AIPOM: Agent-aware Interactive Planning for Multi-Agent Systems

Hannah Kim, Kushan Mitra, Chen Shen, Dan Zhang, Estevam Hruschka
Megagon Labs
{hannah, kushan, chen_s, dan_z, estevam}@megagon.ai

User Query
MLE or Al eng positions] A1 eng positions. G
The plan searches for job listings for Machine Task Node
Learning Engineer or Al Engineer positions in
Atlanta, extracts relevant details, and *. TAsKO EXECUTED u +, TASK1 EXECUTED u
summarizes them into a concise ist,
consisting of three main steps. Agent Agent web_search R -3 sgert [PP
T
b listings in Atlant
Job search completed successtully, providing ‘ OF 200 S TON0s 4 anta “Extract relevant job details such as
Task ing Engineer (MLE) or AT
a summary of machine learning job | €ng @ company name, job title, location, remote
opportunities in Atlanta from various b i possibility, and application link from the
companies with application links. Inputs & job listings.
{ *, TASK2 executen
The job search plan was modified to extract ou'pUts b, gs: e |
and summarize job listings for Machine } Agent summarize CE -]
Learning Engineer and Al Engineer positions
in Atlanta, providing a concise overview of ob_listings X job_details X “Summarize the extracted job details to
opportunities from various companies. 5 N A provide a concise list of opportunities.”
+ @ +
H '
The job search for Machine Learning Engineer | I 1
and Al Engineer Execution 1 ’ i b
' tails:
executed, yieldin, opportun ron
1 i
companies like Indeed, Linkedin, Tesla, and Result H } AN S
more v ompan '
' ob_tit | Cadding + +
! ocat 4
' - '
' '
i app 4 b_c
1 ’ l A
1 1
' '
1 1
1 . 1
' b_ti 1
1 1
' ocat S 1
1 emot 1 '
' appli '
' " 1
')
A) Chat Panel . :
i) 1
v / +
: B . ’
All node details are .. Edges connecting _- =

Reset

Fier the ones located in Atlantl = user-controllable ""77 outputs to inputs (B) Plan Panel z

Figure 1: AIPOM enables transparent and controllable planning in multi-agent workflows through conversational
and graphical interfaces that support human—LLM collaboration. (A) The Chat Panel allows users to define or
update the planning goal, provide high-level feedback, and receive updates or explanations. (B) The Plan Panel
displays the generated plan as an editable graph, enabling users to directly manipulate task nodes, agent assignments,
data flow, and execution outputs.

Abstract 1 Introduction

Large language models (LLMs) are being in- Orchestrated Multi-Agent Systems (OMAS) have

creasingly used for planning in orchestrated emerged as a powerful framework for handling
multi-agent systems. However, existing LLM- complex tasks across diverse domains (Kandogan
based approaches often fall short of human ex- et al., 2024; Zaharia et al., 2024). These systems
pectations and, critically, lack effective mech- consist of multiple specialized agents, each respon-

anisms for users to inspect, understand, and
control their behaviors. These limitations call
for enhanced transparency, controllability, and
human oversight. To address this, we intro-

sible for performing specific subtasks upon request.
The agents are systematically orchestrated, with
their outputs propagating through successive agents

duce AIPOM, a system supporting human-in- to collaboratively resolve a given task. Recently,
the-loop planning through conversational and these modular workflows have been enhanced by
graph-based interfaces. AIPOM enables users the integration of large language models (LLMs),
to transparently inspect, refine, and collabora- external tools, and domain-specific models, lead-
tively guide LLM-generated plans, significantly ing to improved performance and adaptability in

enhancing user control and trust n multl-ager}t tackling complex, real-world tasks (Schick et al.,
workflows. Our code and demo video are avail-

able at https://github.com/megagonlabs/ 2023; Chen et al., 2024).
aipom. A key component of OMAS is planning, i.e.,

85

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 85-96
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/megagonlabs/aipom
https://github.com/megagonlabs/aipom

the process of breaking down high-level goals into
structured sequences of subtasks and assigning
them to appropriate agents. LLMs are increasingly
being used for planning (Huang et al., 2022; Wang
et al., 2023b; Singh et al., 2023), owing to their
ability to perform complex reasoning, generalize
across domains, leverage world knowledge, reflect
on their own planning decisions, and operate di-
rectly through natural language (Renze and Guven,
2024; Zhang et al., 2025a). These capabilities make
LLMs well-suited for orchestrating multi-agent in-
teractions without task-specific training.

Despite these strengths, LLM-based planning
presents several challenges. First, in domain-
specific or high-stakes scenarios, LLMs may gen-
erate outputs that are inaccurate, incomplete, or
misaligned with expert knowledge (Valmeekam
et al., 2023; Huang et al., 2024). Second, in many
OMAS settings, users are presented only with the
final output of the system, without visibility into the
underlying plan structure or the intermediate out-
puts produced by agents. This lack of transparency
makes it difficult to understand, verify, and trust
the system’s behavior. Finally, these systems are
typically accessed through chat interfaces, which
offer limited controllability and make it difficult for
users to inspect, refine, or debug plans at a granular
level. These limitations make human oversight not
only necessary but central to the planning phase, un-
derscoring the need for interfaces that allow users
to actively engage with and guide the planning and
execution processes to ensure outcomes align with
their intentions (Union, 2024).

To address these challenges, we present AIPOM
(Agent-aware Interactive Planning for Orchestrated
Multi-agent systems), a novel system that enhances
transparency and controllability in OMAS through
human-in-the-loop planning. AIPOM combines
natural language interaction with a graph-based in-
terface that represents plans as editable workflows
in a visual programming environment. Through di-
rect manipulation (Shneiderman, 1983), users can
inspect and modify the plan structure—including
agent assignments, data flow, and execution order—
by interacting directly with nodes and edges in
the plan graph. Additionally, users can invoke
LLM assistance to suggest completions, resolve
issues, or fill in missing details. This mixed-
initiative (Horvitz, 1999) model enables flexible,
collaborative planning, combining human insight
and expertise with LLM-driven reasoning to itera-
tively build and refine executable plans. Our con-

86

Conversation
Module

Planner

¥
Execution
Coordinator
Agents

Controller

.................

Figure 2: System overview. AIPOM supports human-in-
the-loop planning through natural language interaction
and direct manipulation on a plan graph.

tributions are as follows:

* AIPOM, a novel system combining conver-
sational and graph interfaces, providing fine-
grained plan exploration and control.

* A mixed-initiative planning approach enabling
human-LLM collaboration for plan construc-
tion and refinement for OMAS.

* Experiments and a pilot study demonstrating
how AIPOM improves transparency and con-
trollability in LLM-based planning.

2 AIPOM System

2.1 System Overview

AIPOM consists of four key modules (Fig. 2): a
planning module responsible for converting user
request into logical plans (§ 2.2), a conversation
module that interprets user utterances and extract
intent, an execution coordinator that manages sub-
task dispatch across agents, and a controller that
orchestrates communication between them.

Users interact with AIPOM through a dual-
panel interface that combines a chat panel (§ 2.3.2)
for natural language interaction and a plan panel
(§ 2.3.1) for exploring and editing the plan itera-
tively. The controller translates user inputs (both
natural language feedback and graph edits) into
system-level operations that update the plan and
coordinate execution.

Implementation details are listed in Appendix A.

Plan Model A plan is a structured workflow of
subtasks and dependencies, represented as a di-
rected acyclic graph (DAG) (Zhuo et al., 2024;
Zhang et al., 2025b). Each node in the graph corre-
sponds to a subtask assigned to an agent, specifying
its task description, assigned agent, expected inputs,
and outputs. Edges define data dependencies from
outputs from one node to inputs of another, thereby
establishing execution order and information flow.

This plan representation differs from some prior
work, which models plans as node-level DAGs

without explicit data mappings or as linear se-
quences of subtask descriptions. In contrast, our
setting requires coordinating multiple external
agents with defined input/output interfaces, making
it essential to track how outputs of one step connect
to inputs of the next. The DAG structure supports
this fine-grained dependency modeling and enables
reliable multi-agent execution.

Agents Agents (which can be LLM-based, built
on top of proprietary models or APIs, or rely on
simple tools and function calling) available to the
system are described in an agent registry, which de-
fines their names, capabilities, and input/output
specifications. This registry serves as a shared
source of truth for both the planner and the exe-
cution coordinator.

2.2 LLM-based Planner

AIPOM uses an LLM to generate and refine plans
in an agent-aware manner. The planner constructs
plans based on agent capabilities and input/output
requirements defined in the agent registry.

2.2.1 Plan Generation

Plan generation is triggered whenever the conversa-
tion module identifies a new user query, represent-
ing the user’s latest intent. This query is passed to
the planner along with the agent registry. The LLM
planner is prompted to generate a structured, exe-
cutable plan that decomposes the user’s goal into
subtasks, assigns each subtask to an appropriate
agent, and defines dependencies between them.

2.2.2 Plan Refinement via User Feedback

After a plan is generated, users can refine it either
through natural language (NL) feedback or through
direct manipulation on plan graphs.

1. NL Feedback Users can provide textual feed-
back. The planner is then re-prompted with the
current plan state, the agent registry, and the
user’s feedback to produce an updated plan.

. Direct Manipulation Alternatively, users can
directly edit the plan graph by adding or delet-
ing nodes or edges, modifying task descriptions,
reassigning agents, adjusting input/output fields,
or updating agent configurations. These changes
are immediately reflected in the plan.

. LLM Fix Users may invoke LLM assistance
after making partial edits, prompting the planner
to complete, validate, or fix the current plan.

87

We posit that NL feedback is well-suited for
high-level guidance, such as shaping the overall
structure or intent of the plan. In contrast, direct
manipulation is more effective for precise or local-
ized adjustments where users aim to retain most of
the existing plan. This mixed-initiative workflow
supports flexible and efficient human-LLM collab-
oration, leveraging the complementary strengths of
NL interaction and structured editing.

2.3 Interface

AIPOM provide a dual-panel interface that sup-
ports both natural language interaction and direct
manipulation of a structured plan. This layout en-
ables users to switch fluidly between conversational
input and direct edit, supporting a mixed-initiative
workflow for human-LLM collaborative planning.

2.3.1 Plan Panel

The plan panel (Fig. 1(B)) displays the generated
plan as a directed graph, with the current user query
shown in the top-left corner. The plan is visualized
as a node-link diagram, where each node represents
a task and edges represent data dependencies.

Each node is rendered as a card containing sub-
task details, including the assigned agent, task de-
scription, input/output fields, and execution status.
Once a task is executed, its output is shown at the
bottom of the node card. Edges are rendered as
directional arrows connecting output fields of one
node to input fields of another, making data flow
across the plan explicit. A green button inside each
node card triggers single node execution.

The plan is fully editable via direct manipulation.
Users can add new nodes using the “Add Node” but-
ton and create edges by dragging from an output
to a compatible input. Nodes and edges can be
removed by selecting and pressing the delete key.
Subtask details (e.g., task descriptions, assigned
agents, agent configurations, and input/output vari-
ables) can be modified directly within each node
card. Task nodes can also be re-positioned freely
to improve plan layout. Additionally, intermediate
outputs can be manually edited without modifying
the plan structure, allowing downstream subtasks
to be re-executed with custom inputs.

Control buttons in the top-right corner allow
users to execute the entire plan (Execute All), gen-
erate a new plan for the current query (Re-plan),
or request LLM assistance to complete or fix the
current plan (Help).

*,. TASK1 execuTeD @

Agent extract s

&
"Extract relevant job details such as
company name, job title, location, remote

possibﬂityJ and application link from the
job listings.”" O G

r

Figure 3: Initial plan generated for job search example
(top) and editing task description (bottom).

2.3.2 Chat Panel

The chat panel (Fig. 1(A)) provides a conversa-
tional interface where users interact with the sys-
tem using natural language. It supports a range of
high-level inputs, such as initializing a new plan,
modifying the current query, refining an existing
plan, or triggering execution.

User messages and system responses are dis-
played as chat bubbles, forming a clear and trace-
able interaction history. When a new plan is gener-
ated, an execution is triggered, or a plan is refined,
the system not only updates the plan panel but also
responds with natural language explanations in the
chat panel. This conversational interface comple-
ments the plan panel by enabling users to steer-
ing the planning process using high-level language,
while simultaneously observing plan updates and
execution results in context.

3 Usage Scenarios

3.1 Searching for a Job

Misty is seeking MLE or Al engineering roles in
Atlanta. She begins with a query: “Help me find
a job in Atlanta. I'm looking for MLE or Al eng
positions.” AIPOM responds with a three-step plan
using a web search agent, an extract agent, and a
summarization agent (Fig. 3, top). Misty executes
the plan. Intermediate outputs appear in each node,
allowing her to observe they contribute to the final
answer. When she notices that the search agent
returns only five postings, she adjust the agent set-
tings to return 10 results and re-execute the plan.
Next, Misty edits the extract agent’s task to include
location and remote possibility (Fig. 3, bottom),
then re-runs only the modified node and its depen-
dents. Noticing some jobs are outside Atlanta (e.g.,
Tesla, Palo Alto, is included in Node 1’s execution

88

result), she provides feedback via chat: “Filter out
jobs that are not in Atlanta” (Fig. 1). AIPOM up-
dates the plan by inserting a filtering step. After
re-running the updated plan, Misty is satisfied with
the results and proceeds to explore the application
links. This scenario highlights AIPOM ’s support
for iterative refinement, transparent execution, and
granular control.

3.2 Solving a Math Problem

Brock tries solve a math word problem involving
full-priced and discounted glasses (see screenshots
in Appendix D). The initial plan fails to compute
the number of each type, leading to an incomplete
solution. To fix this, Brock adds a placeholder
node with a natural language description and two
expected outputs, then clicks the Help button to
invoke LLM assistance (Fig. 5, top). During ex-
ecution of fixed plan, a multiply node produces
an incorrect result: multiplying the cost per glass
by 60 instead of interpreting it as 60%. Brock re-
places the node with an LLM-based multiply agent
to handle the percentage correctly and adds a miss-
ing edge to fix a data dependency (Fig. 5, middle).
After these edits, the updated plan successfully
solves the problem (Fig. 5, bottom). This exam-
ple shows how AIPOM supports plan repair, agent
substitution, and user-driven debugging in a mixed-
initiative way.

4 Evaluation

We conduct a quantitative experiment to evalu-
ate plan refinement performance, alongside a pilot
study that compares different plan representation
formats and feedback modalities.

4.1 Experiment Setting

Datasets and Tasks Our experiments utilize two
datasets focused on math reasoning: GSMSK
(grade-school-level word problems, Cobbe et al.,
2021) and Multi-Step Arithmetic from BIG-Bench
Hard (complex equation-format problems, Suzgun
et al., 2022). We select math problems because
their solutions have limited variability in the cor-
rect plan structure, unlike other tasks that may have
multiple correct approaches involving different sets
of agents, making them easier to evaluate.

For each dataset, we randomly sample 50 tasks
and manually generate a correct plan p;, which is
then validated by the authors. We then artificially
modify each correct plan by randomly applying one

Model ‘ Dataset ‘ Feedback ‘ Add Node | Remove Node | Add Edge | RemoveEdge | Modify (Agent) | Modify (I/O)
\ \ | Acc 1SO GED| Acc ISO GED| Acc ISO GED| Acc ISO GED| Acc ISO GED| Acc ISO GED
Detailed |70.97 96.77 0.05 |96.77 93.50 0.26 [93.55 100 0.00 [93.55 100 0.00 |95.16 100 0.00 |98.38 93.54 0.19
GSMS8K | Vague 67.74 82.25 0.73 |90.32 88.71 0.44 |95.16 95.16 0.08 | 839 919 0.13 |93.5 87.1 0.52 |9516 903 0.35
GPT-40 DM + Fix | 93.54 90.32 0.31 | 100 100 0 100 100 0 100 100 0 100 100 0 [96.77 91.94 0.29
Detailed | 19.6 952 007 | 52 684 0.79 | 812 100 0.00 | 80.8 99.6 0.01| 74 932 007 | 60 824 021
Multi-step | Vague 64 272 183|416 532 171 | 74 964 007|796 976 002 | 54 656 158|384 88 0.16
DM +Fix | 11.2 438 442 | 100 100 0 100 100 0 100 100 0 100 100 0 372 50.6 4.28
Detailed |72.58 90.32 0.58 |51.61 95.16 0.13 [75.81 95.16 0.10 |74.19 93.55 0.18 |74.19 93.55 0.12 |71.77 92.74 0.29
GSMSK | Vague 64.51 8548 0.53 | 50.0 61.29 1.29 |74.19 91.94 0.19 |72.58 88.71 0.39 |70.97 82.26 1.08 |66.94 83.87 0.85
Llama- DM + Fix | 77.05 65.00 1.87 | 100 100 0 100 100 0 100 100 0 100 100 0 [90.32 83.33 0.83

3.3-70B

Detailed | 5.60 8.50 8.33 [19.60 72.43 0.59 [64.40 85.20 1.14 |65.60 88.28 0.80 | 37.6 74.13 2.08 | 33.0 66.60 2.62
Multi-step | Vague 920 1397 569 | 040 1.61 8.63 [59.60 83.60 1.32 | 18.0 2424 6.69 |33.10 71.06 2.59 |13.30 20.36 10.44
DM + Fix | 12.6 23.41 6.69 | 100 100 0 100 100 0 100 100 0 100 100 0 [26.87 2520 7.02

Table 1: Plan refinement performance across operation types for different feedback formats and models. Metrics

include execution accuracy (Acc 1),

isomorphic subgraph match (ISO 1), and graph edit distance (GED J).

Highlighted are the DM+Fix and baseline Detailed Feedback performance for complex operations.

operation (e.g., adding or removing a node or edge,
or altering a subtask specification) to produce an
incorrect version pg. We assess the planner’s abil-
ity to refine pg back to the correct plan p; using
three kinds of feedback formats: detailed natural
language feedback, vague/underspecified natural
language feedback, and partial manipulation with
LLM assistance. After the planner generates a re-
fined plan p}, we compare it to the original correct
plan p;. The list of modification operations and
example feedbacks are included in Appendix B.

Metrics We evaluate refined plans using the ex-
ecution accuracy of refined plans and graph simi-
larity to the original correct plans. These metrics
capture functional correctness (whether the task is
solved) and structural correctness (alignment with
the original plan). For graph similarity, we employ:
(1) isomorphism (ISO), which measures whether
the graphs are structurally identical with matching
agent assignments; (2) graph edit distance (GED),
the minimum number of edit operations required
to transform one graph into the other.

4.2 Experiment Results

Table 1 compares the effectiveness of feedback
formats across plan refinement operations using
the GPT-40 and Llama-3.3-70B-Instruct models.
Compared to vague NL feedback, detailed
NL feedback achieves higher performance across
nearly all refinement operations, confirming that
precise and explicit instructions enable the LLM
planner to reliably recover correct plans. However,
this assumes that users are both able and willing
to articulate details, which can impose cognitive
burden, especially in complex or unfamiliar do-
mains. Vague NL feedback, by contrast, is less

89

effective: its ambiguity limits the planner’s ability
to accurately infer users’ refinement intent. These
results highlight that while natural language interac-
tions are useful, their effectiveness depends heavily
on the specificity of user input. As a result, they
cannot be solely relied upon for plan refinement,
especially when user intent is implicit, ambiguous,
or difficult to express in language.

Direct manipulation with LLM assistance
(DM+Fix) offers a practical alternative, allowing
users to make partial edits on plan while relying
on the LLM to complete and correct the plan. For
simple, single-step operations (e.g., remove node,
add or remove edge, and modify agent assign-
ment), direct manipulation alone achieves near-
perfect accuracy. For more complex operations
that involve multiple interdependent changes (e.g.,
adding a new node and connecting its dependen-
cies), DM+Fix outperforms vague feedback and
performs comparably to detailed feedback, while
requiring less user effort.

We also observe lower performance on the Multi-
Step Arithmetic dataset due to the complexity of its
generated plans. Multi-step plans require intricate
output-input dependencies between nodes. Mod-
ification operations can easily disrupt these links,
making accurate refinement challenging.

Overall, GPT-40 consistently outperforms
Llama-3.3-70B, often by a significant margin.
However, both models exhibit similar performance
trends, indicating comparable behavior despite dif-
ferences in absolute metrics.

4.3 Pilot Study

We conducted a small-scale pilot study to ex-
plore how users provide feedback to refine LLM-
generated plans. The study compared plan repre-

Phase Completion Word Interaction False Post-Feedback
(Plan— Feedback) Time (sec) Count Count Acceptance Accuracy
(D) Text—@ Text 173.72 18.09 - 22.22% 80.56%

(2) Graph—@ Text 149.98 12.39 - 11.11% 86.11%
(2) Graph—@ DM 155.37 - 2.16 0% 88.89%

Table 2: User study results across phases where participants were presented with plans (textual or graph) and
provided feedback (text or direct manipulation of graph). Average task completion time (seconds), textual feedback
word count, direct manipulation interaction count, false acceptance rate, and post-feedback accuracy are reported.

sentation formats (1) text vs. (2) graph) and feed-
back modalities (@) textual comments vs. @ par-
tial graph edits). Participants were presented with
flawed plans and provided feedback across three
phases combining these conditions. Detailed study
design and results are provided in Appendix C.
Table 2 shows that execution accuracy of refined
plans is higher when the original plan is presented
as a graph rather than text, and when feedback is
given via direct manipulation (followed by LLM
fix assistance) rather than natural language. Ad-
ditionally, participants completed tasks faster and
provided more concise textual feedback when plans
were presented in graph format compared to textual
plans. Participants also accepted incorrect plans
as correct twice as often when working with tex-
tual plans. These findings align with survey results
in which users found graph presentations easier to
understand and debug and preferred graph editing
over textual feedback (see Appendix C.2). These
results highlight the benefits of our graph visual-
ization for transparency and interpretability over
conventional chat-based agentic systems.

5 Related Works

Multi-Agent Systems Our work builds on recent
trends in multiple specialized agents Al systems, re-
ferred to as multi-agent systems (MAS), compound
Al, agentic workflows, Al pipelines, etc. While tra-
ditional MAS emphasize agent autonomy, coopera-
tion, and distributed decision-making (Wooldridge,
2009; Stone and Veloso, 2000), our focus is on
a class of centrally orchestrated systems that co-
ordinate pre-defined agents, i.e., each implement-
ing a modular function or service. In this orches-
trated MAS setting, agents are not proactive or
autonomous; instead, they execute assigned tasks
upon request. This design aligns with recent no-
tions of compound Al (Kandogan et al., 2024) and
agentic workflows (Qiao et al., 2025).

LLM-Based Planning LLM-based planning has
gained popularity due to language models’ abil-

90

ity to reason step-by-step and decompose tasks
without domain-specific training (Valmeekam et al.,
2023; Huang et al., 2024). Many systems interleave
planning and execution, generating and executing
one step at a time based on observed outcomes (Yao
et al., 2023; Schick et al., 2023; Prasad et al., 2023;
Wang et al., 2023a). This paradigm enables flexi-
ble adaptation but lacks a global, inspectable plan
structure. In contrast, our system adopts a plan-
then-execute approach: it generates a complete
multi-agent plan upfront, enabling granular inspec-
tion and refinement by humans.

Interactive AI Workflow Systems Our system
shares common goals with LLM chains / ML work-
flow systems (Wu et al., 2022; Cheng et al., 2024;
Arawjo et al., 2024; Lin and Martelaro, 2024),
which offer visual programming interfaces for
assembling modular components into executable
chains or ML pipelines. While these systems are
conceptually similar to plans in OMAS, they typ-
ically require users to manually construct plans
from scratch or rely on predefined templates.

InstructPipe (Zhou et al., 2025), Chain-
Buddy (Zhang and Arawjo, 2024), and Low-code
LLM (Cai et al., 2024) use LLMs to generate struc-
tured pipelines/workflows from NL descriptions.
While our interface shares similarities in combin-
ing NL with visual interactions, our work targets
OMAS, where planning must be agent-aware, with
explicit data flow across agents. Unlike systems
focused on initial generation, AIPOM supports
mixed-initiative refinement, allowing users to col-
laboratively build and update plans.

6 Conclusion

We presented AIPOM, a system addressing key
limitations in current LLM-based planning for or-
chestrated multi-agent systems. By combining con-
versational and graph-based interfaces, AIPOM
enhances transparency and controllability through
flexible human-in-the-loop collaboration. Prelimi-
nary results demonstrate its effectiveness in inter-

active plan refinement.

Future work includes applying AIPOM to high-
stakes domains like healthcare and finance, where
precise and controllable planning by domain ex-
perts is essential. We plan to expand user interac-
tions beyond basic graph edits to support operations
such as freezing, merging, splitting, replacing tasks,
and enforcing structural constraints (e.g., “A must
precede B, but not coincide with C”). To improve
scalability, we aim to enhance LLLM assistance in
verifying plans and executions, enabling users to
focus on ambiguous or problematic areas (Sung
et al., 2025). Finally, real-world deployments and
user studies will help us assess which interactions
users prefer, how they impact trust, and how to
further refine the system for practical use.

Ethics Statement

We promote the collaboration of LLM-based plan-
ners and humans, which can be beneficial for var-
ious tasks. It is important to take note of the re-
sponsible use of such systems. Over-reliance on
LLM-based planners may expose inherent biases
present within such models which could influence
decision-making in real-world scenarios. Further-
more, it is important for humans to be accountable
of their actions, that is, bad actors may exploit such
systems to refine plans to suit their own benefits
and biases.

We also emphasize the need for privacy and data
protection. If the planner handles personal or sen-
sitive data, human intervention may introduce pri-
vacy risks. Such issues may be mitigated by using
role-based access to such systems as well as data
anonymization.

As LLMs continue to be utilized for planning,
it is important to do so with responsible human
monitoring which ensures planning and decision-
making is transparent, accountable and unbiased.

References

Ian Arawjo, Chelse Swoopes, Priyan Vaithilingam, Mar-
tin Wattenberg, and Elena L. Glassman. 2024. Chain-
forge: A visual toolkit for prompt engineering and
IIm hypothesis testing. In Proceedings of the CHI
Conference on Human Factors in Computing Sys-
tems, CHI *24, New York, NY, USA. Association for
Computing Machinery.

Yuzhe Cai, Shaoguang Mao, Wenshan Wu, Zehua
Wang, Yaobo Liang, Tao Ge, Chenfei Wu, WangYou
WangYou, Ting Song, Yan Xia, Nan Duan, and Furu

91

Wei. 2024. Low-code LLM: Graphical user inter-
face over large language models. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 3: System
Demonstrations), pages 12-25, Mexico City, Mexico.
Association for Computational Linguistics.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter
Bailis, Ion Stoica, Matei Zaharia, and James Zou.
2024. Are more LLM calls all you need? towards
the scaling properties of compound Al systems. In
The Thirty-eighth Annual Conference on Neural In-
formation Processing Systems.

Yu Cheng, Jieshan Chen, Qing Huang, Zhenchang Xing,
Xiwei Xu, and Qinghua Lu. 2024. Prompt sapper: A
IIm-empowered production tool for building ai chains.
ACM Trans. Softw. Eng. Methodol., 33(5).

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Eric Horvitz. 1999. Principles of mixed-initiative user
interfaces. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI 99,
page 159-166, New York, NY, USA. Association for
Computing Machinery.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-shot
planners: Extracting actionable knowledge for em-
bodied agents. arXiv preprint arXiv:2201.07207.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei
Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruim-
ing Tang, and Enhong Chen. 2024. Understanding
the planning of llm agents: A survey. Preprint,
arXiv:2402.02716.

Eser Kandogan, Sajjadur Rahman, Nikita Bhutani,
Dan Zhang, Rafael Li Chen, Kushan Mitra, Sairam
Gurajada, Pouya Pezeshkpour, Hayate Iso, Yanlin
Feng, Hannah Kim, Chen Shen, Jin Wang, and Es-
tevam Hruschka. 2024. A blueprint architecture
of compound ai systems for enterprise. Preprint,
arXiv:2406.00584.

David Chuan-En Lin and Nikolas Martelaro. 2024. Jig-
saw: Supporting designers to prototype multimodal
applications by chaining ai foundation models. In
Proceedings of the CHI Conference on Human Fac-
tors in Computing Systems, CHI 24, New York, NY,
USA. Association for Computing Machinery.

Archiki Prasad, Alexander Koller, Mareike Hartmann,
Peter Clark, Ashish Sabharwal, Mohit Bansal, and
Tushar Khot. 2023. Adapt: As-needed decomposi-
tion and planning with language models. arXiv.

Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin
Wang, Ningyu Zhang, Yong Jiang, Pengjun Xie, Fei

https://doi.org/10.1145/3613904.3642016
https://doi.org/10.1145/3613904.3642016
https://doi.org/10.1145/3613904.3642016
https://doi.org/10.18653/v1/2024.naacl-demo.2
https://doi.org/10.18653/v1/2024.naacl-demo.2
https://openreview.net/forum?id=m5106RRLgx
https://openreview.net/forum?id=m5106RRLgx
https://doi.org/10.1145/3638247
https://doi.org/10.1145/3638247
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://arxiv.org/abs/2402.02716
https://arxiv.org/abs/2402.02716
https://arxiv.org/abs/2406.00584
https://arxiv.org/abs/2406.00584
https://doi.org/10.1145/3613904.3641920
https://doi.org/10.1145/3613904.3641920
https://doi.org/10.1145/3613904.3641920

Huang, and Huajun Chen. 2025. Benchmarking agen-
tic workflow generation. In The Thirteenth Interna-
tional Conference on Learning Representations.

Matthew Renze and Erhan Guven. 2024. Self-reflection
in Ilm agents: Effects on problem-solving perfor-
mance. arXiv preprint arXiv:2405.06682.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. In Thirty-seventh Conference on Neural
Information Processing Systems.

Shneiderman. 1983. Direct manipulation: A step be-
yond programming languages. Computer, 16(8):57—
69.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,
Jesse Thomason, and Animesh Garg. 2023. Prog-
prompt: Generating situated robot task plans using
large language models. In 2023 IEEE International
Conference on Robotics and Automation (ICRA),
pages 11523-11530.

Peter Stone and Manuela Veloso. 2000. Multiagent sys-
tems: A survey from a machine learning perspective.
Autonomous Robots, 8(3):345-383.

Yoo Yeon Sung, Hannah Kim, and Dan Zhang. 2025.
Verila: A human-centered evaluation framework
for interpretable verification of 1lm agent failures.
Preprint, arXiv:2503.12651.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, and 1 others. 2022. Challenging big-bench
tasks and whether chain-of-thought can solve them.
arXiv preprint arXiv:2210.09261.

European Union. 2024. FEu artificial intelligence
act. article 14: Human oversight. https://
artificialintelligenceact.eu/article/14/.
Accessed: 2024-06-13.

Karthik Valmeekam, Matthew Marquez, Sarath Sreed-
haran, and Subbarao Kambhampati. 2023. On the
planning abilities of large language models - a crit-
ical investigation. In Thirty-seventh Conference on
Neural Information Processing Systems.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023a. Voyager: An open-
ended embodied agent with large language models.
Preprint, arXiv:2305.16291.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu,
Xiaojian Ma, and Yitao Liang. 2023b. Describe,
explain, plan and select: Interactive planning with
LLMs enables open-world multi-task agents. In
Thirty-seventh Conference on Neural Information
Processing Systems.

92

Michael Wooldridge. 2009. An Introduction to MultiA-
gent Systems, 2nd edition. Wiley Publishing.

Tongshuang Wu, Michael Terry, and Carrie Jun Cai.
2022. Ai chains: Transparent and controllable
human-ai interaction by chaining large language
model prompts. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Sys-
tems, CHI 22, New York, NY, USA. Association for
Computing Machinery.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Matei Zaharia, Omar Khattab, Lingjiao Chen,
Jared Quincy Davis, Heather Miller, Chris Potts,

James Zou, Michael Carbin, Jonathan Fran-
kle, Naveen Rao, and Ali Ghodsi. 2024. The
shift from models to compound ai systems.

https://bair.berkeley.edu/blog/2024/02/
18/compound-ai-systems/.

Jin Zhang, Flood Sung, Zhilin Yang, Yang Gao, and
Chongjie Zhang. 2025a. Learning to plan before an-
swering: Self-teaching LLMs to learn abstract plans
for problem solving. In The Thirteenth International
Conference on Learning Representations.

Jingyue Zhang and Ian Arawjo. 2024. Chainbuddy:
An ai-assisted agent system for helping users set up
Ilm pipelines. In Adjunct Proceedings of the 37th
Annual ACM Symposium on User Interface Software
and Technology, UIST Adjunct *24, New York, NY,
USA. Association for Computing Machinery.

Shiqi Zhang, Xinbei Ma, Zouying Cao, Zhuosheng
Zhang, and Hai Zhao. 2025b. Plan-over-graph: To-
wards parallelable 1lm agent schedule. Preprint,
arXiv:2502.14563.

Zhongyi Zhou, Jing Jin, Vrushank Phadnis, Xiuxiu
Yuan, Jun Jiang, Xun Qian, Kristen Wright, Mark
Sherwood, Jason Mayes, Jingtao Zhou, Yiyi Huang,
Zheng Xu, Yinda Zhang, Johnny Lee, Alex Ol-
wal, David Kim, Ram Iyengar, Na Li, and Ruofei
Du. 2025. Instructpipe: Generating visual blocks
pipelines with human instructions and llms. Preprint,
arXiv:2312.09672.

Hankz Hankui Zhuo, Xin Chen, and Rong Pan. 2024.
On the roles of llms in planning: Embedding 1lms
into planning graphs. Preprint, arXiv:2403.00783.

https://openreview.net/forum?id=vunPXOFmoi
https://openreview.net/forum?id=vunPXOFmoi
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=Yacmpz84TH
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.1023/a:1008942012299
https://doi.org/10.1023/a:1008942012299
https://arxiv.org/abs/2503.12651
https://arxiv.org/abs/2503.12651
https://artificialintelligenceact.eu/article/14/
https://artificialintelligenceact.eu/article/14/
https://openreview.net/forum?id=X6dEqXIsEW
https://openreview.net/forum?id=X6dEqXIsEW
https://openreview.net/forum?id=X6dEqXIsEW
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2305.16291
https://openreview.net/forum?id=KtvPdGb31Z
https://openreview.net/forum?id=KtvPdGb31Z
https://openreview.net/forum?id=KtvPdGb31Z
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3491102.3517582
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://openreview.net/forum?id=KmmNb7631I
https://openreview.net/forum?id=KmmNb7631I
https://openreview.net/forum?id=KmmNb7631I
https://doi.org/10.1145/3672539.3686763
https://doi.org/10.1145/3672539.3686763
https://doi.org/10.1145/3672539.3686763
https://arxiv.org/abs/2502.14563
https://arxiv.org/abs/2502.14563
https://arxiv.org/abs/2312.09672
https://arxiv.org/abs/2312.09672
https://arxiv.org/abs/2403.00783
https://arxiv.org/abs/2403.00783

A Implementation Details

AIPOM is built using a React frontend and a Python
backend with FastAPI for communication. The
planner and conversation module are powered by
OpenAl’s GPT-40. To simulate an OMAS setting,
we created specialized agents using Python func-
tions, APIs, and LLMs, based on a curated subtask
taxonomy.'

A.1 List of Prompts

We provide the prompts used by our planner and
conversation module, with the system prompt listed
at the top and the user prompt at the bottom.

Prompt used for planing

You are a planner responsible for creating high-level
plans to solve any tasks using a set of agents.

Your goal is to break down a given task into a sequence of
subtasks that, when executed correctly by the appropriate
agents, will lead to the correct solution.

A plan should have at least 2 steps.

For each step in the plan:

1. Describe the subtask the agent must perform.

2. Provide a brief, self-contained description of the
expected inputs and outputs. Do not include any specific
values or examples.

3. Generate an instruction prompt for the agent.

Represent your plan as a graph where each node
corresponds to a step, and each edge represents a
dependency between two steps i.e., a step’s output is
used as an input for a subsequent step.

If a node requires the output from a previous node as an
input, ensure it is included in the edge list.

An input variable for a node represented is a tuple, where
the first item is an input description, the second item
is the value of the variable if it can be predetermined
without executing the plan.

If is dependent upon preceding nodes, set null.
INFER THE VALUE. DO NOT EXECUTE THE STEPS.

The output should be structured in the following JSON
format:

DO NOT

’nodes’: <list of JSON nodes ’id’: <node id as integer>,
’name’: <assigned agent name>, ’task’: <instruction
prompt>, ’input’: <list of tuple (input var, its value)>,
’output’: <list of outputs>>,

’edges’: <list of JSON edges ’src_node’: <source node id>,
’dest_node’: <destination node id>, ’src_output’: <output
variable name>, ’dest_input’: <input variable name>>

}

eg.
{plan demonstration examples}

Here are the available agents:

{agent registry}

For identify_operands, ensure you repeat the query
in the task. Sometimes, the query may require a
multiplier eg. "..twice of”, divisor eg. "divide by x",
percentage, in a later task. Ensure all such operations
are also captured in identify_operands.

There may be multiple inputs from one node to another.

\. J

'While a full OMAS system would involve explicit models,
tools, and predefined agents, simulating the agents in this
way simplifies the setup and allows us to demonstrate the
core interactive planning functionality. AIPOM can be easily
incorporated with actual agents by adding them to the agent
registry and wiring them into the execution flow.

93

In that case, ensure you define separate edges from one
node to the other.

For some agents, ensure that input order is correct, e.g.,
when calculating profit, revenue - cost is different from
cost - revenue. so input should be [revenue, cost] order.

{task query}

Prompt used for refining plan

<same system prompt as planning>

Given the original plan,
feedback

refine it according to user

Original Plan:
{prev plan}

User Feedback:
{feedback}

Prompt used for completing/fixing plan

<same system prompt as planning>

Given a query, an initial plan will be given to you. The
initial plan may be incomplete or incorrect.

Your job is to complete or fix the plan. Stay as true to
the initial plan as you can.

Query:
{query}

Intial Plan:
{plan}

.
Prompt used for response generation

You are a natural language interface for a multi-agent
system.

This system creates a plan to answer a user query and
executes it using AI agents.

Your task is to explain the actions triggered by the user
input and clearly communicate the system’s output in a
very short (max 1-2 line) response.

Do not mention anything else. Write down only plain text.

Case 1: Response after new plan generation

Generate a very short (max 1-2 line) response to a user
query to generate a plan. The response should simply
provide a high level response of what the plan does, and
minor details such as number of steps.

User Query: {query}

Plan: {plan}

Case 2: Response after plan execution

Generate a very short (max 1-2 line) response to a user
query to execute a plan or a single node.

The response should simply provide a high level response
of the execution, and minor details such as final result.

User Query: {query}
Plan: {plan}

Case 3: Response after feedback-based refinement
Generate a very short (max 1-2 line) response to a user
query to interact with a plan.

The response should simply provide a high level response
of the plan which was interacted with and what change
took place.

Interaction Type: {interaction}
Plan: {plan}

Modification Refinement Ops. Detailed NL Feedback

Vague NL Feedback Direct Manipultaion

Remove arbitrary node Add Node Add a {agent} node connecting {prev} to {next}

Add arbitrary node Remove Node Remove a superfluous {agent} node

Delete arbitrary edge ~ Add Edge Add an edge between {source id} and {target id} Add a missing edge

Add arbitrary edge Remove Edge Remove a superfluous edge between {source id} Remove a superfluous edge

and {target id}
Incorrect agent in node
Random I/O change

Modify (Agent)
Modify (I/0)

Update node {id} to have the correct agent
Update node {id} with valid inputs and outputs

Add a {agent} node
Remove a superfluous node

Add agent node + Fix
Remove a specific node

Add an edge connecting nodes
Remove a specific edge

Assign a correct agent
Set valid inputs and outputs

Change the assigned agent
Add/remove an I/O + Fix

Table 3: Modifications performed to test plan refinement capabilities, along with corresponding templates for
detailed & vague natural language feedbacks and direct manipulation with LLM assistance.

B Modification and Feedback Templates

We apply single-step modifications to a correct plan
p1 to generate an incorrect plan pg. The planner’s
task is to refine pg back to p; using three types of
feedback, as shown in Table 3. NL feedback is
generated from templates and fed to the planner,
whereas direct manipulation feedback is applied
via graph edits, followed by LL.M-assisted fixes.
Although the associated refinement operation is
included in the table for clarity, it is not revealed to
the planner (i.e., the planner must infer it).

C Pilot Study Details

C.1 Study Design

Participants We recruited nine participants from
an industry research laboratory, comprising interns,
engineers, and research scientists. All participants
were proficient in English, based in the United
States, held at least a graduate-level degree, and
had prior experience working with LLMs. The
study objectives and how their input would be used
were clearly explained to the participants.

Tasks We sampled 12 math word problems from
the GSMS8K dataset and constructed imperfect
plans for each, following Table 3. To control task
difficulty, we included both easy and medium tasks:
easy tasks were created by applying a single modi-
fication to a gold (reference) plan, while medium
tasks involved two or more modifications.

In each task, participants were presented with
a flawed plan and asked to provide feedback to
improve it. Plans were shown in one of two for-
mats: (1) textual descriptions in the chat panel, or
(2) graph representations in the plan panel. Partic-
ipants provided feedback through two modalities:
@ natural language comments and @) partial graph
edits, including adding or deleting nodes or edges
and modifying input/output variables. Graph ed-
its were intended as partial signals to guide the
planner, rather than complete corrections.

94

Procedure The study followed a within-subjects
design, with tasks evenly divided across three
phases: (1) participants received textual plans and
provided textual feedback (D—@); (2) partici-
pants received plan graphs and provided textual
feedback (@—>0); and (3) participants received
plan graphs and performed partial graph edits to
guide the LLM planner (2)—@). Each phase in-
cluded four tasks. Both the assignment of tasks to
phases and the order of phases were randomized
for each participant to control for ordering effects.

Note that participants were not asked to con-
firm or reject the actual refinements based on their
feedback; rather, their input was collected and post-
processed to assess whether it led to improvements.

Post-Study Survey After completing all tasks,
participants answered an exit survey comparing the
two plan representation formats (text and graph)
and the two feedback modalities (textual feedback
and direct manipulation of the graph). The survey
assessed ease of understanding and issue detec-
tion for plan representations, as well as ease of
use, cognitive effort, and preferences for feedback
modalities. The full list of questions are:

* The plan was easy to understand in text format.

* The plan was easy to understand in graph format.

* It was easy to detect issues or flaws in the text
plan.

* It was easy to detect issues or flaws in the plan

graph.

It was easy to provide useful feedback by writing

textual feedback.

It was easy to provide useful feedback by par-

tially editing the plan graph.

Providing feedback by writing textual feedback

required a lot of mental effort.

Providing feedback by partially editing the plan

graph required a lot of mental effort.

I would prefer to use text feedback for future

tasks.

* I would prefer to use partial graph editing for
future tasks.

B Strongly Disagree Disagree Neutral Agree I Strongly Agree

Easy to Understand Text Plan
Easy to Understand Graph Plan

Easy to Detect Issues in Text Plan _

Easy to Detect Issues in Graph Plan

Easy to Provide Text Feedback
Easy to Provide Graph Feedback _
Cognitive Load Text Feedback (-)
Cognitive Load Graph Feedback (-)

Preference Text Feedback

4 5 6 7

Preference Graph Feedback

©
o<}
~ A
(2]
o
o
w
n
-
o4 -
-
N
w -
o -
©

Figure 4: Participant responses from the exit survey, with each row representing 9 responses. Graph-based plan
representations were perceived as significantly easier to interpret and debug than textual plans. Participants also
preferred partial graph editing over textual feedback, finding it easier to provide and less mentally demanding.

C.2 Exit Survey Results

Figure 4 summarizes participants’ responses from
the exit survey, capturing perceived usability and
preferences across plan representation formats and
feedback modalities.

Plan Representations Participants found graph-
based plans considerably easier to interpret and
debug than textual plans. One participant noted,
“[...] if graph visualization is provided, issues like
missing edges are easy to be detected immediately.”
This suggests that the visual structure of the graph
helped users reason about dependencies and execu-
tion flow between agents.

Feedback Modalities Participants rated partial
graph editing more favorably than textual feedback
in terms of ease of use and lower mental effort.
Also, participants expressed a strong preference for
using graph edits in future tasks. One participant
commented, “Textual seems more helpful for high-
level feedback and graph editing is more suitable
for detailed editing [...].” These responses indicate
that users perceive direct manipulation as a com-
plementary and intuitive addition to conversational
feedback for guiding LLM planners.

D Additional Screenshots

In this section, we present additional screenshots
of our system, captured while following the usage
scenario described in § 3.2.

95

Kylar went to the store to buy glasses for

his new apartment. One glass costs $5, but

every second glass costs only 60% of the
price. Kylar wants to buy 16 glasses. How
much does he need to pay for them?

The plan calculates the total cost for Kylar
10 buy 16 glasses in 5 steps, considering
the price and discount for every second
glass.

A new node was added to the plan to
identify the cost detals for Kylar's glasses
purchase, modifying the plan’s structure.

‘The plan has been modified to update the
calculations for the total cost of glasses
Kylar wants to buy, incorporating the
discount for every second glass.

‘The plan was modified to update the
connections between nodes for calculating
the total cost of glasses Kylar wants to buy.

The plan has been modified to update the
calculations for the total cost of glasses
Kylar wants to buy, incorporating the
discount for every second glass.

o Kylar went to the store to buy glasses for his new
apartment. One glass costs $5, but every second

+, TASKO o
Agent _ identity_operands ¢ £¥

“Identify the cost of one glass,

discount percentage for every e glass,
and the total numb

¢

Tar went to the store to buy
glasses for his new apartment. One glass
costs $5, but every second ..."

¥

auery X cost_per_glass X 8-

Addinput + discount_percentage X

total_glasses X

Add output... +

. TASK1

Agent | multly e

“Calculate the cost of every second glass
by nultiplying the cost of one glass by the
discount perce..."

<
cost_per_glass: null
discount_percentage: null

cost_per_glass X discounted_cost_per.
[d\s&wnl}emenhge x (Addoutput ¥

Add input. +

+, TsKs o

Agent falback s e

Given number of total glasses, coun the
nusber of discounted glassed

Giscounted gtasses. svary 2nd g% 15
discounted"

<
placeholder: null
»

placehoider X discounted_glasses X

+. Task2 o
Agent muliply oo
“Calculate the total cost for the full-

priced lasses by miltiplying the Cost per
glass by half

cost_per_glass: null
fullprice_glasses: null

costper_glass X total_cost_full_price_.. X

[es a

Agent multply]
"Calculate the total cost for
discounted glasses by mumn\mg the
discounted cost per second g.

discounted_cost_per_second_glass: null
discounted_glasses: null

}.ﬂsmwsw DEEET

discounted_glasses X | Add output. +

Addinput +

@® Add Task Node

Trigger LLM assistance

+, Taska o
Agent | add o]a
“Catculate the total anaunt kytar recds

o
pay by adding the total cost of full-priced
bt

total_cost_full price_glasses: null
total_cost_discounted_glasses: null

total_cost_fullprice_... X total_payment X ¢

total_cost discounte.. X | Add output +

+

s * wasameaseses x4 | Create a placeholder node 5
CEE by adding task and output variables =
Enter text... (o)
Reset
L]
4 React Flow_
price. Kylar wants to buy 16 glasses. How
apanmem. One glass costs $5, but every second PR vone O ® Add Task Node
The plan calculates the total cost for Kylar s F
10 buy 16 glasses in 5 steps, considering Agent multiply Py ‘ '\ TASK2 None O3
the price and discount for every second +, TASKO none [Agent multiply 9]

glass.

Anew node was added to the pian to
identify the cost details for Kylar's glasses
purchase, modifying the plan's structure.

‘The plan has been modified to update the
calculations for the total cost of glasses
Kylar wants to buy, incorporating the
discount for every second glass.

‘The plan was modified to update the
connections between nodes for calculating
the total cost of glasses Kylar wants to buy.

The plan has been modified to update the

Agent identify_operands ¢ ¥

“Identify the cost of one glass,
discount percentage for every Second otass,
and the total numbe.

<
query: "Kylar went to the store to buy
glasses for his new apartnent. One glass
costs $5, but every second

auery X cost_per_glass X

Add input. + discount_percentage X

total_glasses X

cost_per_glass:
discount_percentage: 68
total_glasses: 16

‘Add outpu. +

“Calculate the cost of every second glass
by nultiplying the cost of one glass by the

Chseaunt peten
o /

discounted_cost_per.. X

<
cost_per_glass:
discount_percentage: 6

}

cost_per_glass X

discount_percentage X | Add output +

Add input. +

(
discounted_cost_per_second_glass: 300
b

. TASKS

o O3

Agentfallack 7o

“Calculate the total cost for the full-
priced glasses by multiplying the cost per
Flass by the numbe

cost_per_glass: null
fullprice_glass
¥

total_cost_full_price_... X

g x (Addownut +
Adainpu, ¥
I ‘ ., TASKS None O
L o T &

Incoming edge missing

L

+. TASKa none 3

Agent ada s e

“Calculate the total amount Kylar needs t
pay by adding the total cost of full-priced
glasses and t.

total_cost_full price_glasses: null
total_cost_discounted_glasses: null

total_cost_full_price_... X total_payment X ¢

|
e

calculations for the total cost of glasses. Ctote the momber of futloorices ans atavtte e total cut for the oo P
i i “Calculate the number of full-priced an discounted glasses by mitiplying the
LRI e discounted glasses. Every second glass diseotnted. Sest He satond s
discount for every second glass. 5) discounted, so divide the total number of
glasses into two equal parts.
Discount percentage is (———
. ; ; discounted_glasses.
The plan was fixed to correctly calculate incorrectly given as 60 — iy
the total payment Kylar needs for 16 3
glasses, considering the pricing structure. iscounted_cost_per.. X total cost_discounte... X
Soluti totalglasses x fllorice_glasses X
olution: discounted_glasses X | Add output +
An error has occured: Error: Error § Add input. *' discounted_glasses X ‘
executing node 2: Ensure edges are Change to multiply-LLM agent v + dd input >
connected, /o variables defined. Please try
L full_price_glasse: +
discounted_glasses: 8 =
Reset Enter text... -
8 React Flow
.
2
AN Btorhes Gocarad: ErTor Emor a Kylzrr‘wen: lglhe Ismle to :mzﬁgl:f‘:es for his. nev;
executing node 2: Ensure edges are Aapartment. One.glass costa'$s; Rvary-sacon *, TASK1 executeo O +, TASK2 executeo @ @® Add Task Node
connected, i/o variables defined. Please try — o p— He
again <
+. TASKO exccuteo O “Calculate the cost of every second glass “Calculate the total cost for the full-
by multiplying the cost of one glass by the priced glasses by sultiplying the cost per
The plan was modified to calculate the Agent | dentiy_operands ¢ %% discount perce. glass by the nunb
discounted cost of every second glass, e — T
s “Identify the cost of one glass, the ;
resulting in a new value of $3 for the e e cost_per_ cost_per_glass: 5
- 3 u discomt:percentage. forevery; “" d glass, du(wm_per(enrage- 60 full_price_glasses: 8
discounted glasses. and the total numbe N 3
: +. TasK4 execuren O
3 query: “Kylar went to the store to buy cost_per_glass fiscounted_cost_per. «cost_per_glass. total_cost_full_price._.. .
An error has occured: This node cannot be glasses for his new apartaent. One glass e U CEol T i t_per_glass X total_cost_ful_price_... X
Costs $5, but every second had output + Add ouput + Agent add P

executed yet because one or more of its
preceding nodes have not been executed.
Please make sure all prerequisite nodes are
completed before proceeding. Please try
again

An edge was added to connect the
identification of operands to the
calculation of the discounted cost per
second glass, enabling the next step in
determining Kylar's total payment for the
glasses.

An error has occured: This node cannot be
executed yet because one or more of its
preceding nodes have not been executed.
Please make sure all prerequisite nodes are
completed before proceeding. Please try
again

Kylar needs to pay a total of $64 for the 16
glasses.

Reset | | ENtertext..

A

query X

Addinput. +

cost_per_glass: 5
discount_percentage: 60
total_glasses: 16

cost_per_glass X
discount_percentage X
total_glasses X

‘Add outpu. +

discount_percentage X

Add input. +

I
discounted_cost_per_second_glass: 3
b

full_price_glasses X

‘Add input.. +

total_cost_full_price_glasses: 40

+. TASKS executeo O
Agent | falback L]

scotevtate the nunber of fullprices ang
discounted glasses. Every second glass is
discounted, 50 divide the tatal number of
glasses into two equa

¢
total_glasses: 16
»

total_glasses X fullprice_glasses X

Addinput. + discounted_glasses X
Add output. +

I
fullprice_glasses: 8
discounted_glasses: 8

b

. Tsk3 executeo @

Agent multiply (L
“Calculate the total cost for the

discounted glasses by nultiplying the
discounted cost per second g...

discounted_cost_per_second_glas:
discounted_glasses: 8
3

discounted_cost per.. X total_cost_ discounte... X

discounted_glasses X Add output +

‘Add input. +

total_cost_discounted_glasses: 24

“Calculate the total amount Kylar needs to
pay by adding the total cost of full-priced
glasses and t.

total_cost_full_price_glasses: 40
| totalcost discaunted glasses: 24

total_cost_full_price_... X total_payment X

total_cost_discounte.. X Add output... +

\
I

Figure 5: Screenshots providing a walkthrough of the use case scenario described in § 3.2.

96

