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Figure 1: AIPOM enables transparent and controllable planning in multi-agent workflows through conversational
and graphical interfaces that support human—LLM collaboration. (A) The Chat Panel allows users to define or
update the planning goal, provide high-level feedback, and receive updates or explanations. (B) The Plan Panel
displays the generated plan as an editable graph, enabling users to directly manipulate task nodes, agent assignments,
data flow, and execution outputs.

Abstract 1 Introduction

Large language models (LLMs) are being in- Orchestrated Multi-Agent Systems (OMAS) have

creasingly used for planning in orchestrated emerged as a powerful framework for handling
multi-agent systems. However, existing LLM- complex tasks across diverse domains (Kandogan
based approaches often fall short of human ex- et al., 2024; Zaharia et al., 2024). These systems
pectations and, critically, lack effective mech- consist of multiple specialized agents, each respon-

anisms for users to inspect, understand, and
control their behaviors. These limitations call
for enhanced transparency, controllability, and
human oversight. To address this, we intro-

sible for performing specific subtasks upon request.
The agents are systematically orchestrated, with
their outputs propagating through successive agents

duce AIPOM, a system supporting human-in- to collaboratively resolve a given task. Recently,
the-loop planning through conversational and these modular workflows have been enhanced by
graph-based interfaces. AIPOM enables users the integration of large language models (LLMs),
to transparently inspect, refine, and collabora- external tools, and domain-specific models, lead-
tively guide LLM-generated plans, significantly ing to improved performance and adaptability in

enhancing user control and trust n multl-ager}t tackling complex, real-world tasks (Schick et al.,
workflows. Our code and demo video are avail-

able at https://github.com/megagonlabs/ 2023; Chen et al., 2024).
aipom. A key component of OMAS is planning, i.e.,
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the process of breaking down high-level goals into
structured sequences of subtasks and assigning
them to appropriate agents. LLMs are increasingly
being used for planning (Huang et al., 2022; Wang
et al., 2023b; Singh et al., 2023), owing to their
ability to perform complex reasoning, generalize
across domains, leverage world knowledge, reflect
on their own planning decisions, and operate di-
rectly through natural language (Renze and Guven,
2024; Zhang et al., 2025a). These capabilities make
LLMs well-suited for orchestrating multi-agent in-
teractions without task-specific training.

Despite these strengths, LLM-based planning
presents several challenges. First, in domain-
specific or high-stakes scenarios, LLMs may gen-
erate outputs that are inaccurate, incomplete, or
misaligned with expert knowledge (Valmeekam
et al., 2023; Huang et al., 2024). Second, in many
OMAS settings, users are presented only with the
final output of the system, without visibility into the
underlying plan structure or the intermediate out-
puts produced by agents. This lack of transparency
makes it difficult to understand, verify, and trust
the system’s behavior. Finally, these systems are
typically accessed through chat interfaces, which
offer limited controllability and make it difficult for
users to inspect, refine, or debug plans at a granular
level. These limitations make human oversight not
only necessary but central to the planning phase, un-
derscoring the need for interfaces that allow users
to actively engage with and guide the planning and
execution processes to ensure outcomes align with
their intentions (Union, 2024).

To address these challenges, we present AIPOM
(Agent-aware Interactive Planning for Orchestrated
Multi-agent systems), a novel system that enhances
transparency and controllability in OMAS through
human-in-the-loop planning. AIPOM combines
natural language interaction with a graph-based in-
terface that represents plans as editable workflows
in a visual programming environment. Through di-
rect manipulation (Shneiderman, 1983), users can
inspect and modify the plan structure—including
agent assignments, data flow, and execution order—
by interacting directly with nodes and edges in
the plan graph. Additionally, users can invoke
LLM assistance to suggest completions, resolve
issues, or fill in missing details. This mixed-
initiative (Horvitz, 1999) model enables flexible,
collaborative planning, combining human insight
and expertise with LLM-driven reasoning to itera-
tively build and refine executable plans. Our con-
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Figure 2: System overview. AIPOM supports human-in-
the-loop planning through natural language interaction
and direct manipulation on a plan graph.

tributions are as follows:

* AIPOM, a novel system combining conver-
sational and graph interfaces, providing fine-
grained plan exploration and control.

* A mixed-initiative planning approach enabling
human-LLM collaboration for plan construc-
tion and refinement for OMAS.

* Experiments and a pilot study demonstrating
how AIPOM improves transparency and con-
trollability in LLM-based planning.

2 AIPOM System

2.1 System Overview

AIPOM consists of four key modules (Fig. 2): a
planning module responsible for converting user
request into logical plans (§ 2.2), a conversation
module that interprets user utterances and extract
intent, an execution coordinator that manages sub-
task dispatch across agents, and a controller that
orchestrates communication between them.

Users interact with AIPOM through a dual-
panel interface that combines a chat panel (§ 2.3.2)
for natural language interaction and a plan panel
(§ 2.3.1) for exploring and editing the plan itera-
tively. The controller translates user inputs (both
natural language feedback and graph edits) into
system-level operations that update the plan and
coordinate execution.

Implementation details are listed in Appendix A.

Plan Model A plan is a structured workflow of
subtasks and dependencies, represented as a di-
rected acyclic graph (DAG) (Zhuo et al., 2024;
Zhang et al., 2025b). Each node in the graph corre-
sponds to a subtask assigned to an agent, specifying
its task description, assigned agent, expected inputs,
and outputs. Edges define data dependencies from
outputs from one node to inputs of another, thereby
establishing execution order and information flow.

This plan representation differs from some prior
work, which models plans as node-level DAGs



without explicit data mappings or as linear se-
quences of subtask descriptions. In contrast, our
setting requires coordinating multiple external
agents with defined input/output interfaces, making
it essential to track how outputs of one step connect
to inputs of the next. The DAG structure supports
this fine-grained dependency modeling and enables
reliable multi-agent execution.

Agents Agents (which can be LLM-based, built
on top of proprietary models or APIs, or rely on
simple tools and function calling) available to the
system are described in an agent registry, which de-
fines their names, capabilities, and input/output
specifications. This registry serves as a shared
source of truth for both the planner and the exe-
cution coordinator.

2.2 LLM-based Planner

AIPOM uses an LLM to generate and refine plans
in an agent-aware manner. The planner constructs
plans based on agent capabilities and input/output
requirements defined in the agent registry.

2.2.1 Plan Generation

Plan generation is triggered whenever the conversa-
tion module identifies a new user query, represent-
ing the user’s latest intent. This query is passed to
the planner along with the agent registry. The LLM
planner is prompted to generate a structured, exe-
cutable plan that decomposes the user’s goal into
subtasks, assigns each subtask to an appropriate
agent, and defines dependencies between them.

2.2.2 Plan Refinement via User Feedback

After a plan is generated, users can refine it either
through natural language (NL) feedback or through
direct manipulation on plan graphs.

1. NL Feedback Users can provide textual feed-
back. The planner is then re-prompted with the
current plan state, the agent registry, and the
user’s feedback to produce an updated plan.

. Direct Manipulation Alternatively, users can
directly edit the plan graph by adding or delet-
ing nodes or edges, modifying task descriptions,
reassigning agents, adjusting input/output fields,
or updating agent configurations. These changes
are immediately reflected in the plan.

. LLM Fix Users may invoke LLM assistance
after making partial edits, prompting the planner
to complete, validate, or fix the current plan.
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We posit that NL feedback is well-suited for
high-level guidance, such as shaping the overall
structure or intent of the plan. In contrast, direct
manipulation is more effective for precise or local-
ized adjustments where users aim to retain most of
the existing plan. This mixed-initiative workflow
supports flexible and efficient human-LLM collab-
oration, leveraging the complementary strengths of
NL interaction and structured editing.

2.3 Interface

AIPOM provide a dual-panel interface that sup-
ports both natural language interaction and direct
manipulation of a structured plan. This layout en-
ables users to switch fluidly between conversational
input and direct edit, supporting a mixed-initiative
workflow for human-LLM collaborative planning.

2.3.1 Plan Panel

The plan panel (Fig. 1(B)) displays the generated
plan as a directed graph, with the current user query
shown in the top-left corner. The plan is visualized
as a node-link diagram, where each node represents
a task and edges represent data dependencies.

Each node is rendered as a card containing sub-
task details, including the assigned agent, task de-
scription, input/output fields, and execution status.
Once a task is executed, its output is shown at the
bottom of the node card. Edges are rendered as
directional arrows connecting output fields of one
node to input fields of another, making data flow
across the plan explicit. A green button inside each
node card triggers single node execution.

The plan is fully editable via direct manipulation.
Users can add new nodes using the “Add Node” but-
ton and create edges by dragging from an output
to a compatible input. Nodes and edges can be
removed by selecting and pressing the delete key.
Subtask details (e.g., task descriptions, assigned
agents, agent configurations, and input/output vari-
ables) can be modified directly within each node
card. Task nodes can also be re-positioned freely
to improve plan layout. Additionally, intermediate
outputs can be manually edited without modifying
the plan structure, allowing downstream subtasks
to be re-executed with custom inputs.

Control buttons in the top-right corner allow
users to execute the entire plan (Execute All), gen-
erate a new plan for the current query (Re-plan),
or request LLM assistance to complete or fix the
current plan (Help).
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Figure 3: Initial plan generated for job search example
(top) and editing task description (bottom).

2.3.2 Chat Panel

The chat panel (Fig. 1(A)) provides a conversa-
tional interface where users interact with the sys-
tem using natural language. It supports a range of
high-level inputs, such as initializing a new plan,
modifying the current query, refining an existing
plan, or triggering execution.

User messages and system responses are dis-
played as chat bubbles, forming a clear and trace-
able interaction history. When a new plan is gener-
ated, an execution is triggered, or a plan is refined,
the system not only updates the plan panel but also
responds with natural language explanations in the
chat panel. This conversational interface comple-
ments the plan panel by enabling users to steer-
ing the planning process using high-level language,
while simultaneously observing plan updates and
execution results in context.

3 Usage Scenarios

3.1 Searching for a Job

Misty is seeking MLE or Al engineering roles in
Atlanta. She begins with a query: “Help me find
a job in Atlanta. I'm looking for MLE or Al eng
positions.” AIPOM responds with a three-step plan
using a web search agent, an extract agent, and a
summarization agent (Fig. 3, top). Misty executes
the plan. Intermediate outputs appear in each node,
allowing her to observe they contribute to the final
answer. When she notices that the search agent
returns only five postings, she adjust the agent set-
tings to return 10 results and re-execute the plan.
Next, Misty edits the extract agent’s task to include
location and remote possibility (Fig. 3, bottom),
then re-runs only the modified node and its depen-
dents. Noticing some jobs are outside Atlanta (e.g.,
Tesla, Palo Alto, is included in Node 1’s execution
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result), she provides feedback via chat: “Filter out
jobs that are not in Atlanta” (Fig. 1). AIPOM up-
dates the plan by inserting a filtering step. After
re-running the updated plan, Misty is satisfied with
the results and proceeds to explore the application
links. This scenario highlights AIPOM ’s support
for iterative refinement, transparent execution, and
granular control.

3.2 Solving a Math Problem

Brock tries solve a math word problem involving
full-priced and discounted glasses (see screenshots
in Appendix D). The initial plan fails to compute
the number of each type, leading to an incomplete
solution. To fix this, Brock adds a placeholder
node with a natural language description and two
expected outputs, then clicks the Help button to
invoke LLM assistance (Fig. 5, top). During ex-
ecution of fixed plan, a multiply node produces
an incorrect result: multiplying the cost per glass
by 60 instead of interpreting it as 60%. Brock re-
places the node with an LLM-based multiply agent
to handle the percentage correctly and adds a miss-
ing edge to fix a data dependency (Fig. 5, middle).
After these edits, the updated plan successfully
solves the problem (Fig. 5, bottom). This exam-
ple shows how AIPOM supports plan repair, agent
substitution, and user-driven debugging in a mixed-
initiative way.

4 Evaluation

We conduct a quantitative experiment to evalu-
ate plan refinement performance, alongside a pilot
study that compares different plan representation
formats and feedback modalities.

4.1 Experiment Setting

Datasets and Tasks Our experiments utilize two
datasets focused on math reasoning: GSMSK
(grade-school-level word problems, Cobbe et al.,
2021) and Multi-Step Arithmetic from BIG-Bench
Hard (complex equation-format problems, Suzgun
et al., 2022). We select math problems because
their solutions have limited variability in the cor-
rect plan structure, unlike other tasks that may have
multiple correct approaches involving different sets
of agents, making them easier to evaluate.

For each dataset, we randomly sample 50 tasks
and manually generate a correct plan p;, which is
then validated by the authors. We then artificially
modify each correct plan by randomly applying one



Model ‘ Dataset ‘ Feedback ‘ Add Node | Remove Node | Add Edge | RemoveEdge | Modify (Agent) | Modify (I/O)
\ \ | Acc 1SO GED| Acc ISO GED| Acc ISO GED| Acc ISO GED| Acc ISO GED| Acc ISO GED
Detailed |70.97 96.77 0.05 |96.77 93.50 0.26 [93.55 100 0.00 [93.55 100 0.00 |95.16 100 0.00 |98.38 93.54 0.19
GSMS8K | Vague 67.74 82.25 0.73 |90.32 88.71 0.44 |95.16 95.16 0.08 | 839 919 0.13 |93.5 87.1 0.52 |9516 903 0.35
GPT-40 DM + Fix | 93.54 90.32 0.31 | 100 100 0 100 100 0 100 100 0 100 100 0 [96.77 91.94 0.29
Detailed | 19.6 952 007 | 52 684 0.79 | 812 100 0.00 | 80.8 99.6 0.01| 74 932 007 | 60 824 021
Multi-step | Vague 64 272 183|416 532 171 | 74 964 007|796 976 002 | 54 656 158|384 88 0.16
DM +Fix | 11.2 438 442 | 100 100 0 100 100 0 100 100 0 100 100 0 372 50.6 4.28
Detailed |72.58 90.32 0.58 |51.61 95.16 0.13 [75.81 95.16 0.10 |74.19 93.55 0.18 |74.19 93.55 0.12 |71.77 92.74 0.29
GSMSK | Vague 64.51 8548 0.53 | 50.0 61.29 1.29 |74.19 91.94 0.19 |72.58 88.71 0.39 |70.97 82.26 1.08 |66.94 83.87 0.85
Llama- DM + Fix | 77.05 65.00 1.87 | 100 100 0 100 100 0 100 100 0 100 100 0 [90.32 83.33 0.83

3.3-70B

Detailed | 5.60 8.50 8.33 [19.60 72.43 0.59 [64.40 85.20 1.14 |65.60 88.28 0.80 | 37.6 74.13 2.08 | 33.0 66.60 2.62
Multi-step | Vague 920 1397 569 | 040 1.61 8.63 [59.60 83.60 1.32 | 18.0 2424 6.69 |33.10 71.06 2.59 |13.30 20.36 10.44
DM + Fix | 12.6 23.41 6.69 | 100 100 0 100 100 0 100 100 0 100 100 0 [26.87 2520 7.02

Table 1: Plan refinement performance across operation types for different feedback formats and models. Metrics

include execution accuracy (Acc 1),

isomorphic subgraph match (ISO 1), and graph edit distance (GED J).

Highlighted are the DM+Fix and baseline Detailed Feedback performance for complex operations.

operation (e.g., adding or removing a node or edge,
or altering a subtask specification) to produce an
incorrect version pg. We assess the planner’s abil-
ity to refine pg back to the correct plan p; using
three kinds of feedback formats: detailed natural
language feedback, vague/underspecified natural
language feedback, and partial manipulation with
LLM assistance. After the planner generates a re-
fined plan p}, we compare it to the original correct
plan p;. The list of modification operations and
example feedbacks are included in Appendix B.

Metrics We evaluate refined plans using the ex-
ecution accuracy of refined plans and graph simi-
larity to the original correct plans. These metrics
capture functional correctness (whether the task is
solved) and structural correctness (alignment with
the original plan). For graph similarity, we employ:
(1) isomorphism (ISO), which measures whether
the graphs are structurally identical with matching
agent assignments; (2) graph edit distance (GED),
the minimum number of edit operations required
to transform one graph into the other.

4.2 Experiment Results

Table 1 compares the effectiveness of feedback
formats across plan refinement operations using
the GPT-40 and Llama-3.3-70B-Instruct models.
Compared to vague NL feedback, detailed
NL feedback achieves higher performance across
nearly all refinement operations, confirming that
precise and explicit instructions enable the LLM
planner to reliably recover correct plans. However,
this assumes that users are both able and willing
to articulate details, which can impose cognitive
burden, especially in complex or unfamiliar do-
mains. Vague NL feedback, by contrast, is less
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effective: its ambiguity limits the planner’s ability
to accurately infer users’ refinement intent. These
results highlight that while natural language interac-
tions are useful, their effectiveness depends heavily
on the specificity of user input. As a result, they
cannot be solely relied upon for plan refinement,
especially when user intent is implicit, ambiguous,
or difficult to express in language.

Direct manipulation with LLM assistance
(DM+Fix) offers a practical alternative, allowing
users to make partial edits on plan while relying
on the LLM to complete and correct the plan. For
simple, single-step operations (e.g., remove node,
add or remove edge, and modify agent assign-
ment), direct manipulation alone achieves near-
perfect accuracy. For more complex operations
that involve multiple interdependent changes (e.g.,
adding a new node and connecting its dependen-
cies), DM+Fix outperforms vague feedback and
performs comparably to detailed feedback, while
requiring less user effort.

We also observe lower performance on the Multi-
Step Arithmetic dataset due to the complexity of its
generated plans. Multi-step plans require intricate
output-input dependencies between nodes. Mod-
ification operations can easily disrupt these links,
making accurate refinement challenging.

Overall, GPT-40 consistently outperforms
Llama-3.3-70B, often by a significant margin.
However, both models exhibit similar performance
trends, indicating comparable behavior despite dif-
ferences in absolute metrics.

4.3 Pilot Study

We conducted a small-scale pilot study to ex-
plore how users provide feedback to refine LLM-
generated plans. The study compared plan repre-



Phase Completion Word Interaction False Post-Feedback
(Plan— Feedback) Time (sec) Count Count Acceptance Accuracy
(D) Text—@ Text 173.72 18.09 - 22.22% 80.56%

(2) Graph—@ Text 149.98 12.39 - 11.11% 86.11%
(2) Graph—@ DM 155.37 - 2.16 0% 88.89%

Table 2: User study results across phases where participants were presented with plans (textual or graph) and
provided feedback (text or direct manipulation of graph). Average task completion time (seconds), textual feedback
word count, direct manipulation interaction count, false acceptance rate, and post-feedback accuracy are reported.

sentation formats (1) text vs. (2) graph) and feed-
back modalities (@) textual comments vs. @ par-
tial graph edits). Participants were presented with
flawed plans and provided feedback across three
phases combining these conditions. Detailed study
design and results are provided in Appendix C.
Table 2 shows that execution accuracy of refined
plans is higher when the original plan is presented
as a graph rather than text, and when feedback is
given via direct manipulation (followed by LLM
fix assistance) rather than natural language. Ad-
ditionally, participants completed tasks faster and
provided more concise textual feedback when plans
were presented in graph format compared to textual
plans. Participants also accepted incorrect plans
as correct twice as often when working with tex-
tual plans. These findings align with survey results
in which users found graph presentations easier to
understand and debug and preferred graph editing
over textual feedback (see Appendix C.2). These
results highlight the benefits of our graph visual-
ization for transparency and interpretability over
conventional chat-based agentic systems.

5 Related Works

Multi-Agent Systems Our work builds on recent
trends in multiple specialized agents Al systems, re-
ferred to as multi-agent systems (MAS), compound
Al, agentic workflows, Al pipelines, etc. While tra-
ditional MAS emphasize agent autonomy, coopera-
tion, and distributed decision-making (Wooldridge,
2009; Stone and Veloso, 2000), our focus is on
a class of centrally orchestrated systems that co-
ordinate pre-defined agents, i.e., each implement-
ing a modular function or service. In this orches-
trated MAS setting, agents are not proactive or
autonomous; instead, they execute assigned tasks
upon request. This design aligns with recent no-
tions of compound Al (Kandogan et al., 2024) and
agentic workflows (Qiao et al., 2025).

LLM-Based Planning LLM-based planning has
gained popularity due to language models’ abil-
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ity to reason step-by-step and decompose tasks
without domain-specific training (Valmeekam et al.,
2023; Huang et al., 2024). Many systems interleave
planning and execution, generating and executing
one step at a time based on observed outcomes (Yao
et al., 2023; Schick et al., 2023; Prasad et al., 2023;
Wang et al., 2023a). This paradigm enables flexi-
ble adaptation but lacks a global, inspectable plan
structure. In contrast, our system adopts a plan-
then-execute approach: it generates a complete
multi-agent plan upfront, enabling granular inspec-
tion and refinement by humans.

Interactive AI Workflow Systems Our system
shares common goals with LLM chains / ML work-
flow systems (Wu et al., 2022; Cheng et al., 2024;
Arawjo et al., 2024; Lin and Martelaro, 2024),
which offer visual programming interfaces for
assembling modular components into executable
chains or ML pipelines. While these systems are
conceptually similar to plans in OMAS, they typ-
ically require users to manually construct plans
from scratch or rely on predefined templates.

InstructPipe (Zhou et al., 2025), Chain-
Buddy (Zhang and Arawjo, 2024), and Low-code
LLM (Cai et al., 2024) use LLMs to generate struc-
tured pipelines/workflows from NL descriptions.
While our interface shares similarities in combin-
ing NL with visual interactions, our work targets
OMAS, where planning must be agent-aware, with
explicit data flow across agents. Unlike systems
focused on initial generation, AIPOM supports
mixed-initiative refinement, allowing users to col-
laboratively build and update plans.

6 Conclusion

We presented AIPOM, a system addressing key
limitations in current LLM-based planning for or-
chestrated multi-agent systems. By combining con-
versational and graph-based interfaces, AIPOM
enhances transparency and controllability through
flexible human-in-the-loop collaboration. Prelimi-
nary results demonstrate its effectiveness in inter-



active plan refinement.

Future work includes applying AIPOM to high-
stakes domains like healthcare and finance, where
precise and controllable planning by domain ex-
perts is essential. We plan to expand user interac-
tions beyond basic graph edits to support operations
such as freezing, merging, splitting, replacing tasks,
and enforcing structural constraints (e.g., “A must
precede B, but not coincide with C”). To improve
scalability, we aim to enhance LLLM assistance in
verifying plans and executions, enabling users to
focus on ambiguous or problematic areas (Sung
et al., 2025). Finally, real-world deployments and
user studies will help us assess which interactions
users prefer, how they impact trust, and how to
further refine the system for practical use.

Ethics Statement

We promote the collaboration of LLM-based plan-
ners and humans, which can be beneficial for var-
ious tasks. It is important to take note of the re-
sponsible use of such systems. Over-reliance on
LLM-based planners may expose inherent biases
present within such models which could influence
decision-making in real-world scenarios. Further-
more, it is important for humans to be accountable
of their actions, that is, bad actors may exploit such
systems to refine plans to suit their own benefits
and biases.

We also emphasize the need for privacy and data
protection. If the planner handles personal or sen-
sitive data, human intervention may introduce pri-
vacy risks. Such issues may be mitigated by using
role-based access to such systems as well as data
anonymization.

As LLMs continue to be utilized for planning,
it is important to do so with responsible human
monitoring which ensures planning and decision-
making is transparent, accountable and unbiased.
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A Implementation Details

AIPOM is built using a React frontend and a Python
backend with FastAPI for communication. The
planner and conversation module are powered by
OpenAl’s GPT-40. To simulate an OMAS setting,
we created specialized agents using Python func-
tions, APIs, and LLMs, based on a curated subtask
taxonomy.'

A.1 List of Prompts

We provide the prompts used by our planner and
conversation module, with the system prompt listed
at the top and the user prompt at the bottom.

Prompt used for planing

You are a planner responsible for creating high-level
plans to solve any tasks using a set of agents.

Your goal is to break down a given task into a sequence of
subtasks that, when executed correctly by the appropriate
agents, will lead to the correct solution.

A plan should have at least 2 steps.

For each step in the plan:

1. Describe the subtask the agent must perform.

2. Provide a brief, self-contained description of the
expected inputs and outputs. Do not include any specific
values or examples.

3. Generate an instruction prompt for the agent.

Represent your plan as a graph where each node
corresponds to a step, and each edge represents a
dependency between two steps i.e., a step’s output is
used as an input for a subsequent step.

If a node requires the output from a previous node as an
input, ensure it is included in the edge list.

An input variable for a node represented is a tuple, where
the first item is an input description, the second item
is the value of the variable if it can be predetermined
without executing the plan.

If is dependent upon preceding nodes, set null.
INFER THE VALUE. DO NOT EXECUTE THE STEPS.

The output should be structured in the following JSON
format:

DO NOT

’nodes’: <list of JSON nodes ’id’: <node id as integer>,
’name’: <assigned agent name>, ’task’: <instruction
prompt>, ’input’: <list of tuple (input var, its value)>,
’output’: <list of outputs>>,

’edges’: <list of JSON edges ’src_node’: <source node id>,
’dest_node’: <destination node id>, ’src_output’: <output
variable name>, ’dest_input’: <input variable name>>

}

eg.
{plan demonstration examples}

Here are the available agents:

{agent registry}

For identify_operands, ensure you repeat the query
in the task. Sometimes, the query may require a
multiplier eg. "..twice of”, divisor eg. "divide by x",
percentage, in a later task. Ensure all such operations
are also captured in identify_operands.

There may be multiple inputs from one node to another.

\. J

'While a full OMAS system would involve explicit models,
tools, and predefined agents, simulating the agents in this
way simplifies the setup and allows us to demonstrate the
core interactive planning functionality. AIPOM can be easily
incorporated with actual agents by adding them to the agent
registry and wiring them into the execution flow.
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In that case, ensure you define separate edges from one
node to the other.

For some agents, ensure that input order is correct, e.g.,
when calculating profit, revenue - cost is different from
cost - revenue. so input should be [revenue, cost] order.

{task query}

Prompt used for refining plan

<same system prompt as planning>

Given the original plan,
feedback

refine it according to user

Original Plan:
{prev plan}

User Feedback:
{feedback}

Prompt used for completing/fixing plan

<same system prompt as planning>

Given a query, an initial plan will be given to you. The
initial plan may be incomplete or incorrect.

Your job is to complete or fix the plan. Stay as true to
the initial plan as you can.

Query:
{query}

Intial Plan:
{plan}

.
Prompt used for response generation

You are a natural language interface for a multi-agent
system.

This system creates a plan to answer a user query and
executes it using AI agents.

Your task is to explain the actions triggered by the user
input and clearly communicate the system’s output in a
very short (max 1-2 line) response.

Do not mention anything else. Write down only plain text.

Case 1: Response after new plan generation

Generate a very short (max 1-2 line) response to a user
query to generate a plan. The response should simply
provide a high level response of what the plan does, and
minor details such as number of steps.

User Query: {query}

Plan: {plan}

Case 2: Response after plan execution

Generate a very short (max 1-2 line) response to a user
query to execute a plan or a single node.

The response should simply provide a high level response
of the execution, and minor details such as final result.

User Query: {query}
Plan: {plan}

Case 3: Response after feedback-based refinement
Generate a very short (max 1-2 line) response to a user
query to interact with a plan.

The response should simply provide a high level response
of the plan which was interacted with and what change
took place.

Interaction Type: {interaction}
Plan: {plan}




Modification Refinement Ops. Detailed NL Feedback

Vague NL Feedback Direct Manipultaion

Remove arbitrary node Add Node Add a {agent} node connecting {prev} to {next}

Add arbitrary node Remove Node Remove a superfluous {agent} node

Delete arbitrary edge ~ Add Edge Add an edge between {source id} and {target id} Add a missing edge

Add arbitrary edge Remove Edge Remove a superfluous edge between {source id} Remove a superfluous edge

and {target id}
Incorrect agent in node
Random I/O change

Modify (Agent)
Modify (I/0)

Update node {id} to have the correct agent
Update node {id} with valid inputs and outputs

Add a {agent} node
Remove a superfluous node

Add agent node + Fix
Remove a specific node

Add an edge connecting nodes
Remove a specific edge

Assign a correct agent
Set valid inputs and outputs

Change the assigned agent
Add/remove an I/O + Fix

Table 3: Modifications performed to test plan refinement capabilities, along with corresponding templates for
detailed & vague natural language feedbacks and direct manipulation with LLM assistance.

B Modification and Feedback Templates

We apply single-step modifications to a correct plan
p1 to generate an incorrect plan pg. The planner’s
task is to refine pg back to p; using three types of
feedback, as shown in Table 3. NL feedback is
generated from templates and fed to the planner,
whereas direct manipulation feedback is applied
via graph edits, followed by LL.M-assisted fixes.
Although the associated refinement operation is
included in the table for clarity, it is not revealed to
the planner (i.e., the planner must infer it).

C Pilot Study Details

C.1 Study Design

Participants We recruited nine participants from
an industry research laboratory, comprising interns,
engineers, and research scientists. All participants
were proficient in English, based in the United
States, held at least a graduate-level degree, and
had prior experience working with LLMs. The
study objectives and how their input would be used
were clearly explained to the participants.

Tasks We sampled 12 math word problems from
the GSMS8K dataset and constructed imperfect
plans for each, following Table 3. To control task
difficulty, we included both easy and medium tasks:
easy tasks were created by applying a single modi-
fication to a gold (reference) plan, while medium
tasks involved two or more modifications.

In each task, participants were presented with
a flawed plan and asked to provide feedback to
improve it. Plans were shown in one of two for-
mats: (1) textual descriptions in the chat panel, or
(2) graph representations in the plan panel. Partic-
ipants provided feedback through two modalities:
@ natural language comments and @) partial graph
edits, including adding or deleting nodes or edges
and modifying input/output variables. Graph ed-
its were intended as partial signals to guide the
planner, rather than complete corrections.
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Procedure The study followed a within-subjects
design, with tasks evenly divided across three
phases: (1) participants received textual plans and
provided textual feedback (D—@); (2) partici-
pants received plan graphs and provided textual
feedback (@—>0); and (3) participants received
plan graphs and performed partial graph edits to
guide the LLM planner (2)—@). Each phase in-
cluded four tasks. Both the assignment of tasks to
phases and the order of phases were randomized
for each participant to control for ordering effects.

Note that participants were not asked to con-
firm or reject the actual refinements based on their
feedback; rather, their input was collected and post-
processed to assess whether it led to improvements.

Post-Study Survey After completing all tasks,
participants answered an exit survey comparing the
two plan representation formats (text and graph)
and the two feedback modalities (textual feedback
and direct manipulation of the graph). The survey
assessed ease of understanding and issue detec-
tion for plan representations, as well as ease of
use, cognitive effort, and preferences for feedback
modalities. The full list of questions are:

* The plan was easy to understand in text format.

* The plan was easy to understand in graph format.

* It was easy to detect issues or flaws in the text
plan.

* It was easy to detect issues or flaws in the plan

graph.

It was easy to provide useful feedback by writing

textual feedback.

It was easy to provide useful feedback by par-

tially editing the plan graph.

Providing feedback by writing textual feedback

required a lot of mental effort.

Providing feedback by partially editing the plan

graph required a lot of mental effort.

I would prefer to use text feedback for future

tasks.

* I would prefer to use partial graph editing for
future tasks.



B Strongly Disagree Disagree Neutral Agree I Strongly Agree

Easy to Understand Text Plan
Easy to Understand Graph Plan

Easy to Detect Issues in Text Plan _

Easy to Detect Issues in Graph Plan

Easy to Provide Text Feedback
Easy to Provide Graph Feedback _
Cognitive Load Text Feedback (-)
Cognitive Load Graph Feedback (-)

Preference Text Feedback

4 5 6 7

Preference Graph Feedback
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Figure 4: Participant responses from the exit survey, with each row representing 9 responses. Graph-based plan
representations were perceived as significantly easier to interpret and debug than textual plans. Participants also
preferred partial graph editing over textual feedback, finding it easier to provide and less mentally demanding.

C.2 Exit Survey Results

Figure 4 summarizes participants’ responses from
the exit survey, capturing perceived usability and
preferences across plan representation formats and
feedback modalities.

Plan Representations Participants found graph-
based plans considerably easier to interpret and
debug than textual plans. One participant noted,
“[...] if graph visualization is provided, issues like
missing edges are easy to be detected immediately.”
This suggests that the visual structure of the graph
helped users reason about dependencies and execu-
tion flow between agents.

Feedback Modalities Participants rated partial
graph editing more favorably than textual feedback
in terms of ease of use and lower mental effort.
Also, participants expressed a strong preference for
using graph edits in future tasks. One participant
commented, “Textual seems more helpful for high-
level feedback and graph editing is more suitable
for detailed editing [...].” These responses indicate
that users perceive direct manipulation as a com-
plementary and intuitive addition to conversational
feedback for guiding LLM planners.

D Additional Screenshots

In this section, we present additional screenshots
of our system, captured while following the usage
scenario described in § 3.2.
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Kylar went to the store to buy glasses for

his new apartment. One glass costs $5, but

every second glass costs only 60% of the
price. Kylar wants to buy 16 glasses. How
much does he need to pay for them?

The plan calculates the total cost for Kylar
10 buy 16 glasses in 5 steps, considering
the price and discount for every second
glass.

A new node was added to the plan to
identify the cost detals for Kylar's glasses
purchase, modifying the plan’s structure.

‘The plan has been modified to update the
calculations for the total cost of glasses
Kylar wants to buy, incorporating the
discount for every second glass.

‘The plan was modified to update the
connections between nodes for calculating
the total cost of glasses Kylar wants to buy.

The plan has been modified to update the
calculations for the total cost of glasses
Kylar wants to buy, incorporating the
discount for every second glass.

o Kylar went to the store to buy glasses for his new
apartment. One glass costs $5, but every second
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executed yet because one or more of its
preceding nodes have not been executed.
Please make sure all prerequisite nodes are
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Figure 5: Screenshots providing a walkthrough of the use case scenario described in § 3.2.
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