@inproceedings{wang-blanco-2025-identifying,
title = "Identifying and Answering Questions with False Assumptions: An Interpretable Approach",
author = "Wang, Zijie and
Blanco, Eduardo",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1228/",
pages = "24080--24098",
ISBN = "979-8-89176-332-6",
abstract = "People often ask questions with false assumptions, a type of question that does not have regular answers. Answering such questions requires first identifying the false assumptions. Large Language Models (LLMs) often generate misleading answers to these questions because of hallucinations. In this paper, we focus on identifying and answering questions with false assumptions in several domains. We first investigate whether the problem reduces to fact verification. Then, we present an approach leveraging external evidence to mitigate hallucinations. Experiments with five LLMs demonstrate that (1) incorporating retrieved evidence is beneficial and (2) generating and validating atomic assumptions yields more improvements and provides an interpretable answer by pinpointing the false assumptions."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-blanco-2025-identifying">
<titleInfo>
<title>Identifying and Answering Questions with False Assumptions: An Interpretable Approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zijie</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduardo</namePart>
<namePart type="family">Blanco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>People often ask questions with false assumptions, a type of question that does not have regular answers. Answering such questions requires first identifying the false assumptions. Large Language Models (LLMs) often generate misleading answers to these questions because of hallucinations. In this paper, we focus on identifying and answering questions with false assumptions in several domains. We first investigate whether the problem reduces to fact verification. Then, we present an approach leveraging external evidence to mitigate hallucinations. Experiments with five LLMs demonstrate that (1) incorporating retrieved evidence is beneficial and (2) generating and validating atomic assumptions yields more improvements and provides an interpretable answer by pinpointing the false assumptions.</abstract>
<identifier type="citekey">wang-blanco-2025-identifying</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1228/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>24080</start>
<end>24098</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identifying and Answering Questions with False Assumptions: An Interpretable Approach
%A Wang, Zijie
%A Blanco, Eduardo
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F wang-blanco-2025-identifying
%X People often ask questions with false assumptions, a type of question that does not have regular answers. Answering such questions requires first identifying the false assumptions. Large Language Models (LLMs) often generate misleading answers to these questions because of hallucinations. In this paper, we focus on identifying and answering questions with false assumptions in several domains. We first investigate whether the problem reduces to fact verification. Then, we present an approach leveraging external evidence to mitigate hallucinations. Experiments with five LLMs demonstrate that (1) incorporating retrieved evidence is beneficial and (2) generating and validating atomic assumptions yields more improvements and provides an interpretable answer by pinpointing the false assumptions.
%U https://aclanthology.org/2025.emnlp-main.1228/
%P 24080-24098
Markdown (Informal)
[Identifying and Answering Questions with False Assumptions: An Interpretable Approach](https://aclanthology.org/2025.emnlp-main.1228/) (Wang & Blanco, EMNLP 2025)
ACL