@inproceedings{ni-etal-2025-hierdiffuse,
title = "{H}ier{D}iffuse: Progressive Diffusion for Robust Interest Fusion in {CTR} Prediction",
author = "Ni, Ziheng and
Liu, Congcong and
Chen, Yuying and
Fang, Zhiwei and
Peng, Changping and
Lin, Zhangang and
Law, Ching and
Shao, Jingping",
editor = "Potdar, Saloni and
Rojas-Barahona, Lina and
Montella, Sebastien",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track",
month = nov,
year = "2025",
address = "Suzhou (China)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-industry.92/",
pages = "1341--1348",
ISBN = "979-8-89176-333-3",
abstract = "Modern recommendation systems grapple with reconciling users' enduring preferences with transient interests, particularly in click-through rate (CTR) prediction. Existing approaches inadequately fuse long-term behavioral profiles (e.g., aggregated purchase trends) and short-term interaction sequences (e.g., real-time clicks), suffering from representational misalignment and noise in transient signals. We propose HierDiffuse, a unified framework that redefines interest fusion as a hierarchical denoising process through diffusion models. Our approach addresses these challenges via three innovations: (1) A cross-scale diffusion mechanism aligns long- and short-term representations by iteratively refining long-term interests using short-term contextual guidance; (2) A Semantic Guidance Disentanglement (SGD) mechanism explicitly decouples core interests from noise in short-term signals;(3) Trajectory Convergence Constraint (TCC) is proposed to accelerate diffusion model reasoning without reducing generation quality to meet the constraints of high QPS (Queries Per Second) and low latency for online deployment of recommendation or advertising systems.HierDiffuse eliminates ad-hoc fusion operators, dynamically integrates multi-scale interests, and enhances robustness to spurious interactions as well as improves inference speed. Extensive experiments on real-world datasets demonstrate state-of-the-art performance, with significant improvements in CTR prediction accuracy and robustness to noisy interactions. Our work establishes diffusion models as a principled paradigm for adaptive interest fusion in recommendation systems."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ni-etal-2025-hierdiffuse">
<titleInfo>
<title>HierDiffuse: Progressive Diffusion for Robust Interest Fusion in CTR Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ziheng</namePart>
<namePart type="family">Ni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Congcong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuying</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiwei</namePart>
<namePart type="family">Fang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Changping</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhangang</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ching</namePart>
<namePart type="family">Law</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingping</namePart>
<namePart type="family">Shao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Saloni</namePart>
<namePart type="family">Potdar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lina</namePart>
<namePart type="family">Rojas-Barahona</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastien</namePart>
<namePart type="family">Montella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou (China)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-333-3</identifier>
</relatedItem>
<abstract>Modern recommendation systems grapple with reconciling users’ enduring preferences with transient interests, particularly in click-through rate (CTR) prediction. Existing approaches inadequately fuse long-term behavioral profiles (e.g., aggregated purchase trends) and short-term interaction sequences (e.g., real-time clicks), suffering from representational misalignment and noise in transient signals. We propose HierDiffuse, a unified framework that redefines interest fusion as a hierarchical denoising process through diffusion models. Our approach addresses these challenges via three innovations: (1) A cross-scale diffusion mechanism aligns long- and short-term representations by iteratively refining long-term interests using short-term contextual guidance; (2) A Semantic Guidance Disentanglement (SGD) mechanism explicitly decouples core interests from noise in short-term signals;(3) Trajectory Convergence Constraint (TCC) is proposed to accelerate diffusion model reasoning without reducing generation quality to meet the constraints of high QPS (Queries Per Second) and low latency for online deployment of recommendation or advertising systems.HierDiffuse eliminates ad-hoc fusion operators, dynamically integrates multi-scale interests, and enhances robustness to spurious interactions as well as improves inference speed. Extensive experiments on real-world datasets demonstrate state-of-the-art performance, with significant improvements in CTR prediction accuracy and robustness to noisy interactions. Our work establishes diffusion models as a principled paradigm for adaptive interest fusion in recommendation systems.</abstract>
<identifier type="citekey">ni-etal-2025-hierdiffuse</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-industry.92/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>1341</start>
<end>1348</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HierDiffuse: Progressive Diffusion for Robust Interest Fusion in CTR Prediction
%A Ni, Ziheng
%A Liu, Congcong
%A Chen, Yuying
%A Fang, Zhiwei
%A Peng, Changping
%A Lin, Zhangang
%A Law, Ching
%A Shao, Jingping
%Y Potdar, Saloni
%Y Rojas-Barahona, Lina
%Y Montella, Sebastien
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou (China)
%@ 979-8-89176-333-3
%F ni-etal-2025-hierdiffuse
%X Modern recommendation systems grapple with reconciling users’ enduring preferences with transient interests, particularly in click-through rate (CTR) prediction. Existing approaches inadequately fuse long-term behavioral profiles (e.g., aggregated purchase trends) and short-term interaction sequences (e.g., real-time clicks), suffering from representational misalignment and noise in transient signals. We propose HierDiffuse, a unified framework that redefines interest fusion as a hierarchical denoising process through diffusion models. Our approach addresses these challenges via three innovations: (1) A cross-scale diffusion mechanism aligns long- and short-term representations by iteratively refining long-term interests using short-term contextual guidance; (2) A Semantic Guidance Disentanglement (SGD) mechanism explicitly decouples core interests from noise in short-term signals;(3) Trajectory Convergence Constraint (TCC) is proposed to accelerate diffusion model reasoning without reducing generation quality to meet the constraints of high QPS (Queries Per Second) and low latency for online deployment of recommendation or advertising systems.HierDiffuse eliminates ad-hoc fusion operators, dynamically integrates multi-scale interests, and enhances robustness to spurious interactions as well as improves inference speed. Extensive experiments on real-world datasets demonstrate state-of-the-art performance, with significant improvements in CTR prediction accuracy and robustness to noisy interactions. Our work establishes diffusion models as a principled paradigm for adaptive interest fusion in recommendation systems.
%U https://aclanthology.org/2025.emnlp-industry.92/
%P 1341-1348
Markdown (Informal)
[HierDiffuse: Progressive Diffusion for Robust Interest Fusion in CTR Prediction](https://aclanthology.org/2025.emnlp-industry.92/) (Ni et al., EMNLP 2025)
ACL