@inproceedings{aissa-etal-2025-assessing,
title = "Assessing {F}rench Readability for Adults with Low Literacy: A Global and Local Perspective",
author = "Aissa, Wafa and
Ba{\~n}eras-Roux, Thibault and
Vanzeveren, Elodie and
Gao, Lingyun and
Wilkens, Rodrigo and
Fran{\c{c}}ois, Thomas",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1036/",
pages = "20528--20550",
ISBN = "979-8-89176-332-6",
abstract = "This study presents a novel approach to assessing French text readability for adults with low literacy skills, addressing both global (full-text) and local (segment-level) difficulty. We introduce a dataset of 461 texts annotated using a difficulty scale developed specifically for this population. Using this corpus, we conducted a systematic comparison of key readability modeling approaches, including machine learning techniques based on linguistic variables, fine-tuning of CamemBERT, a hybrid approach combining CamemBERT with linguistic variables, and the use of generative language models (LLMs) to carry out readability assessment at both global and local levels."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="aissa-etal-2025-assessing">
<titleInfo>
<title>Assessing French Readability for Adults with Low Literacy: A Global and Local Perspective</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wafa</namePart>
<namePart type="family">Aissa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thibault</namePart>
<namePart type="family">Bañeras-Roux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elodie</namePart>
<namePart type="family">Vanzeveren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lingyun</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rodrigo</namePart>
<namePart type="family">Wilkens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">François</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>This study presents a novel approach to assessing French text readability for adults with low literacy skills, addressing both global (full-text) and local (segment-level) difficulty. We introduce a dataset of 461 texts annotated using a difficulty scale developed specifically for this population. Using this corpus, we conducted a systematic comparison of key readability modeling approaches, including machine learning techniques based on linguistic variables, fine-tuning of CamemBERT, a hybrid approach combining CamemBERT with linguistic variables, and the use of generative language models (LLMs) to carry out readability assessment at both global and local levels.</abstract>
<identifier type="citekey">aissa-etal-2025-assessing</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1036/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>20528</start>
<end>20550</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Assessing French Readability for Adults with Low Literacy: A Global and Local Perspective
%A Aissa, Wafa
%A Bañeras-Roux, Thibault
%A Vanzeveren, Elodie
%A Gao, Lingyun
%A Wilkens, Rodrigo
%A François, Thomas
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F aissa-etal-2025-assessing
%X This study presents a novel approach to assessing French text readability for adults with low literacy skills, addressing both global (full-text) and local (segment-level) difficulty. We introduce a dataset of 461 texts annotated using a difficulty scale developed specifically for this population. Using this corpus, we conducted a systematic comparison of key readability modeling approaches, including machine learning techniques based on linguistic variables, fine-tuning of CamemBERT, a hybrid approach combining CamemBERT with linguistic variables, and the use of generative language models (LLMs) to carry out readability assessment at both global and local levels.
%U https://aclanthology.org/2025.emnlp-main.1036/
%P 20528-20550
Markdown (Informal)
[Assessing French Readability for Adults with Low Literacy: A Global and Local Perspective](https://aclanthology.org/2025.emnlp-main.1036/) (Aissa et al., EMNLP 2025)
ACL