@inproceedings{altarbouch-etal-2025-barec,
title = "{BAREC} Demo: Resources and Tools for Sentence-level {A}rabic Readability Assessment",
author = "Altarbouch, Kinda and
Elmadani, Khalid N. and
Obeid, Ossama and
Taha, Hanada and
Habash, Nizar",
editor = {Habernal, Ivan and
Schulam, Peter and
Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-demos.74/",
pages = "950--959",
ISBN = "979-8-89176-334-0",
abstract = "We present BAREC Demo, a web-based system for fine-grained, sentence-level Arabic readability assessment. The demo is part of the Balanced Arabic Readability Evaluation Corpus (BAREC) project, which manually annotated 69,000 sentences (over one million words) from diverse genres and domains using a 19-level readability scale inspired by the Taha/Arabi21 framework, covering reading abilities from kindergarten to postgraduate levels. The project also developed models for automatic readability assessment.The demo provides two main functionalities for educators, content creators, language learners, and researchers: (1) a Search interface to explore the annotated dataset for text selection and resource development, and (2) an Analyze interface, which uses trained models to assign detailed readability labels to Arabic texts at the sentence level.The system and all of its resources are accessible at https://barec.camel-lab.com."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="altarbouch-etal-2025-barec">
<titleInfo>
<title>BAREC Demo: Resources and Tools for Sentence-level Arabic Readability Assessment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kinda</namePart>
<namePart type="family">Altarbouch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="given">N</namePart>
<namePart type="family">Elmadani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ossama</namePart>
<namePart type="family">Obeid</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hanada</namePart>
<namePart type="family">Taha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nizar</namePart>
<namePart type="family">Habash</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Habernal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Schulam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-334-0</identifier>
</relatedItem>
<abstract>We present BAREC Demo, a web-based system for fine-grained, sentence-level Arabic readability assessment. The demo is part of the Balanced Arabic Readability Evaluation Corpus (BAREC) project, which manually annotated 69,000 sentences (over one million words) from diverse genres and domains using a 19-level readability scale inspired by the Taha/Arabi21 framework, covering reading abilities from kindergarten to postgraduate levels. The project also developed models for automatic readability assessment.The demo provides two main functionalities for educators, content creators, language learners, and researchers: (1) a Search interface to explore the annotated dataset for text selection and resource development, and (2) an Analyze interface, which uses trained models to assign detailed readability labels to Arabic texts at the sentence level.The system and all of its resources are accessible at https://barec.camel-lab.com.</abstract>
<identifier type="citekey">altarbouch-etal-2025-barec</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-demos.74/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>950</start>
<end>959</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BAREC Demo: Resources and Tools for Sentence-level Arabic Readability Assessment
%A Altarbouch, Kinda
%A Elmadani, Khalid N.
%A Obeid, Ossama
%A Taha, Hanada
%A Habash, Nizar
%Y Habernal, Ivan
%Y Schulam, Peter
%Y Tiedemann, Jörg
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-334-0
%F altarbouch-etal-2025-barec
%X We present BAREC Demo, a web-based system for fine-grained, sentence-level Arabic readability assessment. The demo is part of the Balanced Arabic Readability Evaluation Corpus (BAREC) project, which manually annotated 69,000 sentences (over one million words) from diverse genres and domains using a 19-level readability scale inspired by the Taha/Arabi21 framework, covering reading abilities from kindergarten to postgraduate levels. The project also developed models for automatic readability assessment.The demo provides two main functionalities for educators, content creators, language learners, and researchers: (1) a Search interface to explore the annotated dataset for text selection and resource development, and (2) an Analyze interface, which uses trained models to assign detailed readability labels to Arabic texts at the sentence level.The system and all of its resources are accessible at https://barec.camel-lab.com.
%U https://aclanthology.org/2025.emnlp-demos.74/
%P 950-959
Markdown (Informal)
[BAREC Demo: Resources and Tools for Sentence-level Arabic Readability Assessment](https://aclanthology.org/2025.emnlp-demos.74/) (Altarbouch et al., EMNLP 2025)
ACL