@inproceedings{soiffer-etal-2025-semantic,
title = "Semantic Agreement Enables Efficient Open-Ended {LLM} Cascades",
author = "Soiffer, Duncan and
Kolawole, Steven and
Smith, Virginia",
editor = "Potdar, Saloni and
Rojas-Barahona, Lina and
Montella, Sebastien",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track",
month = nov,
year = "2025",
address = "Suzhou (China)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-industry.171/",
pages = "2499--2537",
ISBN = "979-8-89176-333-3",
abstract = "Cascade systems for open-ended text generation face a fundamental challenge: determining output reliability when generation quality lies on a continuous spectrum, often with multiple valid responses. To address this, we propose {\_}semantic agreement{\_}{---}meaning-level consensus between ensemble outputs{---}as a training-free signal for reliable deferral. We show that when diverse model outputs agree semantically, their consensus is a stronger reliability signal than token-level confidence. Evaluated from 500M to 70B-parameter models, semantic cascades improve deferral accuracy, match or surpass target-model quality at 40{\%} of the cost, and reduce latency by up to 60{\%}. Our method requires no model internals, works across black-box APIs, and remains robust to model updates, making it a practical baseline for real-world LLM deployment."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="soiffer-etal-2025-semantic">
<titleInfo>
<title>Semantic Agreement Enables Efficient Open-Ended LLM Cascades</title>
</titleInfo>
<name type="personal">
<namePart type="given">Duncan</namePart>
<namePart type="family">Soiffer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Kolawole</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Virginia</namePart>
<namePart type="family">Smith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Saloni</namePart>
<namePart type="family">Potdar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lina</namePart>
<namePart type="family">Rojas-Barahona</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastien</namePart>
<namePart type="family">Montella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou (China)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-333-3</identifier>
</relatedItem>
<abstract>Cascade systems for open-ended text generation face a fundamental challenge: determining output reliability when generation quality lies on a continuous spectrum, often with multiple valid responses. To address this, we propose _semantic agreement_—meaning-level consensus between ensemble outputs—as a training-free signal for reliable deferral. We show that when diverse model outputs agree semantically, their consensus is a stronger reliability signal than token-level confidence. Evaluated from 500M to 70B-parameter models, semantic cascades improve deferral accuracy, match or surpass target-model quality at 40% of the cost, and reduce latency by up to 60%. Our method requires no model internals, works across black-box APIs, and remains robust to model updates, making it a practical baseline for real-world LLM deployment.</abstract>
<identifier type="citekey">soiffer-etal-2025-semantic</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-industry.171/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>2499</start>
<end>2537</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantic Agreement Enables Efficient Open-Ended LLM Cascades
%A Soiffer, Duncan
%A Kolawole, Steven
%A Smith, Virginia
%Y Potdar, Saloni
%Y Rojas-Barahona, Lina
%Y Montella, Sebastien
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou (China)
%@ 979-8-89176-333-3
%F soiffer-etal-2025-semantic
%X Cascade systems for open-ended text generation face a fundamental challenge: determining output reliability when generation quality lies on a continuous spectrum, often with multiple valid responses. To address this, we propose _semantic agreement_—meaning-level consensus between ensemble outputs—as a training-free signal for reliable deferral. We show that when diverse model outputs agree semantically, their consensus is a stronger reliability signal than token-level confidence. Evaluated from 500M to 70B-parameter models, semantic cascades improve deferral accuracy, match or surpass target-model quality at 40% of the cost, and reduce latency by up to 60%. Our method requires no model internals, works across black-box APIs, and remains robust to model updates, making it a practical baseline for real-world LLM deployment.
%U https://aclanthology.org/2025.emnlp-industry.171/
%P 2499-2537
Markdown (Informal)
[Semantic Agreement Enables Efficient Open-Ended LLM Cascades](https://aclanthology.org/2025.emnlp-industry.171/) (Soiffer et al., EMNLP 2025)
ACL
- Duncan Soiffer, Steven Kolawole, and Virginia Smith. 2025. Semantic Agreement Enables Efficient Open-Ended LLM Cascades. In Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 2499–2537, Suzhou (China). Association for Computational Linguistics.