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Abstract

We introduce VLM-LENS, a toolkit designed
to enable systematic benchmarking, analysis,
and interpretation of vision-language models
(VLMs) by supporting the extraction of inter-
mediate outputs from any layer during the for-
ward pass of open-source VLMs. VLM-LENS
provides a unified, YAML-configurable inter-
face that abstracts away model-specific com-
plexities and supports user-friendly operation
across diverse VLMs. It currently supports 16
state-of-the-art base VLMs and their over 30
variants, and is extensible to accommodate new
models without changing the core logic.

The toolkit integrates easily with various inter-
pretability and analysis methods. We demon-
strate its usage with two simple analytical ex-
periments, revealing systematic differences in
the hidden representations of VLMs across lay-
ers and target concepts. VLM-LENS is re-
leased as an open-sourced project to acceler-
ate community efforts in understanding and
improving VLMs.

1 Introduction

Vision-language models (VLMs; Kirillov et al.,
2023; Radford et al., 2021; Li et al., 2022; Liu
et al., 2023; Wang et al., 2024a, inter alia) have
become essential across a wide range of applica-
tions, including multimodal understanding (Yue
et al., 2024), robotics (Li et al., 2024), and world
modeling (Gao et al., 2025). However, exist-
ing VLM benchmarks predominantly adopt exact-
match based accuracy and its derivations to evalu-
ate model performance (Lin et al., 2014; Johnson
et al., 2017; Yue et al., 2024; Fu et al., 2024, inter
alia), which may either overlook the information
embedded in their hidden representations (Zhang
et al., 2025) or yield misleading assessments due to
shortcut exploitation (Xu et al., 2025). Currently,
there lacks a unified framework for extracting the

∗Equal contribution.

internal representations of VLMs, making it chal-
lenging to assess model capabilities that go beyond
simple performance evaluations.

Meanwhile, interpretability research and toolk-
its for VLMs remain underdeveloped compared
to their text-only counterparts (Nanda and Bloom,
2022; Belrose et al., 2023; Ali et al., 2025, in-
ter alia), posing significant challenges to system-
atically understanding their internal knowledge
and decision-making processes. To the best of
our knowledge, extending existing interpretabil-
ity toolkits, such as TransformerLens (Nanda and
Bloom, 2022), to support VLMs requires substan-
tial engineering effort, as these tools are primarily
designed for text-based Transformers.

To address these challenges in both benchmark-
ing and interpretability, we present VLM-LENS
(Figure 1), a toolkit that enables easy extraction
of VLM intermediate output from any layer in a
forward pass. The key features include:
• Unified interface. It abstracts out the model-

specific setup and preprocessing complexities,
allowing operations across models through a uni-
fied interface. Users can specify custom configu-
rations via a YAML file with minimal boilerplate
code provided, and the toolkit automatically han-
dles model loading, preprocessing, and inference.

• Model-specific environmental support. Differ-
ent VLMs often require different, and sometimes
mutually conflicting, libraries. To address this
issue, VLM-LENS provides model-specific en-
vironment setups, each of which can be easily
installed with a single-line pip install command.
A rigorous code review process ensures the con-
sistency and reproducibility of the environment
setups across different platforms.

• Extensive model coverage and flexible nature.
The toolkit supports a diverse set of state-of-the-
art VLMs, spanning widely used open-source
models to recently developed, less-documented
ones. Currently, VLM-LENS supports 16 base
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Figure 1: An example use case of VLM-LENS, where intermediate output from Qwen2-VL (Wang et al., 2024a) is
extracted for probing.

VLMs and over 30 variants, with a highly exten-
sible design that allows users or contributors to
add new models with minimal effort.
VLM-LENS streamlines analytical tasks for

VLMs, such as probing (Ettinger et al., 2016), neu-
ral circuit inspection (Chughtai et al., 2023), and
knowledge tracing (Basu et al., 2024), as well as di-
agnosing model capabilities and limitations (Zhang
et al., 2025; Stevens et al., 2025). As such, we an-
ticipate that the toolkit will enable researchers and
practitioners to conduct more fine-grained and rig-
orously controlled analyses of VLMs. The toolkit
is released under the Apache-2.0 license.

2 Related Work
Vision-language models. Since vision and text
naturally convey information about the world in
two complementary modalities, there has been sus-
tained interest in integrating them within unified
frameworks (Kiros et al., 2014; Radford et al.,
2021; Liu et al., 2023, inter alia). Earlier work
primarily encoded images and text in a shared em-
bedding space to facilitate efficient retrieval and
matching (Kiros et al., 2014; Faghri et al., 2018;
Radford et al., 2021). With recent advances in gen-
erative text models, exemplified by Brown et al.
(2020), the focus has shifted toward building large-
scale VLMs that generate text conditioned on both
images and textual prompts (Liu et al., 2023; Wang
et al., 2024a; Zhang et al., 2023, inter alia). While
some models offer straightforward hidden-state
extraction through open-sourced libraries such as
HuggingFace Transformers (Wolf et al., 2020),1

many require insufficiently documented customiza-

1For example, by setting output_hidden_state=True in
the forward function of LLaVA-1.5-7B (Liu et al., 2023);
see the documentation at https://huggingface.co/docs/
transformers/model_doc/llava.

tions. Additionally, there is no systematic support
for extracting intermediate representations beyond
the layer-wise output, such as attention maps and
intermediate features before layer normalization
(Ba et al., 2016). VLM-LENS addresses this gap
by providing a structured and unified interface for
extracting intermediate output across many VLMs,
thereby enabling detailed analyses of models.

Performance and competence analysis of VLMs.
Efforts have been made to benchmark the perfor-
mance of VLMs on various tasks, such as visual
question answering (Johnson et al., 2017), image
captioning (Lin et al., 2014) and general cross-
modal understanding (Yue et al., 2024; Fu et al.,
2024). These benchmarks largely assess models
performance through exact-match based accuracy.
However, accuracies fall short of capturing the
full spectrum of model competence, which encom-
passes the internal mechanisms and generalizable
knowledge that a model possesses, possibly beyond
its observable textual output. To address this issue,
recent work has started to explore the competence
of VLMs through more fine-grained analyses via
hidden states (Stevens et al., 2025) or output proba-
bility (Zhang et al., 2025). As such, VLM-LENS

offers a toolkit for localizing hidden causal mech-
anisms in VLM, enabling convenient and flexible
model competence analysis and assessing beyond
simple accuracy-based evaluations.

Transformer interpretability toolkits. With in-
creasing interest in interpreting Transformers, there
have been various toolkits supporting their interpre-
tation and analysis (Clark et al., 2019; Nanda and
Bloom, 2022; Belrose et al., 2023; Ali et al., 2025,
inter alia). However, most existing generic toolkits
focus on text-only (e.g., Nanda and Bloom, 2022)
or vision-only (e.g., Joseph et al., 2025) Transform-
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ers, while the VLM counterparts significantly fall
behind.2 To the best of our knowledge, all exist-
ing VLM interpretability toolkits (Palit et al., 2023;
Ben Melech Stan et al., 2024; Neo et al., 2024) sup-
port no more than a single model, and the designs
are not easily extensible to support other models.
To bridge this gap, VLM-LENS provides a uni-
fied framework to extract internal representations
of VLMs, which can be coupled with existing in-
terpretability methods (Thrush et al., 2022; Zhang
et al., 2024; Basu et al., 2024; Stevens et al., 2025,
inter alia) to analyze and assess a wide range of
state-of-the-art VLMs.

3 VLM-Lens

At a high level, the VLM-LENS toolkit incorpo-
rates the hook mechanism of PyTorch (Paszke et al.,
2019) to extract the internal representations of
VLMs, which are then stored in a database for
further analysis. We detail the design philosophy
and key implementation aspects as follows.
Design philosophy. The design of VLM-LENS is
driven by the need for a simple yet flexible toolkit
to extract internal representations while accommo-
dating the diverse dependency requirements of dif-
ferent VLMs. This is implemented through a cen-
tral interface (src/main.py) that accepts model-
specific configuration files in YAML format, along
with dedicated environment setups for each model.
Each model-specific implementation inherits from
the base class, which standardizes model load-
ing, preprocessing, and inference, while still al-
lowing for model-specific customizations. The ex-
tracted intermediate representations are stored in
a database with a standardized schema, enabling
efficient retrieval and analysis. This design, exe-
cuted by rigorous peer code review, ensures high
extensibility: to support a new model, developers
only need to implement a new model-specific class
without modifying the core logic of the toolkit.
Supported VLMs. We currently support: Aya-
Vision (Dash et al., 2025), Blip-2 (Li et al., 2023),
CLIP (Radford et al., 2021), CogVLM (Wang et al.,
2024b), GLaMM (Rasheed et al., 2024), InternLM-
XComposer (Zhang et al., 2023), InternVL (Chen
et al., 2024), Janus (Wu et al., 2025), LLaVA
(Liu et al., 2023), MiniCPM-o (Team, 2025) and
MiniCPM-V-2 (Yao et al., 2024), Molmo (Deitke

2For example, TransformerLens (Nanda and Bloom, 2022)
can be patched to support vision analysis, but requires a non-
trivial setup and is rigid in extending functionality.

et al., 2025), Paligemma (Beyer et al., 2024), Pix-
tral (Agrawal et al., 2024), PerceptionLM (Cho
et al., 2025) and Qwen2-VL (Wang et al., 2024a).
The toolkit supports all variants of these models
across sizes, with the only requirement being suffi-
cient hardware resources to load the model.
Configuration files. VLM-LENS allows users to
specify model configurations, input and output data
paths, model layers of interest, and other model-
specific parameters through YAML configuration
files. Users may extend the configuration files to
include additional parameters for their experiments.
No hard-coded parameters are used throughout
the codebase. As an example, the following file
(configs/models/blip2/blip2.yaml) specifies
the required parameters for extracting the output
of layers vision_model.post_layernorm and
language_model.lm_head in Blip2-OPT-2.7B
(Li et al., 2023):

architecture: blip2
model_path: Salesforce/blip2-opt-2.7b
model:

- torch_dtype: auto
output_db: output/blip2.db
input_dir: ./data/test-images/
prompt: "Describe the color in this image in one word."
modules:

- language_model.lm_head
- vision_model.post_layernorm

The command python src/main.py --config
configs/models/blip2/blip2.yaml will pro-
vide the user with the corresponding intermedi-
ate output tensors in output/blip2.db, a SQLite3
database that can be further queried for analysis.
Pipeline implementation and output database
organization. To initialize a model, an accompany-
ing preprocessor is required to process the input im-
ages and format the prompt: for example, the chat
template for LLaVA-1.5-7B (Liu et al., 2023) and
Qwen2-VL (Wang et al., 2024a) is implemented in
the preprocessor. The hidden representation extrac-
tion process involves registering a forward hook,
a callable function that provides access to the in-
put and output tensors of a layer specified by the
user. It takes the preprocessed image and prompt
as input, and saves the output tensors in a database
following the forward pass. All forward hooks are
unregistered to prevent contamination in later itera-
tions. A list of possible layers (i.e., modules in Py-
Torch) of a particular model can be returned easily
using the --log-named-modules parser argument,
if the user requires more information on a model’s
internal structure. Lastly, the extracted tensors are
stored in a database with the following attributes:
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name, architecture, image_path, prompt,
label, layer, tensor_dim, tensor. These
attributes correspond to the model HuggingFace
identifier (e.g., Salesforce/blip2-opt-2.7b),
model architecture specified in this toolkit (e.g.,
blip2), image path, textual prompt content, label
of the example (if applicable), layer name (e.g.,
language_model.lm_head), the dimensionality of
the extracted tensor, and the extracted intermediate
result tensor itself, respectively.

While we provide a default preprocessor
and a hooked forward pass implementation in
src/models/base.py that can handle simple
cases (e.g., LLaVA), these functions can be overrid-
den to accommodate model-specific requirements
(see more examples in src/models).

4 Usage Example I: Probing
4.1 Experimental Setups

We first demonstrate the usage of VLM-LENS by
probing (Ettinger et al., 2016), where we train a set
of probes on the extracted representations, evaluat-
ing the internal competence of VLMs on recogniz-
ing a set of primitive concepts.
Dataset. We create our dataset using CLEVR
(Johnson et al., 2017). As depicted in Table 1,
we define five categorical splits: color, material,
number, shape, and size, each corresponding to
a primitive object attribute in the images, as well
as a boolean split that may cover any attribute
with binary questions. Each split can be considered
as a c-way classification task, where c represents
the number of possible choices in the split. For
each split, 80% data is used for training the probe,
whereas the remaining 20% is used for testing.3

Probing approach. Each combination of split
D, model M, and layer ℓ is considered indepen-
dently in the probing process. For an example
(ei, yi) ∈ D, where ei represents the input (i.e.,
image and text) of the task and yi stands for its
ground-truth prediction category, we extract the in-
termediate output of model M at the layer ℓ with
mean pooling across the input tokens, denoted as
Mℓ(ei) ∈ Rd, where d is the dimensionality of
layer ℓ. Mℓ(ei) is used as the feature of ei to train
a probe that best predicts the yi label.

We employ a two-layer perceptron as the probe,
with ReLU activations and 512 hidden units.4 A k-

3Data available at https://huggingface.co/compling.
4We searched for the probe hidden size with small-scale

experiments, and found 512 to be the hidden size with the best
performance consistency.

Split Question Answer
boolean Are there any other things that

are the same size as the brown
object?

yes

color There is a small cylinder that is
made of the same material as the
big brown thing; what color is it?

green

material What is the material of the big
object that is the same color as
the small metal cylinder?

metal

number What number of things are brown
blocks or green metallic cylin-
ders that are to the right of the
tiny cylinder?

2

shape The big brown shiny thing is in
what shape?

cube

size There is another thing that is the
same shape as the brown metallic
object; what is its size?

small

Table 1: Examples from our probing dataset. We input
the image and the question to the VLM, extract hidden
states, and train a lightweight probe to decode the an-
swer from these representations.

fold cross-validation is conducted to search for the
best optimization hyperparameters for each split,
using matching-based accuracy as the metric. We
then train the probe model on the full training set us-
ing the best optimization hyperparameters, and re-
port the accuracy on the test set. Following Hewitt
and Liang (2019), we complement our main probe
(trained to predict the true ground-truth labels) with
a control probe (trained on randomly shuffled la-
bels). A statistically significant advantage of the
main probe over the control probe suggests that the
VLM encodes task-relevant information, whereas
no advantage implies that the probe relies on its
own capacity to memorize spurious patterns.

4.2 Results and Discussion

We evaluate the middle (i.e., ⌈L2 ⌉) and last layers of
eight supported models, where L is the total num-
ber of layers in the model of interest (Figure 2).
Notably, the probes trained on the Qwen-7b and
MiniCPM-o representations achieve an almost per-
fect accuracy within many dataset splits, with a
statistically significant difference from the control
probe performance. This effect is especially preva-
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Figure 2: Evaluation Accuracy on our probing dataset
by model, layer, and split. Main refers to probing on
the regular data, while control stands for probing using
data with random labels. The number of asterisks rep-
resents the significance level of the Z-test for Bernoulli
variables (***: p = .001, **: p = .01, *: p = .05).

lent in the results of the last layer representations
with a few exceptions (e.g., Blip-2 and Paligemma).
In contrast, models like LLaVA-1.5-7B demon-
strate a minor (albeit statistically significant in most
cases) difference between the evaluation results
in the original and control conditions, indicating
weaker competence.

Across all models, the color attribute appears
to be the most salient feature, with the main
probe performance significantly better than the
control results across both layers. Models with
instruction-following and multimodal understand-
ing capabilities, such as Qwen2-VL, MiniCPM-o,
and InternVL, performed well on the more difficult
splits such as material, number, and shape, es-
pecially when using the last-layer representations.
This probing-based competence evaluation comple-
ments existing accuracy-driven benchmarks by pro-
viding a more detailed understanding of what is rep-
resented in the internal states, grounding the model
performance in interpretable primitive knowledge.

5 Usage Example II: Concept Similarity

The second experiment is inspired by the classic
Stroop Effect (Stroop, 1935), which demonstrates
that humans exhibit slower and more error-prone
responses when asked to name the font color of a
word that is itself an incongruent color term (e.g.,
the word red printed in blue ink). We adapt this
paradigm to VLMs by constructing images with
deliberate incongruities between three color cues
(Figure 4): the lexical word (e.g., white), the font
color (e.g., yellow), and the background color (e.g.,
blue). This design probes how VLMs ground the
notion of color under ambiguous instructions.

5.1 Experimental Setups

Prompt setup. Unlike humans in the Stroop task,
who are explicitly instructed to name the ink color,
we query the model with an intentionally ambigu-
ous prompt: Describe the color in this image in
one word., coupled with a single image with in-
congruent cues. This allows us to study which
representation (lexical, font, or background) the
model privileges in its internal embeddings.
Prototype construction. To establish references
for primitive color concepts (e.g., red, blue, green),
we retrieve the top 10 de-duplicated Creative
Commons–licensed images using the Google Im-
ages API.5 We extract the intermediate layer rep-

5https://developers.google.com/photos
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Figure 3: Cosine similarity between Stroop task images and primitive color concepts. Results are shown as a
function of model layer (x-axis) and number of PCA components retained (y-axis), with orange surfaces indicating
matching conditions and blue surfaces indicating mismatching conditions when considering different aspects.

(a) Word white written in
yellow on blue canvas.

(b) Word black written in
yellow on red canvas.

Figure 4: Example images used in the Stroop Task.

resentations of these images coupled with the am-
biguous textual instruction using VLM-LENS.

Similarity-based analysis. We apply Principal
Component Analysis (PCA) to identify the direc-
tions that capture the most color variation. Let the
zero-meaned embeddings be denoted as E ∈ Rn×d,
where n is the number of reference images cor-
responding to primitive color concepts, and d is
the dimensionality of the intermediate layer out-
put. PCA learns a linear projection W ∈ Rd×d′

that maps E to a lower-dimensional representation
E′ = EW ∈ Rn×d′(d′ ≪ d).

We evaluate the Stroop task images under differ-
ent numbers of retained principal components: for
one image at a specific model layer, we extract the
corresponding hidden representation, projecting it
into the transformed space with W , and compute
the average cosine similarity with the reference
color concepts. For lexical, font, and background
colors, we report the average matched and mis-
matched cosine similarities across layers.

5.2 Results and Discussion

We visualize the results for LLaVA-1.5-7B (Fig-
ure 3), where a larger gap between matched and
mismatched data indicates a more prominent fea-

ture in the Stroop task. We find a clear separation
between the match and mismatch conditions across
all three settings, indicating all three types of infor-
mation (i.e., lexical content, foreground font color,
and background color) are reliably encoded in the
model. As expected, background color (Figure 3c)
produces the strongest contrast between matched
and mismatched examples. However, somewhat
surprisingly, color presented as lexical content is
more prominent than font color, evidenced by the
gap in Figure 3a than that in Figure 3b. In addition,
all concepts require a sufficient number of PCA
components to achieve a clear separation, suggest-
ing that color information is not captured in a single
linear direction in the representation space.

6 System Evaluation

We evaluate VLM-LENS, in terms of time and
memory efficiency, on the inference procedure
of our supported models, using a subset of the
MSCOCO validation set (Lin et al., 2014)6 with
2,690 examples (Table 2). All experiments are done
on a single NVIDIA-A40 GPU with sufficient CPU
memory, using an inference batch size of 1. Users
may use the reported performance statistics for in-
formed choices on GPU selection and advanced
inference techniques.

6.1 Inference Time

The model inference times are calculated for the
duration of the forward inference on the dataset,
including the database saving execution, and disre-
garding the model and processor loading time. As
expected, CLIP is the fastest despite its high pre-
cision point, which is a result of its small number

6https://huggingface.co/datasets/compling/
coco-val2017-obj-qa-categories
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Model # Params Precision Peak Mem Inference Time Per-Instance Time
(MB) (seconds) (seconds)

CLIP (2021) 150M float32 616.69 135 0.025
Blip-2 (2023) 2.7B float32 15,261.28 295 0.055
InternLM-XComposer-2.5 (2023) 7B bfloat16 24,037.64 3,056 0.569
InternVL (2024) 8B bfloat16 21,136.92 3,347 0.623
LLaVA-1.5 (2023) 7B float16 29,031.55 1,566 0.291
MiniCPM-V-2 (2024) 2.8B bfloat16 7,154.23 495 0.092
MiniCPM-o (2025) 8B bfloat16 18,058.20 671 0.125
Molmo (2025) 7B float32 34,403.26 2,841 0.529
Paligemma (2024) 3B float32 12,018.30 554 0.103
Qwen2-VL (2024a) 7B bfloat16 33,840.66 1,497 0.279

Table 2: Inference properties of different models in VLM-LENS after execution on the MSCOCO (Lin et al., 2014)
dataset, including GPU memory usage and inference time metrics.

of parameters. It is worth noting that CLIP is also
the only model trained using contrastive image-
text matching, rather than incorporating visual to-
kens alongside text, and, therefore, is not directly
comparable to other models. InternVL, InternLM-
XComposer-2.5, and MolMo are the slowest mod-
els, with high per-inference times compared to
other models with similar parameter counts (7B).
Furthermore, within the same parameter count
and precision point, InternVL and MiniCPM-o
demonstrate a disparate difference in inference
time (0.623s vs 0.125s per-inference, respectively),
which is likely due to differing architecture opti-
mizations and input processing methods.

6.2 Memory Usage
To approximate the memory usage of each model
using our toolkit, we record the precision and peak
GPU memory usage (in MB; Table 2). Similar
to inference time, CLIP demonstrates the lowest
memory footprint (617MB), due to its compact ar-
chitecture. In contrast, LLaVA-1.5 and Qwen2-VL
use the most memory, despite having a low preci-
sion point and the same parameter count as many
other models. In general, bfloat16 and float16
precision points reduce memory usage, but their
effectiveness varies depending on the architecture:
InternLM-XComposer and Qwen2-VL still demon-
strate a large memory footprint (>24GB).

7 Conclusion and Discussion

In this paper, we introduce VLM-LENS, a toolkit
that aims to benchmark, analyze, and interpret
VLMs systematically. We demonstrate that the
toolkit enables the assessment of the internal com-
petence of a wide range of VLMs (§ 4), going
beyond the simple accuracy-based evaluations pro-
vided by most existing benchmarks (Yue et al.,

2024, inter alia). We offer performance statistics
(Table 2) for users’ informed choice on both mod-
els and hardware. Users who develop new VLMs
through training and fine-tuning can also easily use
the provided probing framework to diagnose their
model capabilities. We anticipate that this toolkit
will lower the barrier for evaluations of VLMs in a
scientifically rigorous way.

Results from our demonstrative experiment (§ 4)
align with the caveat that performance alone may
be insufficient for evaluating models (Hu and Levy,
2023; Zhang et al., 2025; Wang and Shi, 2025). Al-
though all evaluated models are considered highly
capable on existing benchmarks, many still fail
on simple synthetic data. These findings reaffirm
concerns about the reliability of VLMs, and VLM-
LENS will actively support their analysis and im-
provement along these lines.

Limitations and planned community support.
The current toolkit does not directly support more
downstream tasks than probing, such as attention
interpretation and neural circuit discovery. Addi-
tionally, our current inference and database stor-
age approach prevents the use of gradient-based
saliency analyses such as Grad-CAM (Selvaraju
et al., 2017). Current users still need to implement
their customized functions; however, we anticipate
rapid community contributions to the repository for
a diverse range of tasks—efforts we are committed
to supporting in the long term.
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B Probing Configuration

For each of our supported models, we extract the
hidden representations of the middle (e.g., 16) and
last (e.g., 32) of the post-attention layer norm
module (or equivalent) using our library. This is
because we require a 4096-dimensional (or equiv-
alent) representation that can be efficiently stored
and contains some relevant information about the
input.

Each probe is instantiated with ReLU activation
and a hidden size of 512, selected empirically to
balance performance and efficiency. The input
and output sizes are determined dynamically based
on the tensors and labels in the input database.
We tune the hyperparameters, learning_rate,
num_epochs and batch_size, to find the best com-
binations that incurs the lowest mean validation
loss after k-fold cross-validation with k = 5. With
3 options for each former parameter, we search
through 33 = 27 configurations. Lastly, using
the best training configuration, we train two new
models from scratch on the original and shuffled
datasets, respectively.
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