@inproceedings{yang-weng-2025-researstudio,
title = "{R}esear{S}tudio: A Human-intervenable Framework for Building Controllable Deep Research Agents",
author = "Yang, Linyi and
Weng, Yixuan",
editor = {Habernal, Ivan and
Schulam, Peter and
Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-demos.69/",
pages = "896--905",
ISBN = "979-8-89176-334-0",
abstract = "Current deep-research agents run in a ``fire-and-forget'' mode: once started, they give users no way to fix errors or add expert knowledge during execution. We present ResearStudio, the first open-source framework that places real-time human control at its core. The system follows a Collaborative Workshop design. A hierarchical Planner{--}Executor writes every step to a live ``plan-as-document,'' and a fast communication layer streams each action, file change, and tool call to a web interface. At any moment, the user can pause the run, edit the plan or code, run custom commands, and resume {--} switching smoothly between AI-led, human-assisted and human-led, AI-assisted modes. In fully autonomous mode, ResearStudio achieves state-of-the-art results on the GAIA benchmark, surpassing systems like OpenAI{'}s DeepResearch and Manus. These results show that strong automated performance and fine-grained human control can coexist. We will release the full code, protocol, and evaluation scripts to encourage further work on safe and controllable research agents upon acceptance."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-weng-2025-researstudio">
<titleInfo>
<title>ResearStudio: A Human-intervenable Framework for Building Controllable Deep Research Agents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Linyi</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yixuan</namePart>
<namePart type="family">Weng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Habernal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Schulam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-334-0</identifier>
</relatedItem>
<abstract>Current deep-research agents run in a “fire-and-forget” mode: once started, they give users no way to fix errors or add expert knowledge during execution. We present ResearStudio, the first open-source framework that places real-time human control at its core. The system follows a Collaborative Workshop design. A hierarchical Planner–Executor writes every step to a live “plan-as-document,” and a fast communication layer streams each action, file change, and tool call to a web interface. At any moment, the user can pause the run, edit the plan or code, run custom commands, and resume – switching smoothly between AI-led, human-assisted and human-led, AI-assisted modes. In fully autonomous mode, ResearStudio achieves state-of-the-art results on the GAIA benchmark, surpassing systems like OpenAI’s DeepResearch and Manus. These results show that strong automated performance and fine-grained human control can coexist. We will release the full code, protocol, and evaluation scripts to encourage further work on safe and controllable research agents upon acceptance.</abstract>
<identifier type="citekey">yang-weng-2025-researstudio</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-demos.69/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>896</start>
<end>905</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ResearStudio: A Human-intervenable Framework for Building Controllable Deep Research Agents
%A Yang, Linyi
%A Weng, Yixuan
%Y Habernal, Ivan
%Y Schulam, Peter
%Y Tiedemann, Jörg
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-334-0
%F yang-weng-2025-researstudio
%X Current deep-research agents run in a “fire-and-forget” mode: once started, they give users no way to fix errors or add expert knowledge during execution. We present ResearStudio, the first open-source framework that places real-time human control at its core. The system follows a Collaborative Workshop design. A hierarchical Planner–Executor writes every step to a live “plan-as-document,” and a fast communication layer streams each action, file change, and tool call to a web interface. At any moment, the user can pause the run, edit the plan or code, run custom commands, and resume – switching smoothly between AI-led, human-assisted and human-led, AI-assisted modes. In fully autonomous mode, ResearStudio achieves state-of-the-art results on the GAIA benchmark, surpassing systems like OpenAI’s DeepResearch and Manus. These results show that strong automated performance and fine-grained human control can coexist. We will release the full code, protocol, and evaluation scripts to encourage further work on safe and controllable research agents upon acceptance.
%U https://aclanthology.org/2025.emnlp-demos.69/
%P 896-905
Markdown (Informal)
[ResearStudio: A Human-intervenable Framework for Building Controllable Deep Research Agents](https://aclanthology.org/2025.emnlp-demos.69/) (Yang & Weng, EMNLP 2025)
ACL