@inproceedings{lim-etal-2025-format,
title = "Format Inertia: A Failure Mechanism of {LLM}s in Medical Pre-Consultation",
author = "Lim, Seungseop and
Kim, Gibaeg and
Han, Wooseok and
Seo, Jean and
Lee, Hyunkyung and
Yoo, Jaehyo and
Yang, Eunho",
editor = "Potdar, Saloni and
Rojas-Barahona, Lina and
Montella, Sebastien",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track",
month = nov,
year = "2025",
address = "Suzhou (China)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-industry.101/",
pages = "1437--1450",
ISBN = "979-8-89176-333-3",
abstract = "Recent advances in Large Language Models (LLMs) have brought significant improvements to various service domains, including chatbots and medical pre-consultation applications. In the healthcare domain, the most common approach for adapting LLMs to multi-turn dialogue generation is Supervised Fine-Tuning (SFT). However, datasets for SFT in tasks like medical pre-consultation typically exhibit a skewed turn-count distribution. Training on such data induces a novel failure mechanism we term **Format Inertia**, where models tend to generate repetitive, format-correct, but diagnostically uninformative questions in long medical dialogues. To mitigate this observed failure mechanism, we adopt a simple, data-centric method that rebalances the turn-count distribution of the training dataset. Experimental results show that our approach substantially alleviates Format Inertia in medical pre-consultation."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lim-etal-2025-format">
<titleInfo>
<title>Format Inertia: A Failure Mechanism of LLMs in Medical Pre-Consultation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Seungseop</namePart>
<namePart type="family">Lim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gibaeg</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wooseok</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean</namePart>
<namePart type="family">Seo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hyunkyung</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jaehyo</namePart>
<namePart type="family">Yoo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eunho</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Saloni</namePart>
<namePart type="family">Potdar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lina</namePart>
<namePart type="family">Rojas-Barahona</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastien</namePart>
<namePart type="family">Montella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou (China)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-333-3</identifier>
</relatedItem>
<abstract>Recent advances in Large Language Models (LLMs) have brought significant improvements to various service domains, including chatbots and medical pre-consultation applications. In the healthcare domain, the most common approach for adapting LLMs to multi-turn dialogue generation is Supervised Fine-Tuning (SFT). However, datasets for SFT in tasks like medical pre-consultation typically exhibit a skewed turn-count distribution. Training on such data induces a novel failure mechanism we term **Format Inertia**, where models tend to generate repetitive, format-correct, but diagnostically uninformative questions in long medical dialogues. To mitigate this observed failure mechanism, we adopt a simple, data-centric method that rebalances the turn-count distribution of the training dataset. Experimental results show that our approach substantially alleviates Format Inertia in medical pre-consultation.</abstract>
<identifier type="citekey">lim-etal-2025-format</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-industry.101/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>1437</start>
<end>1450</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Format Inertia: A Failure Mechanism of LLMs in Medical Pre-Consultation
%A Lim, Seungseop
%A Kim, Gibaeg
%A Han, Wooseok
%A Seo, Jean
%A Lee, Hyunkyung
%A Yoo, Jaehyo
%A Yang, Eunho
%Y Potdar, Saloni
%Y Rojas-Barahona, Lina
%Y Montella, Sebastien
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou (China)
%@ 979-8-89176-333-3
%F lim-etal-2025-format
%X Recent advances in Large Language Models (LLMs) have brought significant improvements to various service domains, including chatbots and medical pre-consultation applications. In the healthcare domain, the most common approach for adapting LLMs to multi-turn dialogue generation is Supervised Fine-Tuning (SFT). However, datasets for SFT in tasks like medical pre-consultation typically exhibit a skewed turn-count distribution. Training on such data induces a novel failure mechanism we term **Format Inertia**, where models tend to generate repetitive, format-correct, but diagnostically uninformative questions in long medical dialogues. To mitigate this observed failure mechanism, we adopt a simple, data-centric method that rebalances the turn-count distribution of the training dataset. Experimental results show that our approach substantially alleviates Format Inertia in medical pre-consultation.
%U https://aclanthology.org/2025.emnlp-industry.101/
%P 1437-1450
Markdown (Informal)
[Format Inertia: A Failure Mechanism of LLMs in Medical Pre-Consultation](https://aclanthology.org/2025.emnlp-industry.101/) (Lim et al., EMNLP 2025)
ACL