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Abstract

With the emergence of Large Language Mod-
els (LLMs), numerous use cases have arisen
in the medical field, particularly in generat-
ing summaries for consultation transcriptions
and extensive medical reports. A major con-
cern is that these summaries may omit crit-
ical information from the original input, po-
tentially jeopardizing the decision-making pro-
cess. This issue of omission is distinct from
hallucination, which involves generating in-
correct or fabricated facts. To address omis-
sions, this paper introduces a dataset designed
to evaluate such issues and proposes a frugal
approach called EmbedKDECheck for detect-
ing omissions in LLM-generated texts. The
dataset, created in French, has been validated
by medical experts to ensure it accurately repre-
sents real-world scenarios in the medical field.
The objective is to develop a reference-free
(black-box) method that can evaluate the re-
liability of summaries or reports without requir-
ing significant computational resources, rely-
ing only on input and output. Unlike meth-
ods that rely on embeddings derived from the
LLM itself, our approach uses embeddings
generated by a third-party, lightweight NLP
model based on a combination of FastText and
Word2Vec. These embeddings are then com-
bined with anomaly detection models to iden-
tify omissions effectively, making the method
well-suited for resource-constrained environ-
ments. EmbedKDECheck was benchmarked
against black-box state-of-the-art frameworks
and models, including SelfCheckGPT, Chain-
Poll, and G-Eval, which leverage GPT. Results
demonstrated its satisfactory performance in
detecting omissions in LLM-generated sum-
maries. This work advances frugal method-
ologies for evaluating the reliability of LLM-
generated texts, with significant potential to
improve the safety and accuracy of medical
decision support systems in surgery and other
healthcare domains.

1 Introduction

The advent of Large Language Models (LLMs)
such as OpenAl’s GPT (Achiam et al., 2023) has
revolutionized various fields by enabling gener-
ation of coherent and contextually relevant text.
These models have found applications ranging
from conversational agents to creation of detailed
textual summaries and reports. In the medical do-
main, LLMs have shown particular promise in gen-
erating comprehensive reports that assist health-
care professionals in making informed decisions
(Alberts et al., 2023).

Despite these advancements, a significant chal-
lenge remains unaddressed: the detection of omis-
sions in LLM-generated texts. Existing datasets
and evaluation frameworks predominantly focus
on hallucinations—instances where the generated
text includes incorrect or fabricated information
(Li et al., 2024). While hallucination detection is
crucial, the issue of omissions, where critical infor-
mation from the original input is missing, poses a
unique and severe risk, especially in the medical
field. Omissions can lead to incomplete medical
records, potentially jeopardizing patient care and
treatment outcomes.

In the context of the French healthcare sector,
the use of external providers or public cloud solu-
tions is often impractical due to stringent privacy
regulations (AP-HP, 2024). Consequently, LLM
implementations typically rely on smaller models
hosted on-premise or in hybrid architectures utiliz-
ing API microservices (Nabla, 2024). These con-
straints can exacerbate the problem of omissions,
as access to the most advanced LLMs is limited.
Therefore, there is a pressing need for quality con-
trol mechanisms that can operate efficiently within
these resource-constrained environments.

This paper makes two primary contributions.
First, it introduces a novel dataset specifically de-
signed to evaluate omission detection methods.
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This data-set, which is in French, has been meticu-
lously developed and validated by medical experts,
including surgeons specializing in hepatic and gen-
eral surgery. The validation by medical profes-
sionals ensures that the dataset accurately reflects
real-world scenarios encountered in the healthcare
sector, making it a valuable resource for developing
and testing omission detection algorithms.

Second, the paper proposes a frugal, LLM-
agnostic approach called EmbedKDECheck to de-
tect omissions in generated texts. This method
leverages embeddings in conjunction with anomaly
detection models to identify missing information.
The emphasis on frugality is crucial, as it allows the
approach to function effectively within resource-
constrained environments without imposing sig-
nificant computational demands. This is particu-
larly important in the medical field, where compu-
tational resources may be limited, and the timely
detection of omissions is critical for ensuring the
accuracy and reliability of medical documentation.

To clarify, we define "omission" as a situation
where the generated text lacks important informa-
tion or fails to include necessary details that are
expected based on the input. This can lead to in-
complete or misleading summaries, which are par-
ticularly detrimental in medical documentation.

In this study, we present algorithms that combine
embeddings with anomaly detection techniques to
identify omissions. We rigorously evaluate these
algorithms using the newly proposed dataset, allow-
ing us to assess the effectiveness of our approach in
detecting omissions specific to the medical domain.
By addressing the critical issue of omissions, this
work contributes to the development of robust qual-
ity control mechanisms for LLM-generated texts,
ultimately enhancing the safety and accuracy of
medical decision support systems.

2 Related Works

Evaluating LLM-generated summaries is crucial,
especially for omissions. Automated metrics help
assess fluency, coherence, relevance, and fac-
tual consistency (van Schaik and Pugh, 2024).
Reference-free metrics like BLANC (Vasilyev
et al., 2020) and SUPERT (Gao et al., 2020) are
particularly relevant as they evaluate summaries
without requiring reference texts.

Evaluation methods fall into three categories:
Black-box methods analyze outputs without access-
ing internal model states. SelfCheckGPT (Man-

akul et al., 2023) detects hallucinations by com-
paring sampled responses. White-box methods
require full model access to analyze weights and
activations (Azaria and Mitchell, 2023). Grey-box
methods use partial access, such as token-level
probabilities. Our method, EmbedKDECheck, is
a black-box approach that combines embeddings
with anomaly detection to detect omissions.

Recent advances in black-box evaluation offer in-
sights for omission detection. ChainPoll (Friel and
Sanyal, 2023) outperforms SelfCheckGPT (Man-
akul et al., 2023) and GPTScore (Fu et al., 2024) on
the RealHall (Friel and Sanyal, 2023) benchmark,
which closely reflects real LLM usage. G-Eval (Liu
et al., 2023) integrates chain-of-thought reasoning
(Wei et al., 2022) to enhance summarization quality
assessment.

Existing datasets primarily target hallucinations
rather than omissions. QAGS (Wang et al., 2020)
focuses on factual consistency but not missing con-
tent. DROP (Dua et al., 2019) emphasizes discrete
reasoning. SummEval (Fabbri et al., 2021) assesses
summary coherence and relevance but lacks omis-
sion detection. RealHall (Friel and Sanyal, 2023)
benchmarks hallucination detection but does not
address missing content. These datasets often fo-
cus on detecting hallucinations or factual inconsis-
tencies, leaving a gap in the evaluation of omis-
sion detection. Our proposed dataset specifically
addresses this gap by providing a framework for
evaluating omission detection in LLM-generated
summaries. Unlike other datasets, ours is tailored
to the medical field and has been meticulously con-
structed to represent actual conditions encountered
in medical practice. This ensures that the dataset
is highly relevant and practical for real-world ap-
plications in the medical domain. Furthermore,
the dataset has been validated by medical experts,
including surgeons specializing in hepatic and gen-
eral surgery, to ensure its accuracy and reliability.
This level of expert validation, to the best of our
knowledge, is not present in other datasets, making
our dataset uniquely suited for evaluating omission
detection in medical contexts in French.

In summary, the evaluation of LLLM-generated
summaries is a multifaceted challenge that requires
a combination of reference-based, reference-free,
and LLLM-based metrics. Our approach, which be-
longs to reference-free metrics, focuses on factual
consistency evaluation and seeks to overcome the
shortcomings of other methods by offering a clearer
and more thorough assessment of omissions in sum-
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maries. The proposed method, EmbedKDECheck,
is a black-box approach that leverages embeddings
combined with anomaly detection models to detect
omissions, ensuring reliability without significant
computational demands. By using a dataset specifi-
cally designed for the medical field and validated
by medical experts, our approach provides a robust
and practical solution for improving the quality and
reliability of LLM-generated medical documenta-
tion.

3 Approach and Experiments

3.1 EmbedKDECheck: A Frugal Omission
Assessment Method
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Figure 1: Coverage of input (blue) and output (red) em-
beddings after PCA. Blue regions correspond to input
content, while red regions represent the output. Un-
covered blue areas indicate missing or insufficiently
represented information, signaling omissions.

EmbedKDECheck evaluates factual consistency
by detecting omissions in summaries or reformu-
lations without requiring references or LLM in-
termediate states. This black-box, reference-free
method operates locally, making it infrastructure-
independent and computationally frugal.

Given an input (e.g., report) and an output (e.g.,
summary), EmbedKDECheck assigns:

* A global omission score.

* Local indicators of missing critical content

and omitted topics.

The approach analyzes embedding distributions
of text segments using Kernel Density Estimation
(KDE) (Weglarczyk, 2018). By modeling proba-
bility densities, it identifies input content not suf-
ficiently covered in the output, flagging omissions
(Figure 1).

KDE (Weglarczyk, 2018), a non-parametric den-
sity estimation method (Parzen, 1962), assigns

probabilities to embedding distributions:
1 n
falx) = Z; Kp(x —x;),
1=

where K, (x) is a Gaussian kernel and h the band-
width parameter. KDE provides adaptive density
estimation, helping detect omissions effectively.
Larger h results in a smoother, more generalized
density estimation, while smaller A increases sen-
sitivity to local variations, enhancing detection of
small omissions but potentially introducing noise.

Figure 2 outlines EmbedKDECheck’s main
steps:

* Segment input/output text and extract embed-

dings.
* Construct KDE distributions over the embed-
dings.
* Compute omission scores using probability
ratios:
OMgcore = !

KDE probability density
min density over output words

* High scores indicate likely omissions.

The global omission score is computed as the
maximum token-level score across the source text.
Tokens with scores near the global value highlight
which parts of the source text contributed most to
the detected omission, providing interpretability
and pinpointing omitted topics.

In our framework, the “batch” consists of the to-
kens from a source text and its corresponding sum-
mary. The length of the source text is not limiting
since KDE is fitted on the output embeddings, not
the full source. However, the output text (summary)
should remain reasonably sized, which aligns with
typical summarization settings.

PCA is applied before KDE to reduce embed-
ding dimensionality, which is critical because KDE
estimates multivariate Gaussian densities, and both
the computational cost and the reliability of den-
sity estimation degrade in high-dimensional spaces.
While OM scores could theoretically be computed
without PCA, dimensionality reduction improves
stability and efficiency.

To provide a more intuitive understanding of
the KDE-based omission scoring process, we intro-
duce a worked example illustrating how token-level
embeddings from the source report are projected
into the learned density space, and how unusually
“sparse” tokens contribute to omission detection.
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Figure 2: Overview of omission detection using KDE.

Example. Consider a short source excerpt: “The
patient underwent hepatectomy and showed no
postoperative infection.” and its generated sum-
mary: “The patient underwent surgery.” Each to-
ken from the source (e.g., “hepatectomy”, “infec-
tion””) and from the summary is embedded into a
shared vector space. A Kernel Density Estimator
(KDE) is then fitted over the summary embeddings
to model the expected semantic distribution of the
expressed content. When evaluating the source em-
beddings within this learned density space, tokens
such as “hepatectomy” and “infection” fall in low-
density regions, indicating that their correspond-
ing information was not reflected in the summary.
These tokens receive lower local density values
and therefore higher omission scores. Aggregating
across all tokens, the global omission score corre-
sponds to the maximum token-level omission score,
capturing the most significant missing concept.

In simple terms, KDE estimates the “normal den-
sity” of token embeddings from the summary; if
a token (or group of tokens) from the source lies
in a region of unusually low density, it signals a
potential omission. This provides actionable inter-
pretability. A schematic figure (Figure 2) in the
paper illustrates this process step-by-step.

For efficiency, EmbedKDECheck utilizes
lightweight embeddings FTW2V (Oukelmoun
et al.,, 2023) combining FastText (Bojanowski
et al., 2017) and Word2Vec (Mikolov et al., 2013),
fine-tuned on a 32M-word independent medical
corpus from the collaborating hospital. The system

runs on CPU only, requiring 2.4GB of RAM and 1
hour 35 minutes of training on an Intel i7-10750H
CPU.

Our method is language-agnostic, requiring only
a word-level embedding provider. For efficiency,
we use lightweight models such as Word2Vec and
FastText combined under the FTW2V framework,
suitable for KDE-based anomaly detection without
relying on large LLMs. While the current dataset
is French, future work will explore a translated En-
glish version and conduct a brief error analysis on
non-medical text (e.g., legal abstracts) to assess
broader cross-domain and cross-lingual applicabil-
ity.

Since EmbedKDECheck requires no training,
the dataset was split into validation (80%) and test
(20%) sets with balanced labels. The detection
threshold, number of PCA components, and KDE
bandwidth were optimized on the validation set via
random search. Final performance was measured
on the test set, and experiments indicate robust-
ness to moderate variations in threshold and band-
width, while validation tuning ensures an optimal
precision—recall balance.

3.2 Benchmarking models and metrics

This section introduces the reference-free and
black-box models used for comparison with the
EmbedKDECheck.
¢ SelfCheckGPT (Manakul et al., 2023): This
approach evaluates a given summary by com-
paring it to multiple alternative summaries
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generated for the same input. Specifically, for
the benchmark, we sampled eight summaries
per input. The embeddings were then com-
puted using the openai model text-embedding-
ada-002, and the final score was obtained as
the mean of 1— cosine similarity between the
assessed summary and the sampled ones. The
method was tested with both GPT-3.5 Turbo
and GPT-4 for summary generation. The
prompt used is provided in Appendix C. A
temperature of 0.4 was applied to generate suf-
ficient variability in the sampled summaries.

* ChainPoll (Friel and Sanyal, 2023): This ap-
proach is primarily based on prompting. The
models tested here are GPT-3.5 Turbo and
GPT-4. The prompt asks the LLM to develop
a chain of thought before providing the final
prediction on whether the summary contains
an omission. The prompt used is provided in
Appendix B.

* G-Eval (Liu et al., 2023): This approach also
utilizes Chain of Thought (COT) reasoning
but asks the LLM to provide a score, which
is defined in detail, instead of giving a direct
prediction. Both GPT-4 and GPT-3.5 Turbo
were tested. The prompt used is provided in
Appendix A.

¢ GPTScore (Fu et al., 2024): This method uses
the OpenAl model text-embedding-ada-002 to
obtain the input and output embeddings. The
omission score is then calculated as 1— cosine
similarity between the embeddings.

The scores were calculated for each pair, and recall
and precision were then estimated based on the
score threshold that maximizes the F1 score when
the model generates a floating-point score instead
of a direct prediction.

3.3 Evaluation Dataset

3.3.1 Dataset Description

Using real or anonymized medical reports in France
was not feasible due to strict privacy regulations
and ethical considerations. Data protection laws,
such as the General Data Protection Regulation
(GDPR), impose significant restrictions on the use
of personal data, particularly in sensitive domains
like healthcare. Complete anonymization is chal-
lenging because detailed medical reports can still
risk re-identification (anonymization, 2024; re indi-
tification, 2024).

Medical reports, often manually written by sur-

geons or medical assistants, may contain inconsis-
tencies and variations in writing style, level of de-
tail, and adherence to structured templates. These
irregularities can impact both clarity and complete-
ness, and complicate automated NLP operations.
Moreover, publicly available datasets for factual
consistency in medical reports are limited (Luo
et al., 2024), motivating the creation of a new syn-
thetic dataset in French, which will be released as
open-source.

To build the dataset, 50 anonymized medical re-
ports were first collected from experts. Each report
was slightly modified (names, dates, locations) to
generate 50 fictitious seed reports. GPT-4-32K was
then used to produce 15 synthetic variants per seed
report, with instructions to maintain report struc-
ture while altering content such as family history,
symptoms, and complications. Reports shorter than
200 words were discarded, leaving 674 reports with
an average length of 353 words.

Each report contains standard sections, includ-
ing Motif d’Hospitalisation (Reason for Hospital-
ization), Antécédents (Medical History), Histoire
de la Maladie (History of Present Illness), Clin-
ique (Clinical Examination), and Evolution dans
le Service (In-Hospital Course). For each report,
GPT-4-32K was used to generate two summaries:
a complete summary capturing all key information,
and a summary with intentional omissions created
by randomly removing approximately 50% of the
report’s sentences prior to generation.

This process resulted in a dataset of 1,348
triplets, each consisting of a report, a correspond-
ing summary, and a binary label indicating whether
the summary contains omissions, providing a com-
prehensive benchmark for evaluating omission de-
tection methods.

3.3.2 Quality Assessment

The synthetic dataset was evaluated on three main
criteria: similarity to real reports, linguistic diver-
sity, and content accuracy. The dataset consists
of triplets (report, summary, label). To validate
the synthetic labels, 90 report-summary pairs were
blindly annotated by two expert surgeons in three
stages, and the resulting annotations were then com-
pared to the synthetic dataset labels to assess con-
sistency. The stages were:

1. Determining whether the report was human-
or LLM-generated.

2. Labeling the summary as complete or contain-
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ing omissions.

3. Rating content quality (good, average, bad) if
the summary was complete.

For the completeness/omission task, annotators
achieved 95% accuracy and Cohen’s k = 0.82, in-
dicating strong agreement. In contrast, distinguish-
ing human vs. LLM-generated reports resulted in
x = 0.10 and F1 ~ 0.5, showing that synthetic
reports are highly realistic and nearly indistinguish-
able from human-written reports. Omissions were
generated by removing 50% of sentences, and
evaluation metrics were computed on this manu-
ally validated subset.

Linguistic diversity was assessed by analyzing
CamemBERT (Martin et al., 2020) embeddings of
real and synthetic reports via PCA (Figure 3). The
close clustering of embeddings confirms that the
synthetic dataset mimics the linguistic characteris-
tics of real reports.

PCA of CamemBERT Embeddings with Density Contours

—— LLM-generated fictitious medical reports
—— Human-generated fictitious medical reports

PCA Component 2

PCA Component 1

Figure 3: PCA of CamemBERT embeddings with den-
sity contours for synthetic and real reports.

For quality evaluation, summaries labeled as
complete were further rated: 93% were consid-
ered good, 5% average, and 2% bad (with “bad”
indicating at least one critical omission). In the
omission detection task, annotators achieved 95%
accuracy. Critical omissions are defined as miss-
ing information essential to clinical decisions or
the overall understanding of the patient’s situation.
This confirms that synthetic labels are reliable and
that the global omission score accurately identifies
the source tokens responsible for omissions.

4 Results

The performance of the Embed2KDE model in
detecting omissions in LLM-generated summaries

is evaluated, with results presented in Tables 1 and
2.

The code and dataset are available on GitHub.
The EmbedKDECheck code can be accessed at
this repository'. The dataset is available at this
repository?.

If these links do not work for any reason, please
do not hesitate to contact the main author via email
for access to the code or dataset.

4.1 Omission Detection

EmbedKDECheck was tested for omission detec-
tion in French medical summaries and compared
with several algorithms (Table 1). It achieved
the highest F1-Score of 0.91, with recall at 0.88
and precision at 0.93, demonstrating its robustness
in identifying omissions. While models such as
ChainPoll and G-Eval show near-perfect recall,
their tendency to predict almost every instance
as an omission results in lower precision and F1
scores. In contrast, EmbedKDECheck strikes a
better balance, offering more reliable omission de-
tection. The method also identifies omitted topics,
offering insights into summary completeness. Its
approach is generalizable to other fields, making
it a versatile tool for omission detection where fru-
gality is required.

Algorithm Recall Precision F1-Score
SelfCheck-gpt3-turbo 0.79 0.77 0.78
SelfCheck-gpt4 0.86 0.84 0.85
ChainPoll-gpt3-turbo 0.97 0.67 0.51
ChainPoll-gpt4 0.99 0.68 0.80
G-Eval-gpt3-turbo 0.98 0.46 0.63
G-Eval-gpt4 0.99 0.68 0.80
GPTScore 0.80 0.79 0.80
EmbedKDECheck 0.88 0.93 0.91

Table 1: Omission Detection Scores

4.2 Frugality Assessment

Frugality was evaluated using estimated FLOPS
(Floating Point Operations Per Second) for each
model (Table 2). For GPT-based models, FLOPS
were calculated by multiplying the number of to-
kens by the model size. In contrast, for Embed-
KDECheck, FLOPS were derived from the product
of the running time and peak hardware FLOPS.

These results highlight EmbedKDECheck’s ef-
fectiveness and efficiency in omission detection,
making it a strong candidate for summarization
tasks that require both performance and frugality.

"https://github.com/achok7893/EmbedKDECheck _
hallucination_detection

2ht’cps ://github.com/achok7893/EmbedKDECheck_
OmissionsDection_Dataset_Fr_Healthcare
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Model Estimated Tera FLOPS
SelfCheck-gpt3-turbo 1545.40
SelfCheck-gpt4 8804.03
ChainPoll-gpt3-turbo 770.73
ChainPoll-gpt4 4404.16
G-Eval-gpt3-turbo 513.81
G-Eval-gpt4 2936.04
GPTScore 2.14
EmbedKDECheck 0.11

Table 2: Estimated FLOPS for Different Models

5 Deployment

EmbedKDECheck is designed for efficient and
privacy-compliant deployment in medical environ-
ments. Its lightweight architecture enables real-
time omission detection using only commodity
CPUs, without the need for large-scale GPUs or ex-
ternal API calls. The system relies exclusively on
word-level embeddings (FastText and Word2Vec
combined under the FTW2V framework) and a Ker-
nel Density Estimation (KDE) module for anomaly
detection. This frugal design minimizes computa-
tional cost and energy usage while ensuring full
compatibility with hospital privacy and security re-
quirements, as all computations can be executed
locally.

The module is intended to be deployed in an
experimental configuration at an incubator affil-
iated with a major hospital in the Paris area. This
deployment aims to evaluate the system’s effec-
tiveness and integration feasibility within a con-
trolled environment replicating clinical data flows.
In this setup, EmbedKDECheck will operate as a
validation layer for LLM-generated summaries and
surgical reports, identifying potential omissions in
critical information without interfering with real
medical workflows.

Because the method requires only lightweight
embeddings and a KDE-based scoring function, its
computational footprint is several orders of mag-
nitude lower than GPT-based evaluators such as
SelfCheckGPT or G-Eval. This enables continu-
ous experimentation and large-scale benchmarking
on standard CPU workstations. Furthermore, its
language-agnostic design facilitates adaptation to
multilingual and cross-domain contexts, including
English medical datasets and other specialized do-
mains such as legal or industrial documentation.

The experimental architecture integrates Embed-
KDECheck within the hospital-affiliated incuba-
tor’s LLM monitoring pipeline, providing a safe, in-
terpretable, and resource-efficient validation layer
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to enhance the reliability of Al-assisted medical
reporting systems.

6 Discussion

The results demonstrate that EmbedKDECheck
achieves a strong balance between performance
and computational efficiency in omission detection.
As shown in Tables 1 and 2, the model reaches
an Fl-score of 0.91 while remaining cost-effective,
making it particularly suitable for deployment in
resource-constrained environments. By leverag-
ing a compact kernel density estimation framework
over embeddings, EmbedKDECheck effectively
captures semantic deviations that indicate missing
information, without requiring access to the under-
lying generative model. This frugal and reference-
free design makes it a practical solution for large-
scale auditing of LLM-generated summaries.

A key contribution of this work is the construc-
tion of a synthetic yet expert-validated dataset
for omission detection in medical summaries. To
address this, we generated 674 synthetic reports
with GPT-4-32K, designed to closely resemble au-
thentic clinical narratives while ensuring privacy
compliance. We removed 50% of the sentences
in each report to guarantee the presence of sub-
stantial and medically relevant omissions, thereby
strengthening the reliability of the ground-truth la-
bels. Lower removal rates often lead to minor or
absent omissions, reducing the dataset’s discrimi-
native power. The dataset was rigorously validated
for similarity, diversity, and factual accuracy by
medical experts and is released openly to encour-
age reproducibility and further research.

Beyond the medical domain, Embed-
KDECheck shows strong potential for gen-
eralization. Its architecture can be adapted to other
high-stakes fields such as law or finance, where
preserving critical information in summaries is
equally vital. The same principles can extend to
related tasks like hallucination detection, factual
consistency estimation, or bias identification in
generated content. By remaining reference-free,
the approach aligns with growing needs for
transparency and accountability in large language
model evaluation, particularly when gold-standard
references are unavailable. Future work will
focus on extending the method to other forms of
hallucinations while preserving both frugality and
interpretability.



7 Limitations

Despite its promising performance, Embed-
KDECheck presents some limitations that open
avenues for further investigation. First, its effec-
tiveness depends heavily on the quality and do-
main relevance of the embeddings. Although pre-
trained embedding models offer strong general rep-
resentations, they may fail to capture fine-grained
medical or contextual nuances without domain-
specific adaptation. Fine-tuning or hybrid embed-
ding strategies could improve sensitivity to subtle
omissions in specialized domains.

Second, while EmbedKDECheck is computa-
tionally efficient, its performance may still vary
depending on available resources and chosen hyper-
parameters, Achieving an optimal balance between
precision and cost remains a critical challenge for
deployment in large institutional pipelines.

Third, the construction of a fully reliable ground
truth dataset with manually verified omission
counts remains prohibitively expensive and time-
consuming. Such a process requires extensive in-
put from domain experts, particularly surgeons or
specialists, making it difficult to scale validation
efforts. The synthetic dataset proposed here rep-
resents a necessary compromise between realism
and feasibility, though further efforts are needed to
expand and diversify human-validated corpora.

Finally, as a locally based, reference-free
method, EmbedKDECheck is by construction ro-
bust to the omission rate used during dataset gen-
eration, but may still face challenges in settings
where omissions are subtle, stylistic, or semanti-
cally diffuse. Addressing these limitations will
require future research into interpretable, hybrid
systems that combine statistical robustness with
semantic reasoning. Despite these challenges, Em-
bedKDECheck significantly outperforms existing
methods in omission detection and provides a scal-
able foundation for reliable evaluation of LLM-
generated summaries across sensitive domains.

Ethical considerations

Due to legal (GDPR?) and ethical (privacy) con-
cerns, real or simply anonymized medical reports
couldn’t be used. Instead, we created a syn-
thetic dataset by generating fictitious reports from
anonymized ones and using GPT-4-32K to produce

3https ://en.wikipedia.org/wiki/General_Data_
Protection_Regulation

similar reports. This approach ensured compliance
with ethical standards and privacy regulations.
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A G-Eval prompt

This appendix presents the evaluation prompt used in the study. The original prompt is in French, followed
by its English translation to facilitate understanding for reviewers.

A.1 Prompt in French

Vous recevrez un compte rendu médical et un résumé de ce compte rendu. Votre tache est d’évaluer le
résumé sur la base de sa complétude et de sa capacité a inclure toutes les informations critiques issues du
compte rendu.

Veuillez suivre attentivement les instructions ci-dessous et vous y référer tout au long de I’évaluation.

A.1.1 Criteres d’évaluation

Complétude et pertinence (1-3)

¢ Score 1 (Insuffisant) :

— Le résumé manque plusieurs informations critiques essentielles a la compréhension du cas.

— Les omissions pourraient avoir un impact significatif sur la prise de décision médicale ou les
soins du patient.

* Score 2 (Moyen) :

— Le résumé inclut certaines informations clés, mais omet une ou deux informations importantes.

— Bien que les omissions soient notables, elles ne compromettent pas totalement la compréhension
du cas.

¢ Score 3 (Excellent) :

— Le résumé est complet et inclut toutes les informations critiques issues du compte rendu médical.

— Aucune omission significative n’est présente, et le résumé permet une compréhension totale du
cas.

A.1.2 Etapes d’évaluation

1. Etape 1: Lisez attentivement le compte rendu médical et identifiez les détails principaux (diagnostics,
traitements, résultats de tests, antécédents, etc.).

2. Etape 2 : Comparez le résumé au compte rendu médical. Identifiez les informations manquantes ou
incorrectes.

3. Etape 3 (raisonnement en chaine) :

* Analysez étape par étape si le résumé correspond au compte rendu.
* Soulignez les divergences ou omissions et évaluez leur importance.

» Expliquez clairement votre raisonnement pour le score attribué.
4. Etape 4 : Attribuez un score de complétude entre 1 et 3, en suivant les critéres ci-dessus.

Compte rendu médical : [INSEREZ ICI LE COMPTE RENDU MEDICAL] Résumé fourni : [IN-
SEREZ ICI LE RESUME A ANALYSER] Formulaire d’évaluation (scores UNIQUEMENT) : -
Complétude :

A.2 English Translation of the Prompt

You will receive a medical report and a summary of this report. Your task is to evaluate the summary
based on its completeness and its ability to include all critical information from the report. Please carefully
follow the instructions below and refer to them throughout the evaluation.
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A.2.1 Evaluation Criteria
Completeness and relevance (1-3)
¢ Score 1 (Insufficient):

— The summary lacks several critical pieces of information essential for understanding the case.

— The omissions could significantly impact medical decision-making or patient care.

¢ Score 2 (Moderate):
— The summary includes some key information but omits one or two important details.
— Although the omissions are noticeable, they do not completely compromise understanding of
the case.
¢ Score 3 (Excellent):

— The summary is complete and includes all critical information from the medical report.
— No significant omissions are present, and the summary allows for a full understanding of the
case.

A.2.2 Evaluation Steps
1. Step 1: Carefully read the medical report and identify the main details (diagnoses, treatments, test
results, medical history, etc.).

2. Step 2: Compare the summary with the medical report. Identify any missing or incorrect information.

3. Step 3 (chain reasoning):

* Analyze step by step whether the summary corresponds to the report.
 Highlight discrepancies or omissions and assess their importance.
* Clearly explain your reasoning for the assigned score.

4. Step 4: Assign a completeness score between 1 and 3, following the criteria above.

Medical report: [INSERT MEDICAL REPORT HERE] Provided summary: [INSERT SUMMARY
TO BE ANALYZED HERE] Evaluation form (scores ONLY): - Completeness:
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B ChainPoll prompt

This appendix presents the prompt used for binary omission detection. The original prompt is in French,
followed by its English translation for better clarity.

B.1 Prompt in French

Vous €tes un assistant médical spécialisé dans I’analyse de comptes rendus médicaux. Vous recevrez : 1.
Un compte rendu médical détaillé. 2. Un résumé de ce compte rendu. Votre tiche : 1. Identifier et
expliquer si le résumé omet des informations médicales importantes qui figurent dans le compte rendu. 2.
Indiquer s’il existe des omissions importantes avec une valeur binaire : - 0 : Pas d’omissions importantes.
-1: Des omissions importantes sont présentes. IMPORTANT : A la fin de votre analyse, incluez une
ligne au format clair : OMISSION_RESULT = [@ ou 1]

B.1.1 Etapes

1. Etape1: Analysez le compte rendu médical en identifiant les informations essentielles (diagnostics,
traitements, antécédents, résultats de tests, etc.).

2. Etape 2 : Comparez le résumé fourni au compte rendu original. Relevez les informations importantes
manquantes, le cas échéant.

3. Etape 3 : Justifiez votre décision en listant les éléments omis ou confirmant qu’aucune omission
significative n’est présente.

4. Etape 4 : Fournissez le résultat binaire au format clair.

Compte rendu médical : [INSEREZ ICI LE COMPTE RENDU MEDICAL] Résumé fourni : [IN-
SEREZ ICI LE RESUME A ANALYSER]

B.2 English Translation of the Prompt

You are a medical assistant specializing in the analysis of medical reports. You will receive: 1. A detailed
medical report. 2. A summary of this report. Your task: 1. Identify and explain whether the summary
omits important medical information present in the report. 2. Indicate whether significant omissions exist
using a binary value: - 0: No significant omissions. - 1: Significant omissions are present. IMPORTANT:
At the end of your analysis, include a clearly formatted line: OMISSION_RESULT = [@ or 1]

B.2.1 Steps

1. Step 1: Analyze the medical report by identifying key information (diagnoses, treatments, history,
test results, etc.).

2. Step 2: Compare the provided summary to the original report. Note any missing important informa-
tion, if applicable.

3. Step 3: Justify your decision by listing omitted elements or confirming that no significant omission
is present.

4. Step 4: Provide the binary result in a clear format.

Medical report: [INSERT MEDICAL REPORT HERE] Provided summary: [INSERT SUMMARY
TO BE ANALYZED HERE)]
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C SelfCheckGPT System Prompt

The system prompt used in the model is as follows:

French: Vous étes un assistant. Je vais vous fournir un compte-rendu médical synthétique et
vous allez devoir me fournir un résumé complet.

English Translation: You are an assistant. I will provide you with a concise medical report, and you will
be required to provide a complete summary.
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