@inproceedings{gollapalli-etal-2025-assigning,
title = "On Assigning Product and Software Codes to Customer Service Requests with Large Language Models",
author = "Gollapalli, Sujatha Das and
Hakam, Mouad and
Du, Mingzhe and
Ng, See-Kiong and
Hamzeh, Mohammed",
editor = "Potdar, Saloni and
Rojas-Barahona, Lina and
Montella, Sebastien",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track",
month = nov,
year = "2025",
address = "Suzhou (China)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-industry.76/",
pages = "1092--1103",
ISBN = "979-8-89176-333-3",
abstract = "In a technology company, quality of customer service that involves providingtroubleshooting assistance and advice to customers is a crucial asset.Often, insights from historical customer service data are used to make decisions related to future product offerings. In this paper, we address the challenging problem of automatic assignment of product names and software version labels to customer Service Requests (SRs) related to BLIND, a company in the networking domain.We study the effectiveness of state-of-the-art Large Language Models (LLMs) in assigning the correct product name codes and software versions from several possible label options and their ``non-canonical'' mentions in the associated SR data. To this end, we frame the assignment as a multiple-choice question answering task instead of conventional prompts and devise, to our knowledge, a novel pipeline of employing a classifier for filtering inputs to the LLM for saving usage costs. On our experimental dataset based on real SRs, we are able to correctly identify product name and software version labels when they are mentioned with over 90{\%} accuracy while cutting LLM costs by {\textasciitilde}40-60{\%} on average, thus providing a viable solution for practical deployment."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gollapalli-etal-2025-assigning">
<titleInfo>
<title>On Assigning Product and Software Codes to Customer Service Requests with Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sujatha</namePart>
<namePart type="given">Das</namePart>
<namePart type="family">Gollapalli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mouad</namePart>
<namePart type="family">Hakam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mingzhe</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">See-Kiong</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammed</namePart>
<namePart type="family">Hamzeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Saloni</namePart>
<namePart type="family">Potdar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lina</namePart>
<namePart type="family">Rojas-Barahona</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastien</namePart>
<namePart type="family">Montella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou (China)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-333-3</identifier>
</relatedItem>
<abstract>In a technology company, quality of customer service that involves providingtroubleshooting assistance and advice to customers is a crucial asset.Often, insights from historical customer service data are used to make decisions related to future product offerings. In this paper, we address the challenging problem of automatic assignment of product names and software version labels to customer Service Requests (SRs) related to BLIND, a company in the networking domain.We study the effectiveness of state-of-the-art Large Language Models (LLMs) in assigning the correct product name codes and software versions from several possible label options and their “non-canonical” mentions in the associated SR data. To this end, we frame the assignment as a multiple-choice question answering task instead of conventional prompts and devise, to our knowledge, a novel pipeline of employing a classifier for filtering inputs to the LLM for saving usage costs. On our experimental dataset based on real SRs, we are able to correctly identify product name and software version labels when they are mentioned with over 90% accuracy while cutting LLM costs by ~40-60% on average, thus providing a viable solution for practical deployment.</abstract>
<identifier type="citekey">gollapalli-etal-2025-assigning</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-industry.76/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>1092</start>
<end>1103</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On Assigning Product and Software Codes to Customer Service Requests with Large Language Models
%A Gollapalli, Sujatha Das
%A Hakam, Mouad
%A Du, Mingzhe
%A Ng, See-Kiong
%A Hamzeh, Mohammed
%Y Potdar, Saloni
%Y Rojas-Barahona, Lina
%Y Montella, Sebastien
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou (China)
%@ 979-8-89176-333-3
%F gollapalli-etal-2025-assigning
%X In a technology company, quality of customer service that involves providingtroubleshooting assistance and advice to customers is a crucial asset.Often, insights from historical customer service data are used to make decisions related to future product offerings. In this paper, we address the challenging problem of automatic assignment of product names and software version labels to customer Service Requests (SRs) related to BLIND, a company in the networking domain.We study the effectiveness of state-of-the-art Large Language Models (LLMs) in assigning the correct product name codes and software versions from several possible label options and their “non-canonical” mentions in the associated SR data. To this end, we frame the assignment as a multiple-choice question answering task instead of conventional prompts and devise, to our knowledge, a novel pipeline of employing a classifier for filtering inputs to the LLM for saving usage costs. On our experimental dataset based on real SRs, we are able to correctly identify product name and software version labels when they are mentioned with over 90% accuracy while cutting LLM costs by ~40-60% on average, thus providing a viable solution for practical deployment.
%U https://aclanthology.org/2025.emnlp-industry.76/
%P 1092-1103
Markdown (Informal)
[On Assigning Product and Software Codes to Customer Service Requests with Large Language Models](https://aclanthology.org/2025.emnlp-industry.76/) (Gollapalli et al., EMNLP 2025)
ACL