@inproceedings{zhang-etal-2025-madawsd,
title = "{MADAWSD}: Multi-Agent Debate Framework for Adversarial Word Sense Disambiguation",
author = "Zhang, Kaiyuan and
Liu, Qian and
Zhang, Luyang and
Zheng, Chaoqun and
Li, Shuaimin and
Xu, Bing and
Yang, Muyun and
Qiao, Xinxiao and
Lu, Wenpeng",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1134/",
pages = "22294--22313",
ISBN = "979-8-89176-332-6",
abstract = "Word sense disambiguation (WSD) is a fundamental yet challenging task in natural language processing. In recent years, the advent of large language models (LLMs) has led to significant advancements in regular WSD tasks. However, most existing LLMs face two major issues that hinder their performance in WSD. Firstly, these models are often prone to misclassifying the correct meaning of an ambiguous word when confronted with contexts containing adversarial information. Secondly, there is a lack of sufficient adversarial WSD datasets, which severely limits the development and evaluation of adversarial WSD systems. To address these gaps, we propose a novel Multi-Agent Debate framework for Adversarial Word Sense Disambiguation (MADAWSD). The MADAWSD framework simulates a real-world debate environment where multiple agent roles, namely, the Debater, Moderator, Consensus-seeker, and Judge, engage in discussions about ambiguous words in the context of adversarial information. Through a collaborative mechanism among these agents, it achieves accurate WSD. Additionally, a novel dataset for Chinese adversarial WSD has been constructed, focusing on improving and evaluating the performance of WSD models in the Chinese language. Extensive experiments on both English and Chinese adversarial WSD datasets demonstrate that MADAWSD can seamlessly integrate with existing LLMs and significantly enhance their performance, showcasing broad generality and outstanding effectiveness."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2025-madawsd">
<titleInfo>
<title>MADAWSD: Multi-Agent Debate Framework for Adversarial Word Sense Disambiguation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kaiyuan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qian</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luyang</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chaoqun</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuaimin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muyun</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinxiao</namePart>
<namePart type="family">Qiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenpeng</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Word sense disambiguation (WSD) is a fundamental yet challenging task in natural language processing. In recent years, the advent of large language models (LLMs) has led to significant advancements in regular WSD tasks. However, most existing LLMs face two major issues that hinder their performance in WSD. Firstly, these models are often prone to misclassifying the correct meaning of an ambiguous word when confronted with contexts containing adversarial information. Secondly, there is a lack of sufficient adversarial WSD datasets, which severely limits the development and evaluation of adversarial WSD systems. To address these gaps, we propose a novel Multi-Agent Debate framework for Adversarial Word Sense Disambiguation (MADAWSD). The MADAWSD framework simulates a real-world debate environment where multiple agent roles, namely, the Debater, Moderator, Consensus-seeker, and Judge, engage in discussions about ambiguous words in the context of adversarial information. Through a collaborative mechanism among these agents, it achieves accurate WSD. Additionally, a novel dataset for Chinese adversarial WSD has been constructed, focusing on improving and evaluating the performance of WSD models in the Chinese language. Extensive experiments on both English and Chinese adversarial WSD datasets demonstrate that MADAWSD can seamlessly integrate with existing LLMs and significantly enhance their performance, showcasing broad generality and outstanding effectiveness.</abstract>
<identifier type="citekey">zhang-etal-2025-madawsd</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1134/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>22294</start>
<end>22313</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MADAWSD: Multi-Agent Debate Framework for Adversarial Word Sense Disambiguation
%A Zhang, Kaiyuan
%A Liu, Qian
%A Zhang, Luyang
%A Zheng, Chaoqun
%A Li, Shuaimin
%A Xu, Bing
%A Yang, Muyun
%A Qiao, Xinxiao
%A Lu, Wenpeng
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F zhang-etal-2025-madawsd
%X Word sense disambiguation (WSD) is a fundamental yet challenging task in natural language processing. In recent years, the advent of large language models (LLMs) has led to significant advancements in regular WSD tasks. However, most existing LLMs face two major issues that hinder their performance in WSD. Firstly, these models are often prone to misclassifying the correct meaning of an ambiguous word when confronted with contexts containing adversarial information. Secondly, there is a lack of sufficient adversarial WSD datasets, which severely limits the development and evaluation of adversarial WSD systems. To address these gaps, we propose a novel Multi-Agent Debate framework for Adversarial Word Sense Disambiguation (MADAWSD). The MADAWSD framework simulates a real-world debate environment where multiple agent roles, namely, the Debater, Moderator, Consensus-seeker, and Judge, engage in discussions about ambiguous words in the context of adversarial information. Through a collaborative mechanism among these agents, it achieves accurate WSD. Additionally, a novel dataset for Chinese adversarial WSD has been constructed, focusing on improving and evaluating the performance of WSD models in the Chinese language. Extensive experiments on both English and Chinese adversarial WSD datasets demonstrate that MADAWSD can seamlessly integrate with existing LLMs and significantly enhance their performance, showcasing broad generality and outstanding effectiveness.
%U https://aclanthology.org/2025.emnlp-main.1134/
%P 22294-22313
Markdown (Informal)
[MADAWSD: Multi-Agent Debate Framework for Adversarial Word Sense Disambiguation](https://aclanthology.org/2025.emnlp-main.1134/) (Zhang et al., EMNLP 2025)
ACL
- Kaiyuan Zhang, Qian Liu, Luyang Zhang, Chaoqun Zheng, Shuaimin Li, Bing Xu, Muyun Yang, Xinxiao Qiao, and Wenpeng Lu. 2025. MADAWSD: Multi-Agent Debate Framework for Adversarial Word Sense Disambiguation. In Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 22294–22313, Suzhou, China. Association for Computational Linguistics.