@inproceedings{qin-etal-2025-reinforced,
title = "Reinforced Query Reasoners for Reasoning-intensive Retrieval Tasks",
author = "Qin, Xubo and
Bai, Jun and
Li, Jiaqi and
Jia, Zixia and
Zheng, Zilong",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1078/",
pages = "21261--21274",
ISBN = "979-8-89176-332-6",
abstract = "Traditional information retrieval (IR) methods excel at textual and semantic matching but struggle in reasoning-intensive retrieval tasks that require multi-hop inference or complex semantic understanding between queries and documents. One promising solution is to explicitly rewrite or augment queries using large language models (LLMs) to elicit reasoning-relevant content prior to retrieval. However, the widespread use of large-scale LLMs like GPT-4 or LLaMA3-70B remains impractical due to their high inference cost and limited deployability in real-world systems. In this work, we introduce Reinforced Query Reasoner (RQR), a family of small-scale language models for query reasoning and rewriting in reasoning-intensive retrieval. Our approach frames query reformulation as a reinforcement learning problem and employs a novel semi-rule-based reward function. This enables smaller language models, e.g., Qwen2.5-7B-Instruct and Qwen2.5-1.5B-Instruct, to achieve reasoning performance rivaling large-scale LLMs without their prohibitive inference costs. Experiment results on BRIGHT benchmark show that, with BM25 as retrievers, both RQR-7B and RQR-1.5B models significantly outperform existing baselines, including prompt-based query reasoners and some latest dense retrievers trained for reasoning-intensive retrieval tasks, offering superior adaptability for real-world deployment. All code and dataset will be publicly released."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="qin-etal-2025-reinforced">
<titleInfo>
<title>Reinforced Query Reasoners for Reasoning-intensive Retrieval Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xubo</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Bai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiaqi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zixia</namePart>
<namePart type="family">Jia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zilong</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Traditional information retrieval (IR) methods excel at textual and semantic matching but struggle in reasoning-intensive retrieval tasks that require multi-hop inference or complex semantic understanding between queries and documents. One promising solution is to explicitly rewrite or augment queries using large language models (LLMs) to elicit reasoning-relevant content prior to retrieval. However, the widespread use of large-scale LLMs like GPT-4 or LLaMA3-70B remains impractical due to their high inference cost and limited deployability in real-world systems. In this work, we introduce Reinforced Query Reasoner (RQR), a family of small-scale language models for query reasoning and rewriting in reasoning-intensive retrieval. Our approach frames query reformulation as a reinforcement learning problem and employs a novel semi-rule-based reward function. This enables smaller language models, e.g., Qwen2.5-7B-Instruct and Qwen2.5-1.5B-Instruct, to achieve reasoning performance rivaling large-scale LLMs without their prohibitive inference costs. Experiment results on BRIGHT benchmark show that, with BM25 as retrievers, both RQR-7B and RQR-1.5B models significantly outperform existing baselines, including prompt-based query reasoners and some latest dense retrievers trained for reasoning-intensive retrieval tasks, offering superior adaptability for real-world deployment. All code and dataset will be publicly released.</abstract>
<identifier type="citekey">qin-etal-2025-reinforced</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1078/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>21261</start>
<end>21274</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Reinforced Query Reasoners for Reasoning-intensive Retrieval Tasks
%A Qin, Xubo
%A Bai, Jun
%A Li, Jiaqi
%A Jia, Zixia
%A Zheng, Zilong
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F qin-etal-2025-reinforced
%X Traditional information retrieval (IR) methods excel at textual and semantic matching but struggle in reasoning-intensive retrieval tasks that require multi-hop inference or complex semantic understanding between queries and documents. One promising solution is to explicitly rewrite or augment queries using large language models (LLMs) to elicit reasoning-relevant content prior to retrieval. However, the widespread use of large-scale LLMs like GPT-4 or LLaMA3-70B remains impractical due to their high inference cost and limited deployability in real-world systems. In this work, we introduce Reinforced Query Reasoner (RQR), a family of small-scale language models for query reasoning and rewriting in reasoning-intensive retrieval. Our approach frames query reformulation as a reinforcement learning problem and employs a novel semi-rule-based reward function. This enables smaller language models, e.g., Qwen2.5-7B-Instruct and Qwen2.5-1.5B-Instruct, to achieve reasoning performance rivaling large-scale LLMs without their prohibitive inference costs. Experiment results on BRIGHT benchmark show that, with BM25 as retrievers, both RQR-7B and RQR-1.5B models significantly outperform existing baselines, including prompt-based query reasoners and some latest dense retrievers trained for reasoning-intensive retrieval tasks, offering superior adaptability for real-world deployment. All code and dataset will be publicly released.
%U https://aclanthology.org/2025.emnlp-main.1078/
%P 21261-21274
Markdown (Informal)
[Reinforced Query Reasoners for Reasoning-intensive Retrieval Tasks](https://aclanthology.org/2025.emnlp-main.1078/) (Qin et al., EMNLP 2025)
ACL