@inproceedings{zhou-etal-2025-llm,
title = "{LLM}-Guided Semantic Relational Reasoning for Multimodal Intent Recognition",
author = "Zhou, Qianrui and
Xu, Hua and
Wang, Yifan and
Dong, Xinzhi and
Zhang, Hanlei",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1130/",
pages = "22221--22237",
ISBN = "979-8-89176-332-6",
abstract = "Understanding human intents from multimodal signals is critical for analyzing human behaviors and enhancing human-machine interactions in real-world scenarios. However, existing methods exhibit limitations in their modality-level reliance, constraining relational reasoning over fine-grained semantics for complex intent understanding. This paper proposes a novel LLM-Guided Semantic Relational Reasoning (LGSRR) method, which harnesses the expansive knowledge of large language models (LLMs) to establish semantic foundations that boost smaller models' relational reasoning performance. Specifically, an LLM-based strategy is proposed to extract fine-grained semantics as guidance for subsequent reasoning, driven by a shallow-to-deep Chain-of-Thought (CoT) that autonomously uncovers, describes, and ranks semantic cues by their importance without relying on manually defined priors. Besides, we formally model three fundamental types of semantic relations grounded in logical principles and analyze their nuanced interplay to enable more effective relational reasoning. Extensive experiments on multimodal intent and dialogue act recognition tasks demonstrate LGSRR{'}s superiority over state-of-the-art methods, with consistent performance gains across diverse semantic understanding scenarios. The complete data and code are available at https://github.com/thuiar/LGSRR."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhou-etal-2025-llm">
<titleInfo>
<title>LLM-Guided Semantic Relational Reasoning for Multimodal Intent Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qianrui</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yifan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinzhi</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hanlei</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Understanding human intents from multimodal signals is critical for analyzing human behaviors and enhancing human-machine interactions in real-world scenarios. However, existing methods exhibit limitations in their modality-level reliance, constraining relational reasoning over fine-grained semantics for complex intent understanding. This paper proposes a novel LLM-Guided Semantic Relational Reasoning (LGSRR) method, which harnesses the expansive knowledge of large language models (LLMs) to establish semantic foundations that boost smaller models’ relational reasoning performance. Specifically, an LLM-based strategy is proposed to extract fine-grained semantics as guidance for subsequent reasoning, driven by a shallow-to-deep Chain-of-Thought (CoT) that autonomously uncovers, describes, and ranks semantic cues by their importance without relying on manually defined priors. Besides, we formally model three fundamental types of semantic relations grounded in logical principles and analyze their nuanced interplay to enable more effective relational reasoning. Extensive experiments on multimodal intent and dialogue act recognition tasks demonstrate LGSRR’s superiority over state-of-the-art methods, with consistent performance gains across diverse semantic understanding scenarios. The complete data and code are available at https://github.com/thuiar/LGSRR.</abstract>
<identifier type="citekey">zhou-etal-2025-llm</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1130/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>22221</start>
<end>22237</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LLM-Guided Semantic Relational Reasoning for Multimodal Intent Recognition
%A Zhou, Qianrui
%A Xu, Hua
%A Wang, Yifan
%A Dong, Xinzhi
%A Zhang, Hanlei
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F zhou-etal-2025-llm
%X Understanding human intents from multimodal signals is critical for analyzing human behaviors and enhancing human-machine interactions in real-world scenarios. However, existing methods exhibit limitations in their modality-level reliance, constraining relational reasoning over fine-grained semantics for complex intent understanding. This paper proposes a novel LLM-Guided Semantic Relational Reasoning (LGSRR) method, which harnesses the expansive knowledge of large language models (LLMs) to establish semantic foundations that boost smaller models’ relational reasoning performance. Specifically, an LLM-based strategy is proposed to extract fine-grained semantics as guidance for subsequent reasoning, driven by a shallow-to-deep Chain-of-Thought (CoT) that autonomously uncovers, describes, and ranks semantic cues by their importance without relying on manually defined priors. Besides, we formally model three fundamental types of semantic relations grounded in logical principles and analyze their nuanced interplay to enable more effective relational reasoning. Extensive experiments on multimodal intent and dialogue act recognition tasks demonstrate LGSRR’s superiority over state-of-the-art methods, with consistent performance gains across diverse semantic understanding scenarios. The complete data and code are available at https://github.com/thuiar/LGSRR.
%U https://aclanthology.org/2025.emnlp-main.1130/
%P 22221-22237
Markdown (Informal)
[LLM-Guided Semantic Relational Reasoning for Multimodal Intent Recognition](https://aclanthology.org/2025.emnlp-main.1130/) (Zhou et al., EMNLP 2025)
ACL