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Abstract

Personalized mathematics education is grow-
ing rapidly, creating a strong demand for large
sets of similar practice problems. Yet exist-
ing studies on mathematics problem generation
have focused on data augmentation for training
neural language models rather than on direct
educational deployment. To bridge this gap,
we define a new task, Isomorphic Math Prob-
lem Generation (IMPG), designed to produce
structurally consistent variants of source prob-
lems. Subsequently, we explored LLM-based
frameworks for automatic IMPG through suc-
cessive refinements, and established Computa-
tional Blueprints for Isomorphic Twins (CBIT).
With meta-level generation and template-based
selective variation, CBIT achieves high mathe-
matical correctness and structural consistency
while reducing the cost of generation. Empiri-
cal results across refinements demonstrate that
CBIT is superior on generation accuracy and
cost-effectiveness at scale. Most importantly,
CBIT-generated problems exhibited an error
rate 17.8% lower than expert-authored items,
with deployment to 6, 732 learners on a com-
mercial education platform yielding 186, 870
interactions.

1 Introduction

In mathematics education, repetitive practice with
similar problems is essential for conceptual under-
standing, as demonstrated by decades of research.
According to Gick and Holyoak (1983), students
learn by comparing and contrasting multiple simi-
lar examples. Through this process, they abstract
the core structure of problems, which is the key
to transfer knowledge to novel situations. Simi-
larly, Rittle-Johnson et al. (2001) highlights the link
between procedural skill and conceptual insight.
Procedural skill, which is strengthened through re-
peated practice, develops into procedural fluency

*These authors contributed equally to this work

that reduces the cognitive load required for compu-
tation and allows students to focus on underlying
concepts.

Despite its educational importance, providing
high-quality repetitive learning experiences re-
mains a formidable challenge in industrial settings.
Generating related practice problems has been re-
garded as the work of expert mathematics educa-
tors, since every new item must remain pedagog-
ically valid and tightly aligned with the targeted
concepts (Burgos et al., 2025), demanding substan-
tial time and cost. In personalized online learning
environments, the challenge becomes even greater.
Because the required practice problems differ de-
pending on the student and the topic, it is impracti-
cal to prepare them all in advance.

In a different line of work, automatic genera-
tion of mathematics problems has been an active
research area in Neural Language Processing with
a variety of approaches. Zhou and Huang (2019),
Liu et al. (2021), Wang et al. (2021), Wu et al.
(2022), and Qin et al. (2023) focused on effectively
encoding equation and context information into
neural language models for mathematics problem
generation, but the range of producible problems
was severely limited by the capacity of those small
models. The advent of the Transformer architec-
ture (Vaswani et al., 2017) and the scaling-law (Ka-
plan et al., 2020) motivation for Large Language
Models (LLMs) broadened the field. For exam-
ple, Drori et al. (2022) employed the Codex (Chen
et al., 2021) to synthesize new questions by leverag-
ing other problems within the same curricular unit,
but provided no guarantee of the mathematical cor-
rectness of the generated items. Li et al. (2024b)
projected original problems into a symbolic do-
main (SMT-LIB; Barrett et al., 2016), where pro-
jection and reconstruction were performed by GPT-
4(Achiam et al., 2023) and symbolic mutation were
applied to generate similar problems, ensuring
mathematical correctness using SMT-Lib solver.
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Similarly, the AIC method (Li et al., 2024a) used
Llama3-70B-Instruct (Grattafiori et al., 2024) to
project and reconstruct problems in an abstract do-
main, while also prompting the model to generate
verification programs that check the abstraction.
Both studies provided significant insight to this
work in that they transformed the task domain so
that mathematical correctness can be verified deter-
ministically. Specifically, AIC, which supports a
broader range of problem types, was adopted as the
baseline for comparison; further details are given
in Section 3.

Despite these advances, no prior work has explic-
itly aimed at educational use. The above methods
evaluate performance by semantic similarity mea-
sured with BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), and METEOR (Banerjee and Lavie,
2005) between generated problems and their input
equations or context, and by downstream bench-
mark scores on mathematics problem solving such
as GSM8k (Cobbe et al., 2021) and MATH (Chen
et al., 2021). This evaluation scheme indicates that
existing studies concentrated on data-augmentation
technique for training neural language models, and
in fact present their work as mathematical data syn-
thesis. Consequently, deploying such problems for
educational use incurs substantial hidden costs for
human expert verification, ultimately nullifying the
benefits of automation.

To bridge the gap between academic research
and educational application, we first propose the
task of Isomorphic Math Problem Generation
(IMPG). As shown in Figure 1, rather than in-
venting entirely new problems, IMPG aims to
generate structurally consistent variants of source
problems that vary only in numerical values and
thereby inherit the pedagogical validity of the
source problems’ linguistic context. Therefore, if
the source problems have been pedagogically vali-
dated, the isomorphic problems successfully gener-
ated through IMPG can in turn be considered valid.
To facilitate research on this task, we construct
and publicly release1 a comprehensive benchmark
dataset covering multiple grade levels and difficulty
tiers, accompanied by an automatic verification
toolkit that symbolically checks whether generated
problems satisfy the required numerical relation-
ships, thereby enabling reliable and standardized
evaluation of new methods.

To address IMPG, we propose Computational

1https://github.com/eric-jhoon/IMPG

Blueprints for Isomorphic Twins (CBIT), a frame-
work designed to ensure mathematical correctness,
structural consistency, and scalability. For mathe-
matical correctness, CBIT encodes the quantitative
relationships of source problems as symbolic con-
straints and generates new items only when those
constraints are satisfied. For structural consistency,
it isolates invariant linguistic and symbolic tem-
plates from variable numerical elements, filling
only designated slots so that each output preserves
the source form. For scalability, CBIT adopts a
meta-level approach in which the LLM writes a
reusable problem-generating program, enabling un-
bounded verified outputs with minimal LLM calls.

We summarize our contributions as follows.

• We propose the task of Isomorphic Math Prob-
lem Generation (IMPG), aimed at creating
problems ready for real educational deploy-
ment.

• We build and release a benchmark dataset
covering diverse grade levels and difficulty
ranges, accompanied by an automatic verifi-
cation toolkit that enables reliable evaluation
and facilitates future research on IMPG.

• We establish CBIT framework that leverages
LLMs as blueprint authors to achieve high
generation accuracy and substantially lower
production cost, while aligning LLM capabili-
ties with the requirements of IMPG.

• We validate CBIT’s industrial applicability
through a large-scale real-world deployment,
where it achieved an error rate 17.8% lower
than expert-authored items over 186,870 learn-
ing interactions involving 6,732 learners,
demonstrating its readiness for practical use
in education at scale.

2 Isomorphic Mathematics Problem
Generation

2.1 Task Definition
We define a mathematics problem as a tuple P =
(Q,S,A), where Q is the question text, S is the
solution text, and A is the final answer entailed by
S for Q. Note that each of Q and S may consist
of natural language, mathematical expressions, or
a mixture of both, and must contain at least one
mathematical expression. The goal of Isomorphic
Math problem Generation is to generate a set of
K problems T = {P1, P2, . . . , PK} from a source
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Original Mathematics Problem Isomorphic Mathematics Problem

Figure 1: Example of an isomorphic math problem generated from an original one, showing changed numerical
values while preserving the underlying structure.

problem Ps where each Pi in T satisfies the follow-
ing conditions.

Structural Equivalence: These conditions en-
sure that any variation is restricted to the content of
the original mathematical expressions, preserving
the structural essence of the source problem.

∀i ∈ {1, . . . ,K} :

E(Qs ⊕ Ss) ̸= E(Qi ⊕ Si),

|E(Qs ⊕ Ss)| = |E(Qi ⊕ Si)|,
N(Qs ⊕ Ss) = N(Qi ⊕ Si),

where ⊕ denotes string concatenation, E(·) and
N(·) returns the tuple of all mathematical expres-
sions and natural-language text contained, respec-
tively. | · | represents the number of elements in a
given tuple.

Conceptual Correctness: These conditions en-
sure that every generated problem preserves the
quantitative and logical relationships among the
mathematical expressions of the source problem,
thereby maintaining the original mathematical con-
cepts.

∀i ∈ {1, . . . ,K} :

R
(
E(Qs ⊕ Ss)

)
= R

(
E(Qi ⊕ Si)

)
,

where R(·) denotes the implicit ideal set of quan-
titative relationships among numerical values, en-
compassing dependencies both within and across
expressions. Only when all the above conditions
are satisfied is the Isomorphic Math Problem Gen-
eration (IMPG) task considered successfully ac-
complished;

2.2 Benchmark
A benchmark dataset was constructed to support
the evaluation presented in this study, covering
mathematics problems from grade 4 through grade
12 (up to college entrance exam level). This dataset

Difficulty Total Rel Avg. Max

Easy 605 9.17 28
Medium 832 12.42 29
High 973 15.69 35

Total 2,410 12.36 35

Table 1: Symbolic relationships counts by difficulty
level. Total Rel indicates the total number of relation-
ships identified, while Avg. and Max denote the average
and maximum number of relationships per problem, re-
spectively.

comprises 195 original problems sampled across
67 distinct curriculum units, with each problem cat-
egorized into low, medium, or high difficulty levels.
Specifically, The dataset was sampled from a pool
of expert-authored and field-tested items, ensuring
both pedagogical validity and practical relevance.
We then applied an additional restriction to include
only text-based items represented in LaTeX, while
maintaining balanced coverage across curriculum
units and difficulty levels.

Note that under IMPG, the dataset contains far
richer information than the raw count suggests. As
the problem generation is reframed into revealing
symbolic relations between variables, our dataset
encodes 2,410 relation signals rather than merely
195 isolated items. As shown in Table 1, the aver-
age number of identifiable symbolic relationships
per problem increases steadily from easy to hard,
and the dataset as a whole contains 2,410 such rela-
tionships. A detailed analysis of the dataset distri-
bution and characteristics is provided in Appendix
A.

Unlike conventional datasets providing a fixed
set of gold answers, we instead develop and release
a problem-specific verification toolkit. This toolkit,
implemented as a lightweight algorithm, enables
the automatic validation of any number of gener-
ated isomorphic problems. The example pseudo-
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code of the toolkit is provided in Appendix Algo-
rithm 1. Since evaluation in this work is conducted
not by comparing against pre-defined gold answers
but by applying automatic verification algorithms,
the practical evaluation scale is substantially ampli-
fied. For instance, if each of the 195 problems is
used to generate 10 isomorphic problems, the eval-
uation effectively covers 1, 950 problem instances.
This design enables large-scale, rigorous assess-
ment without requiring manual annotation.

2.3 Metric

The major evaluation metric is the Mean Per-
Problem Success Rate(MPSR). Given a total of
N original problems, for each original problem
indicator i, the generation of a fixed number K
of isomorphic problems would be requested (e.g.,
K = 30). Let si denote the number of success-
fully generated problems that pass verification for
problem i, where 0 ≤ si ≤ K. The per-problem
success rate is then defined as:

SuccessRatei =
si
K

, (1)

that is, the ratio of successful generations relative
to the requested number of generations. The overall
MPSR is computed by taking the mean of the per-
problem success rates across all N problems:

MPSR =
1

N

N∑

i=1

si
K

(2)

In addition to success rates, we also evaluate
the economic efficiency of problem generation us-
ing token consumption. Let Tpr and Tcp denote
the total number of prompt tokens and completion
tokens used, respectively. We define Tokens Per
Success(TPS) as the total token consumption di-
vied by the number of successful generations. To
express this as a real-world cost in USD, we incor-
porate the per-token costs of prompt tokens cpr and
completion tokens ccp, which may differ depending
on the LLM service provider. The resulting metric,
Cost Per Success(CPS), is computed as:

CPS =
cprTpr + ccpTcp∑N

i=1 si
(3)

This cost-centric metric captures the practical effi-
ciency of each generation method and reflects its
commercial viability for real-world deployment.
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Problem

Verifier

Abstraction

Isomorphic 
Math

Problem

…
Abstraction

Isomorphic 
Math

Problem

Verification
Fail

Verification
Pass

Template

Figure 2: Structure of AIC-Batch. The LLM gener-
ates multiple Abstraction-Problem sets and a Verifier to
ensure mathematical correctness, while a heuristically
extracted template reinforces structural consistency.

3 Proposed Method

3.1 Iterative vs. Batch
In automated math problem generation, two
prompting strategies for Large Language Models
(LLMs) can be leveraged; the Iterative approach
and the Batch approach. The Iterative approach
generates one problem per prompt and repeats the
process multiple times to produce multiple prob-
lems. In contrast, the Batch approach requests
LLM to generate multiple problems within a single
response.

To explore the most suitable prompting strategy
for IMPG, we compared two approaches, where
detailed experimental results are provided in Ap-
pendix B. This comparison revealed three key find-
ings: (1) as the request size K increased, the
LLM’s individual responses in the Batch setting
becomes longer and LLM tends to omit the part
of the requested output, (2) the Iterative method,
requiring a fresh prompt for every problem while
the prompt itself is typically much longer than the
generated answer tokens, incurred a disproportion-
ately high token cost, and (3) all Batch-generated
problems originating from the same source either
jointly passed or jointly failed the benchmark ver-
ification, suggesting that the Batch method forms
an internal generation engine before sampling indi-
vidual problems.

Taken together, these factors underscore that the
Batch approach offers better scalability and inter-
nal consistency for IMPG, motivating our decision
to adopt it as the baseline for all subsequent experi-
ments.

3.2 AIC-Batch
To establish this baseline, we reimplemented the
AIC framework, which is most closely aligned with
our task, using the Batch prompting strategy.
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Figure 3: Blueprint for Isomorphic Twin. The LLM
outputs only an Abstraction while a predefined template
deterministically reconstructs the full text.

Specifically, following the original AIC frame-
work, the LLM is prompted to generate not only
the math problem itself but also an accompany-
ing Abstraction and Verifier code to ensure math-
ematical correctness. The Abstraction serves as
a symbolic summary that captures key numerical
elements and the answer, while the Verifier is a
Python program that checks the consistency of re-
lationships between these values.

In addition, to further strengthen structural con-
sistency, we heuristically extracted a natural text
template from each source problem and provided
it to the LLM as part of the prompt, so that the
generated problems would adhere more tightly to
the intended linguistic and structural patterns.

This design strengthens the core requirements
of IMPG, namely mathematical correctness and
structural consistency, thereby providing a robust
baseline built on the strengths of the original AIC
method.

3.3 Blueprint for Isomorphic Twin

Motivated by our earlier finding that the LLM tends
to avoid long responses, we explored whether fur-
ther improvement could be achieved by having
the model generate only the Abstraction. If the
LLM were limited to this concise symbolic repre-
sentation, the output length would shrink substan-
tially, which we expected would mitigate the long-
response avoidance and at the same time free the
model to concentrate on mathematical reasoning.
However, such a design requires a way to recover
the full text from the Abstraction. To meet this
requirement, we developed problem templates ca-
pable of deterministically combining with the gen-
erated Abstraction to reconstruct complete question
and solution texts. This blueprint–template design
defines our Blueprint for Isomorphic Twin (BIT)
framework.

By explicitly decomposing problem generation
into Abstraction generation and text realization,
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Problem
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Verified Generator

Template 

&

Skeleton 

Code

Isomorphic 
Math

Problem

Isomorphic 
Math

Problem

…

…
Abstraction

Figure 4: Computational Blueprint for Isomorphic Twin.
The LLM outputs a verified generator program that pro-
duces Abstractions from random seeds and full isomor-
phic problems is reconstructed by predefined template.

BIT assigns only the semantically demanding sym-
bolic reasoning to the LLM while the natural-
language layer is completed heuristically from the
template. This not only reduces the cognitive and
computational burden of free-form text production
but also yields two additional advantages. First,
whereas AIC-Batch merely provided templates as
optional references, BIT enforces template-guided
generation, allowing much stricter structural consis-
tency than before. Second, because the full text is
now constructed deterministically from the verified
Abstraction, mathematical correctness established
at the Abstraction level automatically extends to
the final question and solution text. In contrast, the
earlier AIC-Batch setting left the Abstraction and
full text only loosely coupled, so correctness of the
Abstraction did not strictly guarantee correctness
of the realized problem. A comparison of Figure 2
and Figure 3 makes clear the differing relationships
among the Verifier, Abstraction, and Isomorphic
Math Problem in the two designs.

Furthermore, BIT can be viewed as external-
izing a latent two-stage plan that the LLM was
already performing implicitly. In the Batch set-
ting we had observed that all generated variants
of a given source problem either jointly passed or
jointly failed the benchmark verification, suggest-
ing that the model was already forming an internal
numerical blueprint before realizing the surface
text. By making this hidden planning explicit and
restricting the model to the essential subtask of
formula generation, BIT enables more stable and
scalable isomorphic problem generation while di-
recting the model’s computational effort toward the
core symbolic reasoning required for the task.

3.4 Computational Blueprint for Isomorphic
Twin

Building on BIT, we sought to push task decompo-
sition one step further. While BIT externalizes
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the latent separation between abstraction gener-
ation and text realization, we asked whether the
Abstraction generation itself could also be exter-
nalized. Our earlier observations suggested that, in
the Batch setting, the LLM already forms an im-
plicit generation engine before producing text. This
led us to investigate whether the model could be
prompted to explicitly create such an engine as an
executable program, rather than directly emitting
problems or even their Abstractions.

In the resulting framework, called Computa-
tional Blueprint for Isomorphic Twin (CBIT), the
LLM is no longer instructed to output problem text
or Abstractions. Instead, it is prompted to write
a generator program that takes a random seed as
input and, for each seed, produces an isomorphic
math problem together with its solution and answer.
Because program synthesis is inherently more free-
form than producing a concise Abstraction, we pro-
vide a skeleton code specifying essential interfaces
and control flow to guide the LLM toward consis-
tent and verifiable outputs. Detailed description
of code-guided schema is described in Appendix
C. This reframes problem generation as a meta-
generation task where the LLM’s effort is directed
toward constructing the generative mechanism it-
self.

The design of CBIT yields several important ad-
vantages. First, verification becomes intrinsic to
generation. Because the generator program is re-
quired to construct Abstractions that already satisfy
all numerical relationships identified in the source
problem, mathematical correctness is guaranteed
by deterministic execution, eliminating the need
for a separate Verifier and avoiding repeated LLM
calls whenever verification fails. Consequently, the
number of generated problems becomes indepen-
dent of LLM invocation cost; once the generator is
authored, it can produce any number of correct vari-
ants with negligible additional expense. Second,
by shifting the production of Abstractions from
free-form text to code-based computation, CBIT
strengthens mathematical correctness. Prior work
such as Program-of-Thought (Chen et al., 2023)
has shown that when LLMs are guided to reason
via external tools or code, their mathematical relia-
bility improves. CBIT exploits this effect by letting
the LLM use its reasoning ability to design the
generator while delegating the exact calculation of
numerical values to a deterministic programming
language, ensuring computational integrity. Third,
CBIT offers an exceptional level of expert control-

Metric K AIC-B BIT CBIT

MPSR↑
10 0.39 0.85 0.93
30 0.17 0.79 0.89

100 0.01 0.32 0.83

CPS↓
10 $17.90 $7.27 $6.28
30 $12.53 $3.41 $2.17

100 $30.03 $1.58 $0.71

Table 2: Comparison of MPSR, and CPS across differ-
ent request sizes. CPS is measured in USD per 1,000
problems. Best in bold, second-best underlined.

lability and interpretability. Because the LLM’s
output is a generator program, the logic by which
new problems are created is fully transparent and
can be readily inspected by human experts. If any
generated problems are deemed mathematically
unsuitable, minor edits to the program suffice to
regenerate the entire family of isomorphic prob-
lems without further LLM involvement. Moreover,
storing the generator itself provides a long-term
advantage; the program can be preserved and re-
executed at any time to produce additional verified
problems on demand, ensuring reproducibility and
efficient maintenance of large problem banks.

In summary, CBIT transforms the role of the
LLM from producing individual problems to au-
thoring a computational generator, thereby combin-
ing the strengths of symbolic reasoning and deter-
ministic execution. It achieves built-in mathemat-
ical correctness, decouples generation scale from
token cost, and provides strong expert controllabil-
ity and long-term reproducibility.

4 Experimental Results

Generation Accuracy and Cost Effectiveness:
We compare the three proposed isomorphic prob-
lem generation frameworks using Mean Per-
Problem Success Rate (MPSR), and Cost Per Suc-
cess (CPS) as evaluation metrics. As shown in Ta-
ble 2, across all metrics and request sizes, the three
methods improve in clear stages demonstrating that
each design choice contributed in the intended di-
rection.

From AIC-Batch to BIT, the introduction of the
blueprint mechanism markedly strengthened struc-
tural consistency and concentrated the LLM’s ef-
fort on mathematical reasoning. This is reflected
in the large jump in MPSR; even at K = 30, BIT
achives 0.79 compared to AIC-Batch’s 0.17. No-
tably, CBIT’s MPSR remains close to BIT’s up to
K = 30, indicating that the blueprint is the dom-
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Figure 5: Success@15 across difficulty levels

inant driver of generation accuracy, while CBIT
provides additional but more modest gains in this
dimension.

In contrast, cost efficiency improves most dra-
matically when moving from BIT to CBIT. At
K = 100, CBIT achieves a CPS of $0.71, improv-
ing on BIT’s $1.58 and representing a 42× lower
cost than AIC-Batch’s $30.03. This striking de-
crease stems from CBIT’s computational approach,
where the LLM writes a generator program that can
produce an unlimited number of verified problems
without further model calls, thereby decoupling
generation scale from token cost.

Robustness across Difficulty Levels: Accord-
ing to Table 1, increasing problem difficulty cor-
responds to a greater number of numerical rela-
tionships, which in turn introduces two distinct
obstacles; the generation process may fail to iden-
tify all necessary relationships, or, even when these
relationships are successfully identified, it may fail
to generalize them and instead impose constraints
that are too tight, leaving too few feasible variants
to meet the requested number.

To assess robustness to problem difficulty levels,
we adopt the success@15 metric under the setting
of generating K = 30 isomorphic problems per
source problem, with difficulty categorized as easy,
medium, or hard by experts. This metric measures
the probability that at least 15 of the requested 30
problems are successfully generated, so that cases
producing only a small number of valid problems
far below the request can be regarded as unsuable.

As shown in Figure 5, AIC-Batch exhibits poor
performance across all levels, with success@15
values of only 24%, 16%, and 5% respectively,
confirming its vulnerability to increased difficulty.
In contrast, BIT significantly improves stability,
achieving 90%, 82%, and 63% across the same
levels.

CBIT delivers the best and most consistent re-
sults, with success@15 reaching 89%, 94%, and
82% even for the highest difficulty. CBIT demon-

strates minimal sensitivity to difficulty changes,
indicating strong reliability without reliance on ex-
ternal verifiers.

Industrial Readiness We conduct a 5 months,
large-scale deployment of CBIT-generated prob-
lems in a live educational service. The key metric
for industrial readiness is content error rate, defined
as the percentage of served problems that were re-
ported by users and required correction. We mea-
sured it against a baseline of isomorphic problems
created by human experts.

In this deployment, 32,131 problems generated
by CBIT were served to 6,732 students, resulting
in a total of 186,870 problem-solving attempts. For
the control group, 4,404 human-authored problems
were served to 3,976 students, leading to 103,231
attempts. The total pool of problems available for
the experiment consisted of 195,941 from CBIT
and 7,145 from human experts.

The CBIT-generated content demonstrated an
error rate of 0.1867%. In contrast, the human-
authored content had a slightly higher error rate
of 0.2271%. This outcome demonstrates that CBIT
can produce educational content at scale with a
level of reliability on par with, or even superior to,
that of human experts.

5 Conclusion

We introduced Isomorphic Math Problem Genera-
tion (IMPG) as a new task aimed at creating reliable
practice problems suitable for real educational de-
ployment, and released a benchmark dataset of 195
source problems with 2,410 symbolic relationships
together with an automatic verification toolkit for
reproducible evaluation.

Through a series of progressive frameworks, we
systematically aligned large language models with
the structural and mathematical requirements of
IMPG, culminating in Computational Blueprint for
Isomorphic Twin (CBIT), which guarantees built-in
correctness, decouples generation scale from token
cost, and provides strong expert controllability and
long-term reproducibility.

Extensive experiments and a real-world deploy-
ment to 6,732 learners with 186,870 interactions
demonstrated that CBIT achieves the highest suc-
cess rates and lowest cost, reducing error rates by
17.8% compared to expert-authored problems and
establishing a robust foundation for scalable, verifi-
able educational content generation.
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Limitations

While our framework demonstrates strong scalabil-
ity and reliability, certain assumptions underline its
design. The construction of templates and skele-
ton code has thus far relied on heuristics, which
must be specified with care for each application
domain; for example, in our setting mathematical
expressions were assumed to appear in LaTeX no-
tation delimited by dollar signs, whereas domains
with different conventions may require more elab-
orate parsing strategies. Moreover, the approach
builds variants by altering numerical parameters,
which is most effective for problems where quanti-
tative changes directly influence the solution path
or answer (such as word problems with rates, ratios,
or probabilities, geometry with numeric measures,
and equation-based items with perturbed coeffi-
cients). Tasks whose correctness depends solely
on logical structure and is largely insensitive to nu-
meric variation, such as truth-teller or liar puzzles,
fall outside the current scope. Exploring ways to
relax these assumptions, extend CBIT to broader
classes of problems, and automate template con-
struction more systematically represents a valuable
direction for further study.
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A Details on Benchmark

Grades 4–6 Grades 7–9 Grades 10-12

Angles; Pattern Finding; Ad-
dition/Subtraction of Decimals;
Polygons;
Multiplication and Division;
Addition/Subtraction of Frac-
tions; Quadrilaterals;
Mixed Operations with Natural
Numbers; Multiples and Fac-
tors; Patterns and Correspon-
dence;
Simplification and Common
Denominators; Perimeters and
Areas of Polygons;
Division/Multiplication of Frac-
tions and Decimals; Ratio and
Proportion; Various Graphs;
Surface Area and Volume of
Rectangular Prisms; Propor-
tions and Distribution; Aver-
ages and Probability; Measure-
ments

Prime Factorization; Integers
and Rational Numbers; Ratio-
nal Numbers and Repeating
Decimals;
Algebraic Expressions; Coordi-
nate Plane and Graphs; Linear
Inequalities and Systems;
Graphs of Linear Functions;
Quadratic Equations; Quadratic
Functions;
Basics of Geometry; Plane
Figures; Similarity and
Pythagorean Theorem;
Probability; Trigonometric
Ratios; Statistics; Data Repre-
sentation and Interpretation

Polynomials; Equations and
Inequalities; Equations of
Figures; Sets and Propositions;
Functions and Graphs; Count-
ing Principles; Sequences;
Exponential and Logarithmic
Functions;
Trigonometric Functions;
Differentiation of Polynomial
Functions; Limits of Sequences
and Functions;
Integration of Polynomial Func-
tions; Probability; Statistics;
Conic Sections;
Integration; Permutations and
Combinations; Plane Vectors;
Solid Geometry and Coordi-
nates

Table 3: Curriculum coverage of the benchmark dataset. The topics were selected based on the official Korean
national curriculum, ensuring alignment with the progression of regular school education. When the same topic
name appears across different grade ranges, the content reflects a deeper or more advanced treatment appropriate for
that grade level.

Two distinct dice are rolled simultaneously. What is the
probability that the absolute difference between the numbers
shown is a solution to the quadratic equation $x^2-5x+4=0$?

From the equation $x^2 - 5x + 4 = 0$,

$\qquad (x - 1)(x - 4) = 0$

$\qquad \therefore\ x = 1$ or $x = 4$

$(ⅰ)$ When $x = 1$, the ordered pairs of outcomes from the 

two dice where the difference is $1$ are:

$\qquad (1,\ 2),\ (2,\ 3),\ (3,\ 4),\ (4,\ 5),\ (5,\ 6), 

(6,\ 5),\ (5,\ 4),\ (4,\ 3),\ (3,\ 2),\ (2,\ 1)$ — a total of $10$ cases.

$(ⅱ)$ When $x = 4$, the ordered pairs of outcomes where the 

difference is $4$ are:

$\qquad (1,\ 5),\ (2,\ 6),\ (6,\ 2),\ (5,\ 1)$ — a total of $4$ cases.

Therefore, the desired probability is

$\qquad \dfrac{10 + 4}{36} = \dfrac{7}{18}$

Question

Solution

Raw Text Rendered Text

Answer 7
18

Figure 6: Example of a problem instance in the dataset (Problem #20570, Grade 7 quadratic equation). The Raw
Text column shows the original LaTeX input as stored in the dataset, while the Rendered Text column shows the
corresponding human-readable rendering. Both the question and solution are included, together with the final
answer. This format ensures that problems can be consistently presented to learners while also enabling symbolic
parsing for verification in IMPG.
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Rank Relationship Type Count Ratio Cumulative

1 Equality 1513 62.78% 62.78%
2 Multiplicative 308 12.78% 75.56%
3 Additive 264 10.95% 86.51%
4 Additive, Multiplicative 81 3.36% 89.87%
5 Count 52 2.16% 92.03%
...

...
...

...
...

44 Power, Modulo 1 0.04% 100.00%

Table 4: Distribution of symbolic relationship types identified in the dataset. Each problem is decomposed into its
underlying quantitative relationships, and their frequencies are aggregated across all 195 source problems.

Algorithm 1 Verification Procedure for Problem #20570
Input: Isomorphic Problem of #20570
Output: Verification Result

1: Extract all mathematical expressions from the problem and solution texts
2: Identify the quadratic equation of the form x2 − ax+ b = 0
3: Identify the two roots from the from (x− r1)(x− r2) = 0
4: Check that the roots satisfy:

r1 + r2 = a, and r1 · r2 = b
5: for each root r do
6: Identify the list of pairs Lr as written in the solution
7: Check that each (a, b) in Lr satisfies:

(i) 1 ≤ a, b ≤ 6,
(ii) |a− b| = r,
(iii) all pairs are unique and distinct

8: Check that the reported count of pairs equals |Lr|
9: end for

10: Check that the total number of favorable outcomes |Lr1 |+ |Lr2 | is divided by 36
11: Check the computed value is correctly simplified to a fraction or decimal
12: return True if all checks are satisfied; otherwise, false

Example verification procedure for an isomorphic problem. The algorithm illustrates how symbolic
checking is performed: extracting expressions, validating algebraic relationships, verifying solution pairs,
and ensuring correctness of the reported probability. This procedure exemplifies the automatic verification
toolkit used to evaluate generated problems in IMPG.
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B Detailed Comparison on Iterative and Batch prompting

Figure 7: Comparison between Iterative and Batch prompt for IMPG with benchmark Dataset.

The left plot shows that while the Iterative approach consistently yields a higher number of successful
problem generations as the requested number of problems increases. This advantage comes at the cost
of growing inefficiency, illustrated in the right plot. Specifically, the Tokens Per Success (TPS) of the
Iterative approach not only remains stagnant but worsens as the request size grows—showing a 9%
increase from K = 1 to K = 10, and a 22% increase from K = 10 to K = 30.. This inefficiency is
attributable to the growing likelihood of generating duplicate problems, which not only wastes tokens but
also fails to meet the target number of distinct outputs.

The Batch approach, in contrast, exhibits remarkable efficiency gains as request size increases: TPS
improves by 81% when moving from K = 1 to K = 10, and by an additional 29% from K = 10
to K = 30. This efficiency stems from the fact that a single prompt can generate multiple problems
without proportionally increasing token consumption. Notably, the Batch approach also exhibits perfect
internal consistency: for each original problem, all generated variants either pass or fail the benchmark
verification as a group. This suggests that the Batch prompt effectively induces the LLM to construct
an implicit “generation engine”—a latent representation of the underlying mathematical rules—before
sampling concrete problem instances. This emergent behavior aligns with the goal of isomorphic problem
generation, where a shared structure must be preserved across all outputs.

In summary, while the Iterative approach offers higher success counts in small-scale settings, its
efficiency deteriorates and consistency falters as scale increases. The Batch approach, on the other hand,
not only scales more efficiently but also reliably enforces structural uniformity, which is crucial for the
industrial deployment of automated problem generation.
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C Code-guided Prompting for CBIT

def genTwin(seed):
symbolized_question = {…}
symbolized_solution =  {

“From the equation $x^#SY04#-#SY05#x+#SY06#=#SY07#$,”
”$\qquad (x-#SY08#)(x-#SY09)=#SY10#”

}
random.seed(seed)

### Start ###

sy_04 = 
sy_05 = 
sy_06 = 
sy_07 = 
sy_08 = 

### End ###

twin_question = assign symbol (symbolized_question, [sy_01, sy_02, …])
twin_solution = assign symbol (symbolized_question, [sy_04, sy_05, …])

return twin_question, twin_solution

Solution: 
From the equation $x^2-5x+4=0$,
$\qquad (x-1)(x-4)=0$

sy_04 = 2
sy_07 = 0
sy_08, sy_09 = sample(range(1, 6), 2)
sy_05 = sy_08 + sy_09
sy_06 = sy_08 * sy_09“… complete

the code and …”

1. Generate Skeleton Code

2. Complete Code with LLM

…
…

…
…

…

Question:
Two distinct dice are rolled
simultaneously. … solution to the
quadratic equation $x^2-5x+4=0$? …

Original Math Problem

Skeleton Code

Solution: 
From the equation $x^2-4x+3=0$,
$\qquad (x-1)(x-3)=0$

Question:
Two distinct dice are rolled
simultaneously. … solution to the
quadratic equation $x^2-4x+3=0$? …

Isomorphic Math Problem #1

Solution: 
From the equation $x^2-5x+6=0$,
$\qquad (x-2)(x-3) = 0$

Question:
Two distinct dice are rolled
simultaneously. … solution to the
quadratic equation $x^2-5x+6=0$? …

Isomorphic Math Problem #2

Solution: 
From the equation $x^2-6x+8=0$,
$\qquad (x-2)(x-4) = 0$

Question:
Two distinct dice are rolled
simultaneously. … solution to the
quadratic equation $x^2-6x+8=0$? …

Isomorphic Math Problem #3

Solution: 
From the equation $x^2-11x+30 = 0$,
$\qquad (x-5)(x-6) = 0$

Question:
Two distinct dice are rolled
simultaneously. … solution to the
quadratic equation $x^2-6x+8=0$? …

Isomorphic Math Problem #N

…

3. Run Code

seed=2

seed=1

seed=3

seed=N

LLM

Figure 8: Illustration of CBIT’s meta-generation process. Given an original math problem, a skeleton code is first
generated to symbolically represent its core relations. The LLM then completes the code by instantiating numerical
values under the specified constraints, after which the executable program deterministically produces multiple
isomorphic math problems from different random seeds. This design shifts the LLM’s role from directly authoring
problems to constructing a generator, enabling scalable, consistent, and verifiable problem creation.

Figure 9: Impact of Skeleton Code on error reduction in CBIT. Providing Skeleton Code eliminates consistency
errors entirely and substantially reduces both mathematical and number type errors by guiding the model’s symbol
substitutions and structural alignment.
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