@inproceedings{feng-etal-2025-multimodal,
title = "Multimodal Neural Machine Translation: A Survey of the State of the Art",
author = "Feng, Yi and
Li, Chuanyi and
He, Jiatong and
Hou, Zhenyu and
Ng, Vincent",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1125/",
pages = "22141--22158",
ISBN = "979-8-89176-332-6",
abstract = "Multimodal neural machine translation (MNMT) has received increasing attention due to its widespread applications in various fields such as cross-border e-commerce and cross-border social media platforms. The task aims to integrate other modalities, such as the visual modality, with textual data to enhance translation performance. We survey the major milestones in MNMT research, providing a comprehensive overview of relevant datasets and recent methodologies, and discussing key challenges and promising research directions."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="feng-etal-2025-multimodal">
<titleInfo>
<title>Multimodal Neural Machine Translation: A Survey of the State of the Art</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chuanyi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiatong</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhenyu</namePart>
<namePart type="family">Hou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Multimodal neural machine translation (MNMT) has received increasing attention due to its widespread applications in various fields such as cross-border e-commerce and cross-border social media platforms. The task aims to integrate other modalities, such as the visual modality, with textual data to enhance translation performance. We survey the major milestones in MNMT research, providing a comprehensive overview of relevant datasets and recent methodologies, and discussing key challenges and promising research directions.</abstract>
<identifier type="citekey">feng-etal-2025-multimodal</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1125/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>22141</start>
<end>22158</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multimodal Neural Machine Translation: A Survey of the State of the Art
%A Feng, Yi
%A Li, Chuanyi
%A He, Jiatong
%A Hou, Zhenyu
%A Ng, Vincent
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F feng-etal-2025-multimodal
%X Multimodal neural machine translation (MNMT) has received increasing attention due to its widespread applications in various fields such as cross-border e-commerce and cross-border social media platforms. The task aims to integrate other modalities, such as the visual modality, with textual data to enhance translation performance. We survey the major milestones in MNMT research, providing a comprehensive overview of relevant datasets and recent methodologies, and discussing key challenges and promising research directions.
%U https://aclanthology.org/2025.emnlp-main.1125/
%P 22141-22158
Markdown (Informal)
[Multimodal Neural Machine Translation: A Survey of the State of the Art](https://aclanthology.org/2025.emnlp-main.1125/) (Feng et al., EMNLP 2025)
ACL