@inproceedings{xie-etal-2025-rd,
title = "{RD}-{MCSA}: A Multi-Class Sentiment Analysis Approach Integrating In-Context Classification Rationales and Demonstrations",
author = "Xie, Haihua and
Cheng, Yinzhu and
Wang, Yaqing and
He, Miao and
Sun, Mingming",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1100/",
pages = "21711--21734",
ISBN = "979-8-89176-332-6",
abstract = "This paper addresses the important yet underexplored task of **multi-class sentiment analysis (MCSA)**, which remains challenging due to the subtle semantic differences between adjacent sentiment categories and the scarcity of high-quality annotated data. To tackle these challenges, we propose **RD-MCSA** (**R**ationales and **D**emonstrations-based **M**ulti-**C**lass **S**entiment **A**nalysis), an In-Context Learning (ICL) framework designed to enhance MCSA performance under limited supervision by integrating classification rationales with adaptively selected demonstrations. First, semantically grounded classification rationales are generated from a representative, class-balanced subset of annotated samples selected using a tailored balanced coreset algorithm. These rationales are then paired with demonstrations chosen through a similarity-based mechanism powered by a **multi-kernel Gaussian process (MK-GP)**, enabling large language models (LLMs) to more effectively capture fine-grained sentiment distinctions. Experiments on five benchmark datasets demonstrate that RD-MCSA consistently outperforms both supervised baselines and standard ICL methods across various evaluation metrics."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xie-etal-2025-rd">
<titleInfo>
<title>RD-MCSA: A Multi-Class Sentiment Analysis Approach Integrating In-Context Classification Rationales and Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haihua</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yinzhu</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaqing</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Miao</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mingming</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>This paper addresses the important yet underexplored task of **multi-class sentiment analysis (MCSA)**, which remains challenging due to the subtle semantic differences between adjacent sentiment categories and the scarcity of high-quality annotated data. To tackle these challenges, we propose **RD-MCSA** (**R**ationales and **D**emonstrations-based **M**ulti-**C**lass **S**entiment **A**nalysis), an In-Context Learning (ICL) framework designed to enhance MCSA performance under limited supervision by integrating classification rationales with adaptively selected demonstrations. First, semantically grounded classification rationales are generated from a representative, class-balanced subset of annotated samples selected using a tailored balanced coreset algorithm. These rationales are then paired with demonstrations chosen through a similarity-based mechanism powered by a **multi-kernel Gaussian process (MK-GP)**, enabling large language models (LLMs) to more effectively capture fine-grained sentiment distinctions. Experiments on five benchmark datasets demonstrate that RD-MCSA consistently outperforms both supervised baselines and standard ICL methods across various evaluation metrics.</abstract>
<identifier type="citekey">xie-etal-2025-rd</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1100/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>21711</start>
<end>21734</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RD-MCSA: A Multi-Class Sentiment Analysis Approach Integrating In-Context Classification Rationales and Demonstrations
%A Xie, Haihua
%A Cheng, Yinzhu
%A Wang, Yaqing
%A He, Miao
%A Sun, Mingming
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F xie-etal-2025-rd
%X This paper addresses the important yet underexplored task of **multi-class sentiment analysis (MCSA)**, which remains challenging due to the subtle semantic differences between adjacent sentiment categories and the scarcity of high-quality annotated data. To tackle these challenges, we propose **RD-MCSA** (**R**ationales and **D**emonstrations-based **M**ulti-**C**lass **S**entiment **A**nalysis), an In-Context Learning (ICL) framework designed to enhance MCSA performance under limited supervision by integrating classification rationales with adaptively selected demonstrations. First, semantically grounded classification rationales are generated from a representative, class-balanced subset of annotated samples selected using a tailored balanced coreset algorithm. These rationales are then paired with demonstrations chosen through a similarity-based mechanism powered by a **multi-kernel Gaussian process (MK-GP)**, enabling large language models (LLMs) to more effectively capture fine-grained sentiment distinctions. Experiments on five benchmark datasets demonstrate that RD-MCSA consistently outperforms both supervised baselines and standard ICL methods across various evaluation metrics.
%U https://aclanthology.org/2025.emnlp-main.1100/
%P 21711-21734
Markdown (Informal)
[RD-MCSA: A Multi-Class Sentiment Analysis Approach Integrating In-Context Classification Rationales and Demonstrations](https://aclanthology.org/2025.emnlp-main.1100/) (Xie et al., EMNLP 2025)
ACL