 7
Agent 3: 3

Agent 2 final answer:

Option C sound for me the most
feasible.

Voting Points:
Agent 1: 4
Agent 2: 1
Agent 3: 5

Agent 3 final answer:

My final answer is option D with 
312 meters.

Voting Points:
Agent 1: 7
Agent 2: 11
Agent 3: 1

Agent 1 wins the voting. The final
solution is Option D (312 meters).

Response Generator (Agent Prompt)
You take part in a discussion to solve a task.
Task: Answer the given question.
Input: What is the height of the Eiffel Tower?
Your role: Engineer (Expertise in ...)
This is the discussion to the current point:
Agent 1: I think that ...
Agent 2: I don't agree with ...
---
Message: I agree with Agent 1, because ...
Solution: Option D

Figure 5: Example multi-agent discussion conducted in the MALLM framework. It showcases the functionality of
the four modules and how they work together to get an improved final solution. First, we use the Expert persona
generator to create three agents with different expertise. These agents discuss according to the Memory discussion
paradigm and use the Simple response generator to formulate their answers. After the third turn, they begin voting
using the Cumulative Voting decision protocol until they reach a final solution.
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Figure 6: A screenshot of the demonstration website. One of 144 configurations for MAD can be selected on the
left panel. MAD is conducted to solve the task, visible on the right panel. The top header provides functions to
pause the replay or adjust the simulation speed.

model. Each of the 144 configurations runs
100 debates. For the creation of the DEBATE
examples, we utilize eight NVIDIA A100 GPUs,
each equipped with 40GB of VRAM, to host a
meta-llama/Llama-3.3-70B-Instruct model for
8 days, 5 hours, and 42 minutes. The data is
available on Hugging Face5.

E Parameters

We adhere to default parameters for the models we
used, using langchain 0.1.16 and openai 1.25.0 for
the implementation of the MALLM framework.

• temperature = 1.0
• top_p = 1.0
• presence_penalty = 0.0
• frequency_penalty = 0.0
• max_tokens = 1024

E.1 Agent Experiments

The setup and parameters for this experiment are
described in Kaesberg et al. (2025). They use meta-
llama/Meta-Llama-3-8B-Instruct as a model for all
agents with the following fixed parameters:

• Persona generator: Expert

5huggingface.co/datasets/Multi-Agent-LLMs/DEBATE

• Discussion paradigm: Memory

• Decision protocol: Average of Simple
Voting, Ranked Voting, Cumulative
Voting and Approval Voting

Each experiment is repeated three times, and the
average performance and standard deviation across
the runs are reported.

E.2 Discussion Experiments
We use meta-llama/Meta-Llama-3-70B-Instruct as
a model for all agents. We further report the
parameters that are set fixed for this experiment:

• Persona generator: Expert

• Response generator: Simple

• Decision protocol: Majority Consensus

To ensure the reliability of our findings, we follow
the prior work of Wang et al. (2024a) and conduct
each experiment five times, reporting the average
performance and standard deviation across the
runs.

E.3 Decision Experiments
The setup and parameters for this experiment are
described in Kaesberg et al. (2025). They use meta-
llama/Meta-Llama-3-8B-Instruct as a model for all
agents with the following fixed parameters:
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Customizable Feature Agent
Personas

Agent
Responses

Discussion
Paradigms

Decision
Protocol

Evaluation
Pipeline

AutoGen (Wu et al., 2023) ✗ ✗ ✗ ✗ ✗
GPTSwarm (Zhuge et al., 2024) ✗ ✗ ✓ ✓ ✗
OpenAI Agents SDK (OpenAI, 2024) ✓ ✗ ✓ ✗ ✓
MetaGPT (Hong et al., 2023) ✓ ✓ ✗ ✗ ✗
AgentScope (Gao et al., 2024) ✓ ✗ ✓ ✗ ✗
AutoGPT (Talebirad and Nadiri, 2023) ✓ ✓ ✓ ✗ ✗
MALLM (this work) ✓ ✓ ✓ ✓ ✓

Table 5: Comparison of customizable features across commonly used frameworks for MAD. MALLM enables
the modification of agent personas, agent responses, discussion paradigms, and decision protocols. It also comes
with an integrated evaluation pipeline. To the best of our knowledge, no other framework offers the same level of
configurability for these main components of MAD.

• Persona generator: Expert

• Discussion paradigm: Memory

• Response Generator: Simple

Each experiment is repeated three times, and the
average performance and standard deviation across
the runs are reported.

F Evaluation Pipeline

Figures 7 to 10 show example charts generated
by the MALLM evaluation pipeline. They are
presented to demonstrate the pipeline’s automated
analysis and visualization capabilities. These
specific examples are generated from experiments
on the StrategyQA dataset using the meta-
llama/Meta-Llama-3-8B-Instruct model, with error
bars representing the standard deviation across
three runs.
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Figure 7: An example chart automatically generated by the MALLM evaluation pipeline, comparing the average
performance scores of various decision protocols on the StrategyQA dataset. Error bars indicate the standard
deviation over three experimental runs.
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Figure 8: An example visualization from the MALLM evaluation pipeline, showing the distribution of the number
of turns required for different decision protocols to converge on the StrategyQA dataset. The plot’s width illustrates
the frequency of turn counts, and the red marker shows the mean.
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Decision Success Rate

Approval voting
Unanimity consensus
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Cumulative voting

Judge
Majority consensus

Ranked voting
Simple voting

42.0%
98.7%
99.7%
100.0%
100.0%
100.0%
100.0%
100.0%

Figure 9: An example chart from the MALLM evaluation pipeline showing the decision success rates for each
protocol on the StrategyQA dataset. The decision success rate explains how many of the debates reach a final
solution according to the decision protocol (e.g., > 50% for Majority Consensus).
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Figure 10: An example of an automatically generated chart from the MALLM evaluation pipeline, comparing the
average wall clock time (in seconds) for each decision protocol on the StrategyQA dataset.
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G Experiment Prompts

We provide the prompts that the MALLM
framework uses to conduct MAD, which are
relevant for our experiments. Appendix G.1
shows the prompt used across all configurations.
Prompts specific to the persona experiments are
provided in Appendix G.2, while prompts for the
response generators are detailed in Appendix G.3.
Additionally, prompts related to the discussion
paradigm are included in Appendix G.4, and
prompts for the various decision protocols are
available in Appendix G.5.

G.1 General Debate

System Prompt:
You take part in a discussion to solve a
task.

Your role: <persona name> (<persona
description>)
Task: <instruction>
Input: <example>
Context: <optional information>
Current Solution: <most recent draft>
Discussion so far: <agent memory>

Figure 11: Prompt used with the Simple response
generator for an agent participating in collaborative
debate. If this is the first message of the discussion, we
write “Nobody proposed a solution yet. Please provide
the first one.” instead of the most recent draft and agent
memory.

G.2 Persona Experiments

These are the prompts used for the persona
experiments.

System Prompt:
Solve the following task: <task
instruction>
Input: <input str>
Make absolutely sure to provide your
solution in the end: ’FINAL SOLUTION:
<Letter>’.
User Prompt:
Answer the following question.

Figure 12: Base prompt used for agents participating in
a GPQA experiment.

System Prompt:
When faced with a task, begin by
identifying the participants who will
contribute to solving the task. Provide
role and description of the participants,
describing their expertise or needs,
formatted using the provided JSON
schema.
Generate one participant at a time,
complementing the existing participants
to foster a rich discussion.
Example 1: <example 1>
Example 2: <example 2>
Example 3: <example 3>

User Prompt:
Now generate a participant to discuss the
following task:
Task: <task description>. Please
use the following examples to generate
a useful persona for the task! Only answer
with the JSON for the next persona.

Figure 13: Prompt used for the Expert agent generator,
which creates unique personas for each example.
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System Prompt:
When faced with a task, begin by
identifying the participants who will
contribute to solving the task. Provide
role and fixed characteristics of the
participant, formatted using the provided
JSON schema. Generate one participant
at a time, complementing the existing
participants to foster a rich discussion.
You must choose the following
characteristics for the participant, in
JSON format:
<characteristics and options>
You absolutely must stick to the JSON
format and the characteristics and options
provided.
Example 1: <example 1>
Example 2: <example 2>

User Prompt:
Now generate a participant to discuss the
following task:
Task: <task description>. Only
answer with the JSON for the next
persona! Ensure your new participant is
unique.

Figure 14: Prompt used for the IPIP agent generator,
which creates unique personas for each example.

G.3 Response Generator Experiments

We provide the prompts for each response generator
used.

G.3.1 Simple Response Generator

User Prompt:
Based on the provided feedback, carefully
re-examine your previous solution.
Provide a revised solution.

Figure 15: Prompt with the Simple response generator
instructing an agent to create a new solution based on
received feedback. It is appended to the system prompt
in Figure 11.

User Prompt:
Improve the current solution.
If you agree with the current solution,
answer with [AGREE].
Else, answer with [DISAGREE], explain
why, and provide an improved solution.
Let’s think step-by-step.

Figure 16: Prompt with the Simple response generator
to an agent for contributing to the current solution draft.
The agent can either agree or disagree. It is appended to
the system prompt in Figure 11.

User Prompt:
Improve the current solution.
Based on the current solution, give
constructive feedback. If you agree,
answer with [AGREE], else answer with
[DISAGREE] and explain why.
Let’s think step-by-step.

Figure 17: Prompt with the Simple response generator
to an agent for giving feedback to the current solution
draft (without directly proposing a new solution). The
agent can either agree or disagree. It is appended to the
system prompt in Figure 11.

G.3.2 Critical Response Generator

User Prompt:
Re-examine the current solution critically
based on the feedback provided. Ensure
your revision addresses any identified
weaknesses or areas for improvement.
Submit a revised and improved solution.

Figure 18: Prompt with the Critical response
generator instructing an agent to create a new solution
based on received feedback. It is appended to the system
prompt in Figure 11.
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User Prompt:
Improve the current solution. Identify
specific areas that need enhancement
and propose unique solutions based on
your persona. If you see no room
for improvement, answer with [AGREE],
otherwise, answer with [DISAGREE] and
provide a clear, solution.

Figure 19: Prompt with the Critical response
generator to an agent for contributing to the current
solution draft. The agent can either agree or disagree. It
is appended to the system prompt in Figure 11.

User Prompt:
Critically evaluate the current solution.
Identify potential weaknesses or areas
of improvement. If you believe the
solution is flawless, answer with [AGREE],
otherwise answer with [DISAGREE]
and provide constructive feedback with
suggestions for improvement.

Figure 20: Prompt with the Critical response
generator to an agent for giving feedback to the
current solution draft (without directly proposing a new
solution). The agent can either agree or disagree. It is
appended to the system prompt in Figure 11.

G.3.3 Reasoning Response Generator

User Prompt:
Based on the provided feedback, carefully
re-examine your previous solution.
Provide a revised solution.

Figure 21: Prompt with the Reasoning response
generator instructing an agent to create a new solution
based on received feedback. It is appended to the system
prompt in Figure 11.

User Prompt:
Improve the current steps of the argument
by referring to the other participants in the
discussion. Be critical and answer short
and concise. Repeat only the reasoning
steps that you think are the most important.
If you think there is enough information
to create a final answer also answer with
[AGREE] else answer with [DISAGREE].
Don’t provide a final solution yet.

Figure 22: Prompt with the Reasoning response
generator to an agent for contributing to the current
solution draft. The agent can either agree or disagree. It
is appended to the system prompt in Figure 11.

User Prompt:
Based on the current solution, give
constructive feedback. If you agree,
answer with [AGREE], else answer with
[DISAGREE] and explain why.

Figure 23: Prompt with the Reasoning response
generator to an agent for giving feedback to the
current solution draft (without directly proposing a new
solution). The agent can either agree or disagree. It is
appended to the system prompt in Figure 11.

G.4 Discussion Paradigm Experiments

For the experiments on discussion paradigms,
just one more prompt for the Chain-of-Thought
baseline is used. We use the general prompts
described in Appendix G.1 for MAD.

System Prompt:
Solve the provided task. Do not ask back
questions. Clearly indicate your final
solution after the text ’Final Solution:’.

Task: <task instruction>
Input: <input str>

User Prompt:
Let’s think step-by-step.

Figure 24: Prompt used for the Chain-of-Thought
baseline.
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G.5 Decision Protocol Experiments

These are all prompts used for the decision-making
protocols. The final answer extraction prompt
can be seen in Figure 25. The prompt for the
voting-based decision protocols can be seen in
Figure 26 (Simple Voting), Figure 27 (Approval
Voting), Figure 29 (Ranked Voting), and Figure 28
(Cumulative Voting) decision protocols (Figure 26
to Figure 30). The consensus decision protocol
has no special prompt, as it terminates when a
consensus is found, and then the final answer
extraction prompt is used. Voting also utilizes the
final answer extraction prompt to obtain the final
answer from each agent that is used during the
voting process.

G.5.1 Final Answer Extraction

System Prompt:
Your role: <persona> (<persona
description>)

User Prompt:
You are tasked with creating a final
solution based on the given input and your
previous response.
Task: <task>
Input: <input sample>
Your previous response: <previous
answer>
Extract the final solution to the task
from the provided text. Remove
statements of agreement, disagreement,
and explanations. Do not modify the text.
Do not output any text besides the solution.
If there is no solution provided, just copy
the previous response.

Figure 25: Prompt used to extract the final answer of a
given agent from its previous response.

G.5.2 Voting Prompts

System Prompt:
Your role: <persona> (<persona
description>)

User Prompt:
You are tasked with voting for the best
solution from the list provided below
based on the given task.
Task: <task>
Question: <input sample>
Here are the possible solutions:
Solution 1: <agent 1 final answer>
Solution 2: <agent 2 final answer>
Solution 3: <agent 3 final answer>
Based on the above solutions, please
provide the number of the solution you are
voting for. Answer only with the number.

Figure 26: Prompt used to get a vote from each agent
for the Simple Voting decision protocol.

System Prompt:
Your role: <persona> (<persona
description>)

User Prompt:
You are tasked with approving any number
of solutions from the list provided below
based on the given task.
Task: <task>
Question: <input sample>
Here are the possible solutions:
Solution 1: <agent 1 final answer>
Solution 2: <agent 2 final answer>
Solution 3: <agent 3 final answer>
Based on the above solutions, please
provide the numbers of the solutions
you are approving, separated by commas.
Answer only with the numbers.

Figure 27: Prompt used to get a vote from each agent
for the Approval Voting decision protocol.
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System Prompt:
Your role: <persona> (<persona
description>)

User Prompt:
You are tasked with distributing 10 points
among the provided solutions based on the
given task.
Task: <task>
Question: <input sample>
Here are the possible solutions:
Solution 1: <agent 1 final answer>
Solution 2: <agent 2 final answer>
Solution 3: <agent 3 final answer>
Based on the above solutions, please
distribute 10 points among the solutions.
Provide your points allocation as a
JSON dictionary where keys are solution
numbers (as int) and values are the points.
The total points should sum up to 10.
Answer only with the JSON dictionary.

Figure 28: Prompt used to get a vote from each agent
for the Cumulative Voting decision protocol.

System Prompt:
Your role: <persona> (<persona
description>)

User Prompt:
You are tasked with ranking the solutions
from the most preferred to the least
preferred based on the given task.
Task: <task>
Question: <input sample>
Here are the possible solutions:
Solution 1: <agent 1 final answer>
Solution 2: <agent 2 final answer>
Solution 3: <agent 3 final answer>
Based on the above solutions, please
provide the rankings of the solutions
separated by spaces. Example: ’0 2 1’
if you prefer Solution 0 the most, then
Solution 2, and finally Solution 1. Provide
up to 5 rankings. Only answer with the
rankings.

Figure 29: Prompt used to get a vote from each agent
for the Ranked Voting decision protocol.

G.5.3 Judge Prompt

User Prompt:
Task: <task>
Question: <input sample>
Please provide a decision on the following
solutions and combine them in a single
answer to solve the task. Only answer
with the solution:
Solution 1: <agent 1 final answer>
Solution 2: <agent 2 final answer>
Solution 3: <agent 3 final answer>

Figure 30: Prompt used to get a final decision from the
Judge decision protocol. No alterations are applied.

H MALLM Configuration File

Example MALLM batch configuration file for
running an experiment with fixed response
generator, persona generator, and discussion
paradigm, but varying decision protocols. The
"repeats" field defines how many times each run
is repeated, which is later relevant for evaluating
for robustness by the standard deviation between
experiment runs. The "common" field describes
parameters that are considered for all runs. The
"runs" field defines the parameters unique for each
individual run.
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1 {
2 "repeats": 3,
3 "name": "<DATASET NAME>",
4 "common": {
5 "task_instruction_prompt_template": "<DATASET NAME>",
6 "endpoint_url": "<LLM API HOSTNAME>",
7 "api_key": "<LLM API KEY>",
8 "model_name": "<MODEL NAME>",
9 "input_json_file_path": "data/datasets/<DATASET NAME>.json",

10 "concurrent_api_requests": 200,
11 "num_samples": "<NUMBER OF SAMPLES>",
12 "max_turns": 5,
13 "response_generator":"simple"
14 },
15 "runs": [
16 {
17 "output_json_file_path": "results/baseline-cot.json",
18 "use_baseline": true
19 },
20 {
21 "output_json_file_path": "results/baseline.json",
22 "use_baseline": true,
23 "use_chain_of_thought": false
24 },
25 {
26 "output_json_file_path": "results/approval.json",
27 "decision_protocol": "approval_voting"
28 },
29 {
30 "output_json_file_path": "results/cumulative.json",
31 "decision_protocol": "cumulative_voting"
32 },
33 {
34 "output_json_file_path": "results/majority_consensus.json",
35 "decision_protocol": "majority_consensus"
36 },
37 {
38 "output_json_file_path": "results/supermajority_consensus.json",
39 "decision_protocol": "supermajority_consensus"
40 },
41 {
42 "output_json_file_path": "results/unanimity_consensus.json",
43 "decision_protocol": "unanimity_consensus"
44 },
45 {
46 "output_json_file_path": "results/voting.json",
47 "decision_protocol": "simple_voting"
48 },
49 {
50 "output_json_file_path": "results/ranked.json",
51 "decision_protocol": "ranked_voting"
52 }
53 ]
54 }
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