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Abstract

Routing incoming queries to the most cost-
effective LLM while maintaining response
quality poses a fundamental challenge in opti-
mizing performance-cost trade-offs for large-
scale commercial systems. We present IPR—a
quality-constrained Intelligent Prompt Routing
framework that dynamically selects optimal
models based on predicted response quality
and user-specified tolerance levels. IPR intro-
duces three key innovations: (1) a modular ar-
chitecture with lightweight quality estimators
trained on 1.5M prompts annotated with cal-
ibrated quality scores, enabling fine-grained
quality prediction across model families; (2) a
user-controlled routing mechanism with toler-
ance parameter 7 € [0, 1] that provides explicit
control over quality-cost trade-offs; and (3) an
extensible design using frozen encoders with
model-specific adapters, reducing new model
integration effort. To rigorously train and eval-
uate IPR, we detail our efforts to curate an IPR
dataset containing 1.5 million examples with re-
sponse quality annotations across 11 LLM can-
didates. Deployed on a major cloud platform,
IPR achieves 43.9% cost reduction while main-
taining quality parity with the strongest model
in the Claude family and processes requests
with consistently low latency. The deployed
system and additional product details are pub-
licly available at https://aws.amazon.com/
bedrock/intelligent-prompt-routing/.

1 Introduction

The proliferation of large language models (LLMs)
with varying capabilities and costs has created a
fundamental challenge in production deployments:
how to automatically route incoming queries to the
most cost-effective model while maintaining ac-
ceptable response quality (Hu et al., 2024). This
challenge is exemplified in multi-model platforms
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Figure 1: Routing prompt with IPR with user tolerance.

like Amazon Bedrock, where models range from
lightweight options like Claude Haiku to state-of-
the-art models like Claude-3.5-Sonnet — a 12x cost
difference. User queries exhibit enormous diver-
sity: simple factual questions can be handled by
smaller models, while complex reasoning tasks re-
quire more performant ones (Jaech et al., 2024;
Guo et al., 2025). However, existing systems either
force users to manually select models, or employ
rigid routing rules that fail to capture the contin-
uous spectrum of query complexity, resulting in
substantial unnecessary costs or degraded user ex-
periences at scale (Lu et al., 2024; Ding et al., 2024;
Ong et al., 2024).

Deploying prompt routing onto real-world pro-
duction systems poses several fundamental chal-
lenges which existing approaches have not ad-
dressed comprehensively. (1) Quality predic-
tion without response generation requires routers
to estimate response quality for each candidate
model using only the input prompt, without ac-
tually generating responses — a challenging task
given that model capabilities vary across different
query types and domains. While recent works like
RouteLLM (Ong et al., 2024) explored lightweight
BERT-based classifiers for this prediction, they
either support only binary strong/weak decisions
rather than continuous quality estimation or are
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trained on small-scale datasets. (2) Latency con-

straints in production systems prevent use of ap-

proaches that require multiple model invocations
or complex computations; cascade-based methods
circumvent this by sequential evaluation but sacri-

fice flexibility in model selection (Yue et al., 2024;

Chen et al., 2023). (3) Model extensibility and

diversity becomes critical as production platforms

must simultaneously support diverse model fami-
lies (e.g., Nova, Claude, Llama) each with distinct
characteristics, while seamlessly integrating fre-
quent model updates and releases. Most existing
routers require complete retraining when model
portfolios change (Lu et al., 2024; Ding et al.,

2024), making them impractical for dynamic en-

vironments like a centralized LLM inference plat-

form where new model versions appear monthly.

(4) User-specific quality-cost preferences vary

significantly across applications — a financial anal-

ysis task may prioritize accuracy while a chatbot
may favor cost efficiency — yet current routing
solutions offer little user control, typically hard-

coding fixed quality thresholds (Ding et al., 2024)

that cannot adapt to diverse business requirements.
To tackle these challenges, we propose Intelli-

gent Prompt Routing (IPR), a quality-constrained
framework that dynamically selects the most cost-
effective model while satisfying user-specified
quality requirements. Our contributions are:

* Industrial-scale quality prediction: IPR trains
neural estimators on 1.5M prompts annotated
with calibrated reward scores from all candidate
models, enabling fine-grained quality estimation
that achieves 43.9% cost reduction in Claude
family while maintaining quality parity.

 Efficient extensible architecture: A modu-
lar design with backbone prompt encoder and
lightweight candidate-specific adapters enables
fast routing decisions.

* User-controlled routing: A quality tolerance
parameter (7 € [0, 1]) provides explicit control
over cost-quality trade-offs, from maximum qual-
ity (7 = 0) to aggressive savings (7 = 1), with
dynamic per-prompt threshold adjustment.

2 Problem Formulation and Routing
Framework

We present a formal treatment of the prompt rout-
ing problem focusing on performance-efficiency
trade-offs. Given a user prompt and candidate
LLMs, we aim to select the most cost-efficient

model whose predicted response quality satisfies
user-specified response quality tolerance.

2.1 LLM Routing Formulation

We formulate LLM routing as a constrained op-
timization problem. Denote the set of candidate
LLMs as C. Given a prompt x;, each candidate
model ¢ € C would generate a response y; . =
c(x;) with quality r; . = R(z,v:) € [0, 1] mea-
sured by a reward function capturing human pref-
erence alignment. The cost of invoking model c is
denoted by v; ..

To make the quality-cost trade-off explicit and
controllable, we minimize cost subject to qual-
ity constraints. Users specify a quality tolerance
7 € [0, 1] defining acceptable quality degradation
relative to the best available model. This induces a
feasible set: C; = {c € C | G(ri., 7) > 0}, where
G is a performance-gating function determining
whether candidate performance satisfies user toler-
ance. The optimal routing decision selects the most
efficient model from the feasible set:

¢; = arg minvj . (1
ceCr
Since computing r; . requires generating and evalu-
ating responses, we train a quality estimator 7; . =
Ry(x;, ) that predicts response quality using only
the prompt and candidate identity:

0" = arg min Z URp(zi,¢),7ic), (2)

i,c

where £ is a regression loss and r; . are ground-
truth rewards from a calibrated reward model.

2.2 Routing Strategy

Given the quality estimates 7; ., we implement a
quality-constrained, cost-optimal routing strategy
through two stages: (1) filter out candidates not
meeting quality tolerance, (2) select the most cost-
efficient qualified model.

The gating function translates user tolerance 7
to a quality threshold:

G(Fie,T) = Tie — Tign > 0, (3)

where Tith = 'fi,rnax - T- (fi,max - fi,min)' (4)

Here, 7; min 1s designed for min-max scaling when
predictions have a non-zero baseline. We use dy-
namic per-prompt #; max = MaXeec 7, to handle
varying query complexity and fixed 7; min = 0 for
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Figure 2: IPR Quality Estimator (QE) architecture. (a) Family-specific Quality Predictors (QP) process prompts
with candidate model IDs to predict quality scores. (b) New models are integrated via lightweight adapters on
frozen Prompt Encoder (PE) and LLLM Identity Encoder (LIE) components.

stability. This hybrid strategy adapts to individ-
ual prompt difficulty while preventing threshold
collapse (More routing strategies are discussed in
Appendix H). Once the feasible set C,(z;) is de-
termined, we select the minimum-cost candidate
following Equation (1).

2.3 Evaluation

We evaluate IPR along two dimensions: quality
prediction accuracy and end-to-end routing per-
formance. For quality prediction, we use mean
absolute error and ranking-based metrics, includ-
ing Top-K accuracy and F1 scores. For routing
performance, we introduce a area-under-the-curve
(AUC) style metric named Bounded-ARQGC (and
its variant, Relative-ARQGC) to measure quality-
cost trade-offs across all tolerance settings and Cost
Save Ratio (CSR) for different settings. Detailed
metric definitions are provided in Appendix A.

3 Intelligent Prompt Routing

3.1 System Overview

Figure 1 illustrates the IPR platform, comprising
three core components: (1) the Quality Estimator
(QE) that predicts response quality for each can-
didate model, (2) the Decision Optimization (DO)
module that executes quality-constrained routing
decisions, and (3) the Model Registry that main-
tains model metadata and configurations.

The routing pipeline operates as follows: Upon
receiving a user prompt with optional multi-turn
context, the system captures the user’s quality-cost
preference through tolerance parameter 7 € [0, 1]

Algorithm 1 IPR Routing with User Tolerance

Input: Prompt x, candidate set C, prices {v.}, tol-
erance 7 € [0, 1], QE Ry, safety margin § > 0
Output: Routed model ¢*

I: p< PE(z) > Promptembedding (cached
across turns if multi-turn)
2: forc e Cdo

3: e. < LIE(c) > Model identity embedding

4: 7o < QP([p;ec)) > Predicted quality
(optionally calibrated)

5: end for

6: Pmax < MaXecc Fe

7: rth < (1 — 7) - Pmax > Per-prompt threshold
with safety margin

8: F{ceC|r.>rm}
candidates

9: if F = () then

10: F + {argmax. 7.}
predicted best

11: end if

12: ¢* +— arg mingcr v
cost; tie-break by 7.

13: return c*

> Feasible

> Fallback to

> Minimize monetary

(where 7 = 0 enforces maximum quality and 7 = 1
maximizes cost savings). The Quality Estimator
computes predicted quality scores 7; . for each can-
didate ¢ € C using the learned estimator Ry(z;, c).
These predictions feed into the Decision Optimiza-
tion module, which applies tolerance-based filter-
ing to identify feasible candidates and selects the
minimum-cost model.

Our architecture achieves two critical objectives:
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(1) extensibility through lightweight adapters for
new models without full retraining, and (2) effi-
ciency with fast routing decisions based on prompt
embeddings. A sketch of the algorithm is shown in
Algorithm 1.

3.2 Quality Estimator Architecture

The Quality Estimator predicts scalar reward scores
approximating response quality for each prompt-
model pair. As shown in Figure 2, it consists of
three key components:

(1) Prompt Encoder: Maps input prompts to
dense embeddings p; = PE(z;) € R? capturing
semantic features relevant for quality prediction.
We employ family-specific encoders (e.g., Claude-
PE, Llama-PE) to capture model-specific patterns.

(2) LLM Identity Encoder: Provides learnable
embeddings e, = LIE(¢) € R? for each candi-
date model, encoding behavioral properties like
verbosity and style.

(3) Quality Predictor: Fuses prompt and
LLM embeddings via concatenation and predicts
quality through a feed-forward network: #; . =
QP (Concat(p;, ec)).

We adopt family-specific architectures with sep-
arate prediction heads per model, enabling better
within-family generalization and simplified inte-
gration of new models. Training uses reward
model scores as supervision signals, providing
fine-grained quality labels at scale (detailed in Ap-
pendix B).

IPR’s modular design enables seamless integra-
tion of new LLMs without full retraining. When
adding a new model, we freeze the core encoders
and attach lightweight adapters that specialize the
shared representations. This approach reduces in-
tegration and deployment time while preserving
performance on existing models. Implementation
details are provided in Appendix D.

4 Experiments

We train and evaluate IPR model on our dataset
containing 1.5M prompts with quality annota-
tions across multiple LLM families (details in Ap-
pendix G). This industrial-scale benchmark enables
rigorous evaluation of routing systems under realis-
tic conditions.

4.1 Dataset Collection

We construct the training and evaluation datasets
using a diverse set of resources, covering open-

Table 1: IPR dataset size by model family and split.
More details in Appendix G.

Dataset Subset Claude Llama Nova
Training 1,510,415 1,325,628 1,510,250
Combined Dev 5,641 4,976 5,640
Test 5,642 5,032 5,641
MS Marco  Test 2,000 2,000 1,997
Nvidia Chat  Test 2,000 2,000 1,999

domain dialogue, instruction-tuning, summariza-
tion, reasoning, and domain-specific question an-
swering. The primary dataset includes responses
from multiple language model families (Claude,
Llama, Nova), where each instance contains out-
puts from all models within the same family, en-
abling direct comparison of response quality. Each
response is annotated with a reward score assigned
by the Skywork/Skywork-Reward-Gemma-2-27B
model' (Liu et al., 2024a), which serves as the su-
pervision signal for training the quality estimator.
The scale and split of the Combined dataset across
different model families are summarized in Table 1.
More details are listed in Appendix G.

4.2 Experimental Setup

Model Families and Candidates. We evaluate

IPR on three major LLM families, encompassing

diverse model sizes and capabilities:

¢ Claude family: Claude-3-Haiku, Claude-3.5-
Haiku, Claude-3.5-Sonnet variants

e Llama family: Llama-3.1-{8B, 70B}, Llama-
3.2-{11B, 90B}, Llama-3.3-70B

* Nova family: Nova-Lite and Nova-Pro

These candidates represent different quality-cost
trade-offs, allowing comprehensive routing evalu-
ation. We chose to deploy family-specific routers
due to their superior in-domain empirical perfor-
mance (comparison of family-specific and unified
router is shown in Appendix H).

Baseline Methods. We compare against: (1)
Static routing to fixed models providing cost
bounds, (2) Random uniform assignment, (3) Or-
acle routing with ground-truth quality scores, (4)
Budget-Aware Random maintaining IPR’s rout-
ing proportions but random assignment, and (5)
Classifier following RouteLLM’s approach.

1https://huggingface.co/Skywork/
Skywork-Reward-Gemma-2-27B-v0.2
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Table 2: Quality estimation performance on IPR test set. We report Mean Absolute Error (MAE), Top-1 Accuracy,
and F1 scores for different router architectures. Best results are bolded, second best are underlined.

Method Claude Llama Nova
MAE | Top-11 Fl-macrot | MAE] Top-11 Fl-macrot | MAE| Top-11 Fl-macro?
IPR (RoBERTa-355M) 0.09503 0.7025 0.6612 0.09283  0.7025 0.4825 0.09681 0.6500 0.5311
IPR (Stella-400M) 0.09478 0.7321 0.6629 0.08626 0.7154 0.5139 0.09597 0.6408 0.5828
IPR (Qwen3-0.6B) 0.09027 0.7353 0.6934 0.09120  0.7257 0.4940 0.09509 0.6642 0.5834
IPR (Qwen3-4B) 0.08540 0.7463 0.6857 0.08091 0.7237 0.5111 0.08384  0.6853 0.6016
IPR (Qwen3-emb-0.6B) | 0.08988 0.7408 0.6982 0.08963 0.7217 0.4991 0.09279 0.6674 0.5717
IPR (Qwen3-emb-4B) 0.08390 0.7508 0.6931 0.07997 0.7094 0.5664 0.08281 0.6826 0.6070
0.56 0.51 gz 0571 °
0.55 ° 0.50 0.56
0.54 R N —
@ Static Random 0.49 4 0.551
20531 @ Haiku-3 z 2
= @ Sonnet-3.5 = 0.48 =
5% oo | S i
0.51 Qwen3-48 047 0.531
0.50 —_ Sﬁiﬁiiﬂii’?‘ 0.461
—— Oracle @ Llama-3.2-11B 0.52 © Nova-Lite
0.49 Random 0.4517 @ Llama-3.3-70B ‘ @ Nova-Pro
5 10 15 04 06 08 10 12 14 1 2 3 4

Cost

Cost

Figure 3: Quality and cost trade-offs under different user tolerance.

Training Configuration. Models are trained on
IPR train set (1.5M samples) using 8 or 16 A100
GPUs.

4.3 Results

We evaluate IPR across three key dimensions: (1)
quality estimation results, (2) overall routing perfor-
mance across the full tolerance spectrum, and (3)
cost savings at critical operating points. Our results
demonstrate that for Claude family, IPR is able
to achieve up to 43.9% cost reduction for Stella
embedding model when maintaining quality equiv-
alent to the most expensive model, while providing
flexible quality-cost trade-offs for diverse user pref-
erences.

Quality Estimation Performance. Table 2
presents quality estimation results on IPR test
set across different backbone architectures. Scal-
ing backbone size consistently improves predic-
tion: Qwen3-emb-4B achieves lowest MAE (0.084
for Claude), 13.3% better than RoOBERTa-355M.
Embedding-based encoders outperform decoder
counterparts at equivalent sizes. Notably, our se-
lected Stella-400M achieves >73% top-1 accuracy
while being 8x faster than 4B models.

End-to-End Routing Performance. Table 3
presents the overall routing performance across the
full tolerance spectrum, measured by our primary

metric Bounded-ARQGC. Across all model fami-
lies, IPR variants significantly outperform baseline
approaches, with the best configurations achieving
0.821 (Claude), 0.685 (LLlama), and 0.766 (Nova)
Bounded-ARQGC scores — representing relative
improvements of 58.8%, 38.1%, and 57.6% over
random routing respectively. The oracle router,
which has access to ground-truth quality scores, es-
tablishes upper bounds of 0.915, 0.868, and 0.905,
indicating room for future improvements in quality
estimation.

Several key patterns emerge from these results.
First, modest quality estimation improvements
yield disproportionate routing gains: Stella-400M’s
2-7% MAE reduction over ROBERTa translates
to 3-21% higher Bounded-ARQGC. Figure 3 vi-
sualizes quality-cost trade-offs, showing IPR pro-
duces Pareto-optimal curves compared to baselines.
Second, the relationship between model scale and
routing effectiveness exhibits diminishing returns —
Qwen3-emb-4B improves MAE by 8-11% over
Stella-400M but yields only 2-16% better routing
performance, suggesting that accurate relative qual-
ity rankings matter more than precise score predic-
tions. Figure 3 visualizes quality-cost trade-offs,
showing IPR produces Pareto-optimal curves dom-
inating baseline approaches.

Routing Latency and Efficiency. IPR’s rout-
ing decision requires a single forward pass of the

2488



Table 3: Overall routing performance on IPR test set. We report Bounded-ARQGC (primary metric), Relative
ARQGC improvement over random baseline. Best results (excluding Oracle) are bolded, second-best are underlined.
Rows with gray shading indicate encoder-based architectures.

M ‘ Claude ‘ Llama ‘ Nova
ethod

| B-ARQGC T Rel-ARQGC 1 | B-ARQGC 1+ Rel-ARQGC 1 | B-ARQGC 1+ Rel-ARQGC
Oracle | 0915 1000 | 0.868 1000 | 0.905 1.000
Static (Strongest) - - - - - -
Static (Weakest) - - - - - -
Random 0.517 0.434 0.496 0.504 0.486 0.431
RouteLLM 0.728 0.683 0.635 0.630 0.695 0.618
IPR (Roberta-355M) 0.732 0.695 0.628 0.625 0.707 0.622
IPR (Stella-400M) 0.799 0.724 0.663 0.676 0.731 0.650
IPR (Qwen3-0.6B) 0.808 0.730 0.641 0.653 0.739 0.658
IPR (Qwen3-4B) 0.813 0.743 0.672 0.685 0.766 0.687
IPR (Qwen3-emb-0.6B) 0.814 0.740 0.653 0.666 0.735 0.656
IPR (Qwen3-emb-4B) 0.821 0.756 0.685 0.698 0.766 0.687

Table 4: Router performance on IPR test dataset at 100% and 95% of the strongest model quality in Claude family.

\ 100% Quality \

95% Quality

Method ‘ CSR  Acc. | Route Percentage | CSR  Acc. | Route Percentage
‘ | Haiku  Sonnet | | Haiku  Sonnet
oracle 0.705 1.0 60.43 39.57 0.685 1.0 77.27 22.72
RouteLLM 0.425 0.605 50.28 49.72 0.712 0.732 | 75.32 24.68
IPR(RoBERTa) 0.385 0.638  48.8 51.2 0.658 0.756 | 79.2 10.8
IPR(Stella) 0.439 0.678 54.41 45.59 0.730 0.811 | 82.69 17.30
IPR(Qwen3-0.6B) 0.487 0.688 | 59.95 40.04 0.730 0.799 | 83.69 16.30
IPR(Qwen3-4B) 0.484 0.702 | 57.95 42.04 0.748 0.845 | 84.01 15.99
IPR(Qwen3-Emb-0.6B) | 0.440 0.679 55.38 44.62 0.742 0.813 | 84.93 15.06
IPR(Qwen3-Emb-4.B) 0.465 0.695 56.10 43.89 0.754 0.843 | 84.25 15.74

prompt encoder to compute a prompt embedding,
followed by tiny per-candidate MLP heads; no au-
toregressive decoding is involved. As a result, rout-
ing latency is input-length dependent but output-
length invariant, and it adds only a few millisec-
onds before the selected endpoint is invoked. To
make efficiency concrete, we benchmark on 1x
A100-40GB (PClIe), CUDA 12.4 with batch=1,
FP32, 100 warmup steps and 1,000 measured runs
per setting. We vary input length (500 to 1000 to-
kens) and candidate set size (|C| = 5 to 10). We
report end-to-end wall-clock P90/P99 (tokeniza-
tion — encoder — heads — selection) and peak
memory as in Table 5.

Performance at Critical Operating Points.
While aggregate metrics capture overall routing
effectiveness, practical deployment often focuses
on specific quality-cost targets. Table 4 examines
router performance at two critical operating points:
maintaining 100% quality parity with the strongest

Table 5: Router latency and memory (end-to-end,
batch=1) measured on a single A100-40GB GPU. La-
tency calculation includes tokenization, encoder for-
ward, per-candidate heads, and selection.

Name Input (tok) |C| P90 (ms) P99 (ms) Mem (GB)
IPR (Stella) 500 5 35.66 36.31 1.68
IPR (Stella) 1000 5 64.92 65.14 1.72
IPR (Stella) 1000 10 67.03 67.13 1.76
IPR (Qwen3-0.6B) 500 5 56.79 62.69 3.02
IPR (Qwen3-0.6B) 1000 5 115.30 116.74 3.80
IPR (Qwen3-0.6B) 1000 10 118.54 119.02 3.83
IPR (Qwen3-4B) 500 5 277.66 278.07 16.00
IPR (Qwen3-4B) 1000 5 557.05 557.42 16.81
IPR (Qwen3-4B) 1000 10 560.24 560.52 16.82

model and accepting 5% quality degradation. At
the 100% quality threshold — where users demand
performance equivalent to always using the most
capable model — IPR with Qwen3-0.6B achieves
48.7% cost savings by routing 59.9% of prompts
to the more efficient Haiku model. This demon-
strates that nearly 60% of real-world prompts do
not require the most expensive model to achieve
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optimal quality. The routing distribution reveals
how different backbones assess prompt complexity.
Smaller encoders (RoBERTa-355M) exhibit more
conservative routing, sending only 48.8% to Haiku,
while mid-sized models like Qwen3-0.6B achieve
better prompt discrimination.

Results on IPR test dataset suggest IPR’s ef-
fectiveness: achieving substantial cost reductions
while maintaining quality, with flexible user control
over trade-offs. Comprehensive ablation studies
validating our design choices are provided in Ap-
pendix H. To verify routing quality, we conduct
blind human annotation studies detailed in Ap-
pendix E.

5 Related Works

Here, we focus on existing prompt routing ap-
proaches, and defer benchmarks and evaluations
to Appendix 1.

In the literature, different model designs and
corresponding training strategies have been pro-
posed for the LLM routing problem (Lu et al.,
2024; Ding et al., 2024; Ong et al., 2024; Sik-
eridis et al., 2024; Jitkrittum et al., 2025; Feng
et al., 2025; Su et al., 2025; Chuang et al., 2025;
Stripelis et al., 2024; Mei et al., 2025; Sakota
et al., 2024; Chen et al., 2023, 2024; Jin et al.,
2025; Ding et al., 2025; Sikeridis et al., 2025;
Jitkrittum et al., 2025; Pan et al., 2025; Zhuang
et al., 2024, inter alia). HybridLLM (Ding et al.,
2024) employs a BERT-based encoder to opti-
mize the cost-quality trade-off by routing "easy"
queries to resource-efficient smaller models and
"hard" queries to larger, more capable models.
EmbedLLM (Zhuang et al., 2024) introduces a
specialized encoder-decoder network for embed-
ding LLM representations. RouteLLM (Ong et al.,
2024) implements a dynamic routing mechanism
that intelligently routes prompts between a stronger
and weaker LLM through various methodologies:
similarity-weighted ranking, matrix factorization,
BERT-based classification, and Causal LLM clas-
sification. Zooter (Lu et al., 2024) also deploys
reward model scores as the supervision signals
and train the router with RankNet loss (Burges,
2010). Additionally, it leverages a tag-based la-
bel enhancement strategy to remove reward model
noises. GraphRouter (Feng et al., 2025) formu-
lates LLLM selection as edge prediction problem
in a graph based framework and fully utilizes the
information in the training data by jointly mod-

eling the query-model, query-query, and model-
model relationship. OmniRouter (Mei et al., 2025)
formulates the routing task as a constrained opti-
mization problem and leverages a hybrid retrieval-
augmented predictor to predict the capabilities and
costs of LLMs. Different from aforementioned
works that deploy clustering or train with teacher
forcing, PickLLM (Sikeridis et al., 2024) proposes
a reinforcement learning-based routing framework
that optimizes a composite reward function incor-
porating latency, computational cost, and response
quality. IPR deploys a conventional supervised
learning approach and focus on scaling training
data mixture for robust LLM routing.

6 Conclusions and Future Works

We introduce Intelligent Prompt Routing — a low
latency solution to cost efficient prompt routing.
We detail our scientific experimentation: includ-
ing curation of a large-scale training and evalua-
tion dataset, design of evaluation metrics Bounded-
ARQGC and CSR, different model architecture,
training strategy ablations throughout the product
development. Our future works will include incor-
porating multifaceted evaluations and supporting
new model releases on our platform.

Limitations

While IPR demonstrates strong performance in pro-
duction deployment, several limitations merit dis-
cussion. First, our quality estimation relies on re-
ward model scores as supervision signals, which
may not perfectly capture all aspects of human
preference, particularly for specialized domains or
creative tasks. Second, the current framework as-
sumes independent routing decisions per prompt
without considering conversation-level context or
user session patterns, potentially missing optimiza-
tion opportunities in multi-turn interactions. Third,
our evaluation focuses on three model families
(Claude, Llama, Nova) on a single platform; gen-
eralization to other model families or deployment
environments requires further validation. Finally,
the modular adaptation mechanism, while efficient,
still requires access to labeled data for new mod-
els, which may not be immediately available upon
model release. Addressing these limitations, partic-
ularly through online learning from user feedback
and session-aware routing, represents important
directions for future work.
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A Evaluation Metrics

A.1 Quality Prediction Metrics

Since routing decisions depend on accurate quality
predictions, we validate the estimator’s ranking
ability:

Top-K Accuracy. Measures whether the pre-
dicted top-k models match the ground-truth top-k
models in exact order. For IV candidates, we report
accuracies for k € {1,..., N — 1}.

Top-K F1. Relaxes the ordering constraint by
measuring set overlap between predicted and
ground-truth top-k models, providing a more for-
giving assessment of ranking quality.

A.2 Routing Performance Metrics

Bounded-ARQGC. To evaluate routing quality
across varying cost-quality trade-offs, we introduce
Bounded Average Response Quality Gain under
Cost (Bounded-ARQGC). This metric generalizes
the area under the quality-cost curve, normalized
to [0, 1].

Formally, let Q(«) denote the average response
quality achieved when the router operates at cost
budget a-Cinax, Where Cax is the cost of always us-
ing the most expensive model. Bounded-ARQGC
is defined as:

! Q(a) — Qmin
0 Qmax - Qmin

where Qmin and Qmax are the qualities achieved by
always using the cheapest and best models respec-
tively. Notably, Bounded-ARQGC has following
key properties:

Bounded-ARQGC = da, (5)

* Random routing yields ~ 0.5 (diagonal line).

* Perfect routing approaches 1.0 (upper-left cor-
ner).

* Higher values indicate better cost-quality
trade-offs.

Different from metrics that evaluate at fixed oper-
ating points or quality threshold values, Bounded-
ARQGC captures routing performance across all
possible tolerance settings, making it ideal for com-
paring routers without committing to specific de-
ployment configurations.

Cost Save Ratio (CSR). For practical deploy-
ment decisions, we report cost savings at specific
quality targets:

_ Ubest — Urouter(T)

CSR(r) = ——————2, (6)
Ubest
where vrouter(q) is the cost to achieve quality level
q relative to the best model’s quality. For instance,
CSR(100%) indicates cost savings while maintain-
ing the best model’s full quality—our primary op-
erating point in production.

B Reward Modeling for Quality
Supervision

Training an accurate quality estimator requires
large-scale supervision signals that capture human
preferences over model responses. While human
annotations provide the gold standard, their cost
prohibits scaling to the millions of prompts needed
for robust routing. We address this challenge by
leveraging reward models (RMs) as automated
quality evaluators.

Our approach treats response quality estimation
as aregression problem: given a prompt z; and can-
didate model c’s response y; ., the reward model
produces a quality score ;. = RM(z4,yi.) €
[0, 1]. The quality estimator then learns to predict
these scores directly from prompts without gener-
ating responses: 7; . = Rg(z;, ¢).

This formulation provides three key advantages:

Fine-grained supervision: Unlike binary prefer-
ences or categorical labels, continuous RM scores
capture subtle quality differences between models.
For instance, while models may produce acceptable
responses for simple queries, RMs can distinguish
the incrementally better coherence or completeness
that justifies routing to more capable models.

Alignment with human judgment: We vali-
date that RM-based rankings align with human
preferences through systematic evaluation. Model
orderings derived from RM scores (e.g., Claude-
3.5-Sonnet > Claude-3-Opus > Claude-3-Haiku)
match human annotator rankings with 85% agree-
ment, significantly outperforming LLM-as-a-Judge
approaches.
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Distribution properties: RM scores exhibit fa-
vorable statistical properties for learning, with well-
separated score distributions across models (typ-
ical separation of 0.1-0.2 between adjacent mod-
els) compared to the compressed ranges produced
by LLM judges. This separation provides clearer
learning signals and more stable gradient updates
during training.

In practice, we employ the Skywork-Reward
model (Liu et al., 2024a) to generate training labels,
chosen for its strong correlation with human prefer-
ences and computational efficiency. This approach
enables us to create training datasets of over 1.5M
examples while maintaining quality comparable to
human-annotated data.

C Quality Estimator Implementation
Details

C.1 Architectural Specifications

Prompt Encoder Details: The prompt encoder
uses a pretrained transformer model with fixed ar-
chitecture, fine-tuned on paired prompt-score exam-
ples. For family-specific quality estimation, each
model family maintains independent prompt en-
coders initialized from the same base encoder. Typ-
ical embedding dimension d = 768 for efficiency.

LLM Identity Encoder Details: Learnable em-
beddings for each candidate model with dimension
d" = 128. These embeddings are learned jointly
with the predictor and capture model-specific be-
havioral patterns. For modular extension, we main-
tain separate LLM Identity Encoders per model
family.

Fusion Module Architecture: The concate-
nated embeddings pass through a 2-layer feed-
forward network with ReLLU activation:

z; . = Concat(p;, ec) 7
h = ReLU(W iz, + by) @)
’Iﬁi’c = O‘(Wgh + bg) 9

where o is the sigmoid function to ensure output in
[0, 1].

C.2 Unified vs. Family-Specific Design

While a unified QE architecture with shared en-
coders and single prediction head is more compact,
our experiments show superior performance using
family-specific variants: - 5-8% higher ranking ac-
curacy within families - Better generalization to
new models within the same family - Simplified

debugging and model-specific optimization - Re-
duced interference between models with distinct
output behaviors

D Modular Adaptation Implementation

To ensure extensibility, our design incorporates
lightweight adapter modules for seamless integra-
tion of new LLMs. As illustrated in Figure 2, we
freeze core encoders after initial training and attach
learnable adapters for new models.

Adapter Architecture: - PE Adapter X: 2-
layer feed-forward network with residual connec-
tion, inserted after frozen prompt encoder - LIE
Adapter X: Single linear transformation after
frozen identity encoder - New QP Head: Model-
specific prediction head trained from scratch

Training Procedure: 1. Freeze all existing
model components 2. Initialize adapters with iden-
tity mapping 3. Train only adapters and new QP
head on data mixture: - 70% new model data -
30% existing model data (for consistency) 4. Use
consistency loss to maintain performance:

L="Loow+ A D> |fie— e

1,cECold

(10)

This framework reduces new model integration
from 2-3 days of full training to 3-4 hours of
adapter training, while maintaining 98%+ perfor-
mance on existing models.

E Human Annotation Results

We conducted a comprehensive evaluation of IPR-
selected responses through human annotations fol-
lowing the specified protocol. Our evaluation
framework employed a multi-batch annotation
strategy to ensure robust and reliable assessments
across different model families.

The human evaluation dataset was derived from
a subset of the IPR test dataset. We deliberately ex-
cluded coding-related tasks from the evaluation due
to limitations in annotation expertise for technical
code assessment. The resulting dataset comprised
895 prompts, each evaluated across 9 different
models, including 4 models from the Claude fam-
ily and 5 models from the Llama family, resulting
in 8055 responses.

We employed a rigorous evaluation protocol
where each response underwent three blind anno-
tation passes. The final scores were determined
through majority voting across these passes, fol-
lowed by calculation of the average overall satis-
faction score for each model.
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Overall Satisfaction Scores The human annota-
tion results revealed clear performance hierarchies
within both model families. Table 6 presents the
average overall satisfaction scores after majority
voting.

Table 6: Average Overall Satisfaction Scores by Model.

Model Average Score
Claude Family

Claude 3 Haiku 0.8209
Claude 3.5 Sonnet V1 0.8220
Claude 3.5 Haiku 0.8654
Claude 3.5 Sonnet V2 0.8708
Llama Family

Llama 3.1 8B 0.7901
Llama 3.1 70B 0.8136
Llama 3.2 11B 0.8554
Llama 3.2 90B 0.8692
Llama 3.3 70B 0.8767

To provide more granular insights into model
performance differences, we conducted pairwise
comparisons for priority model pairs. Table 7
presents the win-tie-lose rates for three key com-
parisons that are critical for routing decisions.

Table 7: Pairwise LLM Comparison Results

Pair Win (%) Tie (%) Lose (%)
Haiku-3 vs. Sonnet 3.5 11.28 52.85 31.73
Haiku-3.5 vs. Sonnet 3.5 14.19 61.68 16.54
Llama-3.2 11B vs. 3.3-70B 12.74 53.18 20.11

The human annotation results demonstrate
strong alignment with our expected performance
hierarchies for IPR decisions. Specifically, we ob-
serve the following orderings for all priority model
pairs:

1. Claude Family: Haiku < Sonnet 3.5 V2 and
Haiku 3.5 < Sonnet 3.5 V2

2. Llama Family: Llama 3.2 11B < Llama 3.3
70B

These rankings are consistent with the reward
model score comparisons, providing convergent
validity for our evaluation framework. The high
percentage of ties in pairwise comparisons (rang-
ing from 52.85% to 61.68%) suggests that model
capabilities overlap significantly for many tasks,
highlighting the importance of careful model selec-
tion based on specific use case requirements.

F Cost Calculation Formula and Detailed
Model Costs

We compute the routing cost as the sum of both
input and output token cost per 1M tokens based
on the Amazon Bedrock price list as of March 19,
2025. In our following formula, we use normalized
cost to make it invariant to different datasets with
different prompt or response lengths.

Specifically, given:

* A prompt x;

e The selected LLM is m;

* The input cost per token is P, for LLM m;
* The output cost per token is (), for LLM m;
* The input prompt length is L,

* The output response length for prompt x; and
model m; is O(x;, m;)

The normalized cost for N prompts and their
correspondingly selected LLMs is computed as:

Ziv O(xivmi) X sz

S O(as, ma)
(11)

i La,

+

F.1 Language Model Unit Prices

Model prices for each LLM candidate is listed in
Table Table 8. Note: Prices are subject to change.

Table 8: Model pricing per 1,000 Tokens

LLM Family | Model | Input Tokens | Output Tokens

Claude 3.5 Sonnet V2 $0.003 $0.015
Anthropic Claude 3.5 Sonnet V1 $0.003 $0.015
Claude 3.5 Haiku $0.0008 $0.004
Claude 3 Haiku $0.00025 $0.00125
Llama 3.3 Instruct (70B) $0.00072 $0.00072
Llama 3.2 Instruct (90B) $0.00072 $0.00072
Llama Llama 3.2 Instruct (11B) $0.00016 $0.00016
Llama 3.1 Instruct (70B) $0.00099 $0.00099
Llama 3.1 Instruct (8B) $0.00022 $0.00022
Nova Nova Pro $0.0008 $0.0032
Nova Lite $0.00006 $0.00024

G Dataset Collection

The composition of the Combined training set is
summarized in Table 9: the largest portion comes
from a multi-turn chat corpus (approximately 61%),
followed by instruction-tuning and knowledge-
intensive datasets. This mixture provides broad
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coverage across natural language task types, al-
lowing the quality estimator to generalize effec-
tively across diverse prompt styles. We determined
the specific proportions in Table 9 by computing a
weighted ratio for each constituent dataset, where
the weight corresponds to the ratio of the original
dataset size to the cumulative size of all original
datasets. We then uniformly sampled from each
dataset according to its assigned ratio, for instance,
a dataset with proportion 60% contributed 60% of
its datapoints to the combined training set.

The training set comprises approximately 1.5
million examples for Claude, with similar sizes
for Llama and Nova after filtering out examples
with response generation failures due to throttling
or timeout. Development and test sets contain be-
tween 5,000 and 6,000 examples per model family
and follow a similar prompt distribution.

To evaluate generalization, we include two held-
out test sets: MS Marco (Nguyen et al., 2016)
and Nvidia Chat (Liu et al., 2024b) which fo-
cus on retrieval-augmented question answering,
each with around 2,000 prompts (uniformly sam-
pled). All test responses are also scored by the
Skywork/Skywork-Reward-Gemma-2-27B reward
model to support evaluation.

Table 9: Training dataset composition by source dataset.

Dataset Name Count Proportion

LMSYS-Chat-1M (Zheng et al., 2024a) 925,278 61.26%
ShareGPT-Vicuna (Wang et al., 2024) 201,922 13.37%
MixInstruct (Jiang et al., 2023) 98,473 6.52%
Nectar (Zhu et al., 2023) 98,177 6.50%
AnswerSumm (Fabbri et al., 2022) 42,454 2.81%
HellaSwag (Zellers et al., 2019) 41,801 2.77%
StrategyQA (Geva et al., 2021) 39,385 2.61%
CommonsenseQA (Talmor et al., 2019) 39,081 2.59%
BANKING77 (Casanueva et al., 2020) 14,073 0.93%
GSMSK (Cobbe et al., 2021) 9,771 0.65%

H Ablation Studies

We conduct comprehensive ablations to validate
our design choices across three critical dimensions:
training objectives, architectural decisions, and
routing strategies.

Table 10: Comparison of training loss functions (aver-
aged over three model families).

Loss B-ARQGC | Quality | CSR | Route Acc
MSE 0.7361 0.5451 | 0.3130 0.6353
Hinge Loss 0.6897 0.5438 | 0.2660 0.6035
ListNet 0.7292 0.5448 | 0.2656 0.5673

Training Loss Functions. Table 10 compares
different loss functions for training the quality esti-
mator, averaged across all model families. While
we experimented with ranking-based losses that
directly optimize for relative ordering, MSE loss
achieves the best overall performance with 0.736
Bounded-ARQGC, outperforming hinge loss by
6.7% and ListNet by 0.9%. This result can be ex-
plained by two factors. First, continuous regression
targets provide richer gradient signals than pair-
wise or listwise comparisons, enabling more stable
optimization. Second, MSE loss naturally captures
the magnitude of quality differences, which proves
crucial for threshold-based routing decisions. In-
terestingly, while hinge loss achieves comparable
routing accuracy (60.3% vs 63.5%), it significantly
underperforms in cost savings (26.6% vs 31.3%),
suggesting that accurate quality magnitude esti-
mation is more important than perfect ranking for
cost-optimal routing.

Family-Specific vs. Unified Routing. Table 11
examines the trade-offs between training sepa-
rate routers for each model family versus a sin-
gle unified router. Family-specific routers consis-
tently outperform unified approaches on in-domain
data, achieving higher Bounded-ARQGC scores
(0.799 vs 0.792 for Claude, 0.663 vs 0.659 for
Llama, and 0.731 vs 0.729 for Nova). This spe-
cialization advantage stems from the reduced learn-
ing complexity — each router only needs to focus
on quality patterns within a homogeneous model
group. Conversely, unified routers excel at gen-
eralization: on out-of-distribution datasets, they
achieve 5.7%, 1.6%, and 7.6% higher Bounded-
ARQGOC for Claude, Llama, and Nova respectively.
This reveals a bias-variance trade-off where family-
specific routers precisely capture in-domain pat-
terns but may overfit to family-specific characteris-
tics. Given our production emphasis on in-domain
performance, we deploy family-specific routing
while recognizing unified routing’s merits for het-
erogeneous workloads.

Routing Strategy and Threshold Calibration.
We ablate two key aspects of our routing algo-
rithm: the threshold computation method (dynamic
vs. static) and the quality reference point. As de-
scribed in Section 2.2, dynamic thresholds adapt
to each prompt’s quality distribution while static
thresholds use global statistics. As shown in Fig-
ure 6, our experiments reveal that Dynamic Max
and Dynamic MinMax achieves the optimal AUC
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Figure 5: Cost v.s. tolerance with different QE backbones.

compares to others. Among this two, Dynamic
Max has more smooth quality and cost curve vs
tolerance compared to Dynamic MinMax, giving
user more freedom to control the routing behavior.
This hybrid strategy effectively handles prompts
with varying difficulty — easy prompts with high
quality scores across all models benefit from dy-
namic adaptation, while the fixed minimum pre-
vents threshold collapse for uniformly challenging
prompts. This also indicates the per-prompt nor-
malization is crucial: without adapting thresholds
to individual quality distributions, routers exhibit
excessive conservatism, routing more prompts to
expensive models unnecessarily.

1 Extended Discussions on Related Works

Routing benchmarks. Existing LLM routing
benchmarks are mostly curated from popular
NLP datasets covering different facets of LLM
usage. MixInstruct (Jiang et al., 2023) con-
sists of 110k examples focusing on the chat ca-
pability of LLMs. The mixture is primarily
from four sources: Alpaca-GPT4 (Taori et al.,
2023), Dolly-15K (Conover et al., 2023), GPT4All-
LAION (LAION-AI, 2023) and ShareGPT (Wang
et al., 2024). RouterBench (Hu et al., 2024) con-
structs a benchmark with over 405k inference out-

comes from 11 representative LLMs across 8 di-
verse datasets to support the development of rout-
ing strategies. Routing strategies covered in Router-
Bench are simple methods like KNN and MLP
routers. RouterEval (Huang et al., 2025) is a con-
current work that curates a large scale evaluation
benchmark, spanning 12 popular LLM evaluations
across various areas such as commonsense reason-
ing, semantic understanding, etc, and including
over 200M performance records. This technical
report describes our solution to curate IPR dataset,
an industrial-scale LLM routing benchmark that
focuses on natural language understanding and text
generation capabilities of LLMs, and includes mod-
els currently served on our platform.

Routing evaluations. Existing works (Ong et al.,
2024; Hu et al., 2024; Huang et al., 2025; Lu et al.,
2024, inter alia) mostly categorize evaluation met-
rics into two groups: (1) effectiveness metrics and
(2) efficiency metrics.?

Effectiveness metrics directly evaluate measure
whether a query is routed to the most perfor-
mant routing candidates. RouterEval (Huang
et al., 2025), CP-Router (Su et al., 2025) and Self-

2Some works like (Huang et al., 2025) also refer to as (1)
routing performance metrics and (2) cost reduction metrics.
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Table 11: In- and out-of-distribution performance comparison of family-specific and unified routers. Cost-saving
ratio (CSR) and routing accuracy (ACC) are reported at 100% best candidate performance. Bold values indicate

superior performance within each distribution type.

\ \ In-Distribution

| Out-of-Distribution

Model | Type | MAE | | B-ARQGC 1 | CSR1 | ACC 1 || MAE | | B-ARQGC 1 | CSR 1 | ACC 1
Claude specific | 0.09478 0.799 0.439 | 0.678 0.1532 0.523 0.369 0.57
‘ unified | 0.1005 0.792 0.421 0.668 0.142 0.553 0.398 0.61
Llama specific | 0.08626 0.663 0.0773 | 0.677 0.1221 0.512 0.0712 0.59
‘ unified | 0.08710 0.659 0.0720 | 0.672 0.1190 0.520 0.0725 | 0.60
Nova specific | 0.09597 0.731 0.255 | 0.652 0.1447 0.525 0.152 0.60
‘ unified | 0.1021 0.729 0.242 | 0.648 0.1324 0.565 0.180 0.64
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Figure 6: Quality-performance trade-off (left), quality-tolerance (middle), and cost-tolerance(right) relationship

with different routing strategies

Table 12: Routing strategy comparison.

Strategy min max
dynamic max 0 dynamic
dynamic minmax dynamic dynamic
static dynamic static dynamic
static static static

REF (Chuang et al., 2025) evaluate routing effec-
tiveness by Accuracy, i.e., the correctness of fi-
nal predictions, which can be considered a top-1
metric. HybridLLM (Ding et al., 2024) focus on
text generation tasks and adopt BARTScore (Yuan
et al., 2021) as the quality/effectiveness metric.
RouteLLLM (Ong et al., 2024) defines an average
response quality score that covers different NLP
tasks, e.g., correctness on golden-labeled dataset
or a numerical rating. In this technical report, we
focus on top-1 accuracy, F1 scores as well as AUC
as the main performance metrics.

Different from straightforward effectiveness met-
rics, there lacks a established efficiency metric that
applies to different models and platforms, due to
different notions of cost definitions. For example,
HybridLLM (Ding et al., 2024) directly use the
monetary cost as a proxy for the cost metric, e.g.,
$ per 1M tokens. Some works like (Su et al., 2025)

uses number of tokens to represent the cost. In
contrast to this absolute cost metric, works such as
RouteLLM (Ong et al., 2024) adopt relative cost
efficiency metric. For example, RouteLLM (Ong
et al., 2024) define the cost efficiency metric as the
percentage of calls to strong models. For evaluation
of IPR, we adopt the proposed Bounded Average
Response Quality Gain under Cost and Cost Save
Ratio as the main efficiency metrics. We should
note that, due to quick advancement of LLM infer-
ence optimization, exemplified by frameworks like
vLLM (Kwon et al., 2023) and SGLang (Zheng
et al., 2024b), the cost metric needs to be actively
refreshed to reflect the actual inference cost.

The central goal of the LLM routing problem
is to optimize the trade-off between effectiveness
and efficiency. Various metrics have been used for
evaluation and subsequently adopted as training
objectives for the Router. We skip the detailed dis-
cussions and kindly refer readers to those original
works for design rationales and exact formulations.
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