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Abstract

Multi-label classification is prevalent in real-
world settings, but the behavior of Large Lan-
guage Models (LLMs) in this setting is under-
studied. We investigate how autoregressive
LLMs perform multi-label classification, fo-
cusing on subjective tasks, by analyzing the
output distributions of the models at each label
generation step. We find that the initial proba-
bility distribution for the first label often does
not reflect the eventual final output, even in
terms of relative order and find LLMs tend to
suppress all but one label at each generation
step. We further observe that as model scale in-
creases, their token distributions exhibit lower
entropy and higher single-label confidence, but
the internal relative ranking of the labels im-
proves. Finetuning methods such as supervised
finetuning and reinforcement learning amplify
this phenomenon. We introduce the task of
distribution alignment for multi-label settings:
aligning LLM-derived label distributions with
empirical distributions estimated from annota-
tor responses in subjective tasks. We propose
both zero-shot and supervised methods which
improve both alignment and predictive perfor-
mance over existing approaches. We find one
method – taking the max probability over all
label generation distributions instead of just
using the initial probability distribution – im-
proves both distribution alignment and overall
F1 classification without adding any additional
computation.

1 Introduction

Many natural language processing tasks assume
each input has a single, unambiguous label, rep-
resented as a one-hot encoding (Srivastava et al.
2022; Wang et al. 2024; inter alia). However, in re-
alistic settings, especially where categories are not
mutually exclusive, this assumption fails. Multi-
label classification, where instances can have none,

*Equal contribution. Code is available at https://
github.com/gchochla/LLM-multilabel-differently.

Figure 1: Autoregressive language modeling is incom-
patible and interferes with multi-label classification:
LLMs generate one label at a time with unrepresentative
distributions misaligned from reference distributions.

one, or multiple labels, better captures the inherent
ambiguity, richness of human categorization, and
label correlations, notably in subjective tasks (Mo-
hammad et al., 2018; Demszky et al., 2020). It
also enables modeling degrees of belief, which is
integral in subjective tasks to express confidence or
intensity in each label (Paletz et al., 2023). Inten-
sity is a tool not generally available in single-label
settings. Despite their widespread applicability,
multi-label tasks have received little attention in
the context of Large Language Models (LLMs).

A key reason may be the incompatibility be-
tween the language modeling objective and the
multi-label setting. LLMs are trained to generate
probability distributions over vocabulary tokens via
softmax normalization for the immediate next to-
ken, naturally lending themselves to single-label
settings, such as by restricting the normalization to
label tokens. In contrast, multi-label classification
does not require label probabilities to sum to one.
Instead, each label’s confidence can, in principle,
be modeled independently. This runs counter to
how LLMs are trained, as their logits are meaning-
ful only in relation to each other.
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Relative probabilities might still encode rele-
vant information, useful for threshold-based pre-
diction (He and Xia, 2018), but such methods are
ill-suited for tasks involving graded or subjective
judgments, where ground truth can lie in [0, 1], not
just {0, 1}. Alternatively, LLMs can be allowed
to autoregressively generate a sequence of labels.
However, the resulting distributions at each step
are conditioned on earlier outputs and remain con-
strained by the same joint normalization, making
them difficult to interpret as genuine model confi-
dence scores (Breen et al., 2018). For example, a
model with 60% confidence in a label still needs
to allocate the remaining 40% among competing
options, regardless of its “true” confidence.

In this work, we investigate how LLMs generate
multi-label predictions by analyzing their output
distributions in each generation step. We show that
LLMs exhibit spiky distributions, where each con-
secutive step strongly favors a single label while
suppressing others. This pattern produces a list of
high-confidence individual predictions rather than
a comprehensive probability distribution. Notably,
these distributions lack consistency across steps: la-
bels with high probability in earlier steps are rarely
revisited in subsequent ones, even when the model
continues generating labels, which suggests that
LLMs are performing sequential single-label clas-
sification and not holistic multi-label reasoning.

To evaluate this phenomenon, we frame distribu-
tional alignment as a core task: aligning LLM-
derived distributions with ground-truth distribu-
tions. To evaluate confidence, not just predictions,
we also compare with empirical distributions de-
rived from human annotator responses. Rather than
relying on hard label agreement (e.g., majority
vote), we embrace the plurality of human inter-
pretations (Kahneman and Tversky, 1972; Tenen-
baum et al., 2006; Griffiths et al., 2010; Aroyo
and Welty, 2015) and approximate the distribution
for each document by the empirical proportion of
annotators selecting each label, resulting in val-
ues ∈ [0, 1]. We extend the distributional inference
framework (Zhou et al., 2022) to the multi-label set-
ting and evaluate both zero-shot and supervised ap-
proaches for aligning LLM outputs with the human-
annotation derived empirical distributions.

Our contributions are the following:
• In §4, we provide the first formal analysis of

how LLMs handle multi-label classification,
showing that their prediction behavior mirrors
the steps inherent in the language modeling

that favor a single-label setting.
• In §5, we introduce and evaluate distribution

alignment in the multi-label setting, using de-
grees of belief as a reference distribution. We
show that our proposed zero-shot and super-
vised methods improve alignment and predic-
tive quality over standard baselines on subjec-
tive multi-label tasks.

• We highlight the zero-shot approach of max-
over-generations, which improves both dis-
tribution alignment and F1 classification for
no additional computation. This method in-
volves setting a label’s probability to its max
value across all label generations rather than
its value in a single label distribution.

2 Related Work

2.1 LLM Usage for Multi-label Predictions

Single-label problems have dominated both early
(e.g., ImageNet; Deng et al. 2009) and recent
(BigBench; Srivastava et al. 2022) deep learning
progress, despite the obvious limitations of single-
label settings when the labels are not mutually ex-
clusive. ImageNet (Deng et al., 2009) as a bench-
mark, for instance, used the top-k accuracy to eval-
uate models in order to deal with the potential si-
multaneous existence of multiple categories within
each image, which was not reflected in the anno-
tations. Similarly, previous multi-label modeling
attempts treated the task as single-label by using the
general cross-entropy loss with a threshold to turn
the prediction into a proper multi-label output (He
and Xia, 2018). Subsequent works switched to the
binary cross-entropy loss, and tried to leverage the
relationship between labels for additional supervi-
sion (He and Xia, 2018; Alhuzali and Ananiadou,
2021; Chochlakis et al., 2023).

To the best of our knowledge, Niraula et al.
(2024) is the only work to explicitly investigate
LLM multi-label classification (Chen et al., 2022)
in niche domains. Bet,ianu et al. (2024) explored
a multi-label framework for finetuning BERT and
Jung et al. (2023) trained a classifier on top of
T5 encodings directly for multi-label classification
rather than relying on model text generation. The
two well-studied forms of multi-label classifica-
tion are extreme multi-label classification (XMLC;
Zhu and Zamani 2024), where models must as-
sign many labels to a document from a very large
label set (1000+ labels), and hierarchical multi-
label classification (Tabatabaei et al., 2025), where
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labels are subdivided into sub-labels recursively.
Subjective multi-label classification is relatively un-
explored (Chochlakis et al., 2024). We thoroughly
investigate LLMs in these settings by analyzing
their classification patterns across datasets.

2.2 Subjective Language Tasks
Many works have attempted to model individ-
ual annotator perspectives and intensities (Paletz
et al., 2023) instead of the majority vote, e.g., with
EM (Dawid and Skene, 1979; Hovy et al., 2013),
word embeddings Garten et al. (2019), and encoder-
based approaches (Gordon et al., 2022; Mokhbe-
rian et al., 2022; Davani et al., 2022; Mokhberian
et al., 2023). Modeling annotators with LLMs has
shown limited success, and LLM biases have also
been explored (Dutta et al., 2023; Abdurahman
et al., 2024; Chochlakis et al., 2025).

2.3 Calibration for LLMs
Increasing the size of neural networks generally
improves performance and generalization (Hoff-
mann et al., 2022; Brutzkus and Globerson, 2019;
Kaplan et al., 2020). However, while smaller mod-
els essentially produce well-calibrated predictions
“for free” (Niculescu-Mizil and Caruana, 2005),
as neural networks become increasingly complex,
they are also less calibrated (Guo et al., 2017). Re-
cent language models trained with Reinforcement
Learning from Human Feedback (RLHF) have seen
“spiky” probability distributions where models are
overconfident in a select few output tokens while
suppressing the probabilities of other options (Xie
et al., 2024; Leng et al., 2025). Instruction tuning
also appears to reduce calibration over base mod-
els (Zhu et al., 2023). Several methods have been
proposed to improve LLM calibration, including
temperature scaling (Xie et al., 2024; Huang et al.,
2024), adding calibration metrics as a learnable
feature (Chen et al., 2023), and in-context prompt-
ing (Zhao et al., 2024). Our proposed distribution
alignment setting differs from calibration in that it
compares the probabilities over the entire label set
whereas calibration only compares the predicted
label probability to the ground truth.

3 Datasets

We present both objective and subjective multi-
label datasets. We use 10-shot prompts with
Llama3 (Dubey et al., 2024) (more details in §A).
We apply softmax over initial label tokens to derive
label probabilities at each step. It is well known that

Dataset
Annotators

(per example)
Cohen’s
Kappa

0
labels

1
label

2
labels

3+
labels

GoEmotions 81 (3.58) 0.27 29% 62% 8% 1%
MFRC 6 (2.99) 0.21 78% 18% 3% <1%
SemEval – (–) – 1% 13% 40% 46%

Table 1: Annotation statistics and label distributions.
The public release of SemEval does not include individ-
ual annotator labels, only aggregates.

several different tokens can correspond to the same
concept (Holtzman et al., 2022), such as “happy”,
“Happy”, and “ happy”, and found that selecting the
highest logit score across all same-concept tokens
as a given label’s logit value was the most effective
way to capture model belief.

Boxes (Kim and Schuster, 2023) Entity track-
ing based on natural language description of “box”
contents and “move” operations. Each box can
contain none, one, or multiple objects. The dataset
contains thousands of synthetic examples.

SemEval 2018 Task 1 E-c (Mohammad et al.,
2018) Multi-label emotion recognition of 11 emo-
tions. We use the English tweets. We refer to this as
SemEval. Although it does not contain annotator
labels, it has a frequent presence of multiple labels,
allowing us to study the generation dynamics.

MRFC (Trager et al., 2022) Multi-label moral
foundation corpus of six moral foundations. 3 an-
notators were assigned to each sample.

GoEmotions (Demszky et al., 2020) Multi-label
emotion recognition benchmark of 27 emotions.
For efficiency, we pool the emotions to seven emo-
tions via hierarchical clustering (see §A). On aver-
age, 3.6 annotators were assigned to each sample.

4 Multi-Label Mechanisms of LLMs

We evaluate whether LLMs produce diverse, con-
sistent, and informative probability distributions.
Specifically, we investigate whether the predicted
probabilities at each generation step reflect the rela-
tive confidence of the LLM and whether the relative
ordering of labels provides insight into future pre-
dictions. To this end, we analyze the distribution
of the top two predicted probabilities at each la-
bel generation step, along with the entropy of the
distribution, allowing us to assess how spiky the
distributions are, that is, how close the top probabil-
ity is to 1 and how low the entropy is. That is, we
take the output probabilities of the model at each
generation step where a label starts being predicted
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Figure 2: Top probabilities at each generation step when the last or an intermediate label is generated. Patterns
are identical between the two settings, and bigger or finetuned models have clusters closer to 100%. A single step
only is shown when only up to labels were generated for all examples in a specific setting.
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Figure 3: Second-highest probabilities at each generation step when the last or an intermediate label is generated.
We also show the probability at the current step of the label that is actually predicted in the next step (r+1 pred),
the probability at the next generation step of the second highest probability of the current step (intermediate @
r+1), and the percentage of cases the second-highest probability label at step r and the prediction at r+1 is the same.
LLM distributions show poor relative ranking, and little distinction between the last and intermediate settings.
A single step only is shown when only up to labels were generated for all examples in a specific setting.

(if the LLM breaks a label into multiple tokens,
then we take into account the probabilities for only

the first token), extract the top two probabilities for
further analysis, and also compute the entropy of
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the entire distribution.
We also compare the top probabilities to evaluate

whether their relative values reflect the model’s con-
fidence. Crucially, we examine the second-highest
probability and track how it evolves in the sub-
sequent generation step, and importantly how of-
ten the corresponding label is predicted next, as
would be expected. By distinguishing between
steps where the model continues generating more
labels (denoted as intermediate) and steps where
it predicts the final label (denoted as last), we
assess whether the second-highest probability pro-
vides a meaningful signal about future behavior.

Finally, we test whether the relative order of
the probabilities is informative by comparing the
second-highest probability in the current generation
step to that of the label generated in the next. That
is to say, we look at the next generation step, see the
label that was actually predicted, and then compare
that label’s probability in the current generation
step compared to the probability of the second-
highest label in the current step.

Figures 2 and 3 show the results based on the pre-
dicted probabilities for all datasets using Llama3
8B and 70B Base, Instruct, and with Supervised
Finetuning (Ouyang et al., 2022) (SFT; details in
§A.5). We show only up to the second step to avoid
clutter. Corresponding entropy measures can be
found in §D.2. We highlight key findings below.

Spikiness We see that as the models become
larger or are finetuned, the distributions start to con-
centrate around 100%. For instance, in SemEval,
we see that Llama3 70B Instruct and SFT notice-
ably spike for both generation steps. In contrast,
Llama3 8B Base has mode ∼ 40%. For Boxes,
the objective benchmark, we observe even more
pronounced spikes, with probability mass clustered
around ∼ 100% for all steps.

Sequential Spikiness We observe that after the
first label is generated, each additional label pro-
duced by the LLM is accompanied by a similarly
spiky distribution centered on the newly predicted
label. Interestingly, some distributions become
spikier at later generation steps, potentially stem-
ming from previously generated labels being as-
signed near-zero probability.

Stopping Criterion We find that models rarely
have different distributions when predicting their
last label compared to when they are going to con-
tinue predicting more labels, providing little to no

Figure 4: Sorted label probabilities when generating the
first label for Llama3 70B Instruct. Most distributions
are spiky, with the top label having near-1 probability.

indication of when they will stop predicting. In-
deed, we would expect the distributions to resemble
MFRC with the Base models, when the probabil-
ities for the second highest labels are distinctly
greater, the model continues to produce more la-
bels. However, this distinction does not appear in
most settings. For instance, SemEval has the same
trends between both, and the second probabilities
of some of the models are greater when the model
stops generating (e.g., 70B Instruct and SFT), a
counter-intuitive finding, because one would ex-
pect lower weight on the rest of the labels when the
model would stop generating.

Relative Ranking We demonstrate that LLMs do
not reliably pick the second highest label as their
next prediction, even if they continue predicting.
For instance, in SemEval, the label with the second
highest probability in the first step is not predicted
next between 48.1% and 69.2% of the time across
models. In GoEmotions, this behavior occurs be-
tween 22.2% and 49.8% of cases. In fact, if we
take the label with the second-highest probability
in the current step r, and look at its probability in
the next step r+1 (shown as intermediate @ r+1),
we see that it is clusters at 0. Similarly, when we
look at the probability of the label predicted in step
r+1, and see how its probability looked in the pre-
vious step r (shown as r+1 pred), its probability
tends to also be clustered around 0. Notably, we
find that if the second highest label at any step is
not predicted as the next generated label, it will
not be not predicted at all most of the time (see
§D.3). While is in some sense expected, since each
generated label is newly conditioned on the previ-
ously generated labels (we verify this in §D.6 by
looking at the attention weights), it means that each
generation step is only informative of the current

2477



label, since the relative ordering of predicted labels
is not predictive of subsequent behavior.

Language Modeling From the previous two find-
ings, we conclude that LLMs’ distribution at the
first (or any) generation step is not reflective of
their confidence for each label, nor their subse-
quent behavior, suggesting language modeling is
interfering with classification, causing the model
to spike for every generation, an artifact of the au-
toregressive nature of LLMs, instead of generating
a label distribution that is reflective of its confi-
dence. We present more corroborating evidence in
§5.4 with linear probing (Hewitt and Liang, 2019).

Complete Distribution We find that most label
probability distributions are spiky, with the top
label having probability near 1 and other labels
sharply degenerating to near-0 probability even if
later predicted (Figure 4). We also find evidence
that LLMs generate the most-likely label first, as
the relative accuracy of each label drops between
the first and second prediction in Figure 5. Sequen-
tial spikiness explains these phenomena – LLMs
generate the most-likely label first with high confi-
dence and do not consider what a less likely second
label would be until the first label is fully gener-
ated. For the smaller models, we also observed a
few instances where the model predicted the same
label twice in a row.
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Figure 5: Average accuracy of the first and second label
for multi-label generations based on the order in which
it was generated, showing decreasing trends. Line color
represents dataset and line pattern represents model size.

Rate of multiple predictions Finally, we report
that the label type of in-context prompts greatly
influences the rate of multi-label output. We show
in Figure 6 how the percentage of multi-label (as
opposed to single or no label) examples roughly
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Figure 6: Percentage of outputs that are multi-label
given the percentage of in-context examples that are
multi-label in a 10-shot prompt. Line color represents
dataset and line pattern represents model size.

corresponds to the percentage of multi-label output
across models and datasets. Learning to predict
multi-label outputs must be highlighted very clearly
in the in-context examples, suggesting that single-
label formats have dominated the training of the
model. Overall, these analyses show that LLMs
do not create well-calibrated distributions when
generating multiple labels; instead, they generate
spiky distributions, classifying labels one at a time.

Generalizability To ensure our findings general-
ize to other model families, we replicate the main
results for the Qwen 2.5 (Team, 2024) family of
models in §D.7, showing identical results to the
Llama family. Moreover, we experimented with an
LLM with multiple decoding heads, Medusa (Cai
et al., 2024). Given its ability to predict multiple to-
kens at a time, the aforementioned behaviors might
not be present in such models. Contrary to this as-
sumption, we show in §D.8 that the model behaves
in identical ways. Finally, in §D.9 we examine
whether the label order in the instructions has a
role in these phenomena, finding strong effects.

5 Multi-Label Distribution Alignment

To test how interpretable and calibrated the LLM-
derived distributions are, we propose multi-label
distributional alignment as a core task. Our focus
in this work is multi-label subjective tasks, because
they allow degrees of belief, and so allow us to
evaluate model confidence, not just predictions, in
multi-label settings.

5.1 Task Formulation for Multi-Label

In the single-label setup, a probability distribution
is produced over a label set L. However, in the
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Single-Label Datasets Multi-Label Datasets

Hatexplain MSPPodcast GoEmotions MFRC

NLL ↓ L1 ↓ F1 ↑ NLL ↓ L1 ↓ F1 ↑ NLL ↓ L1 ↓ F1 ↑ NLL ↓ L1 ↓ F1 ↑

B
as

el
in

e Compare-to-None 1.66 0.81 0.58 2.63 1.37 0.29 23.93 4.71 0.27 5.34 1.85 0.51
Hard Predictions 9.86 0.90 0.58 13.65 1.47 0.30 24.11 1.31 0.39 19.70 1.07 0.59

Te
st

-T
im

e Unary Breakdown 0.91 0.94 0.47 1.55 1.45 0.30 3.60 1.32 0.43 2.49 1.27 0.51
Binary Breakdown 1.12 1.06 0.29 1.65 1.44 0.24 7.62 2.64 0.41 3.55 2.11 0.41

Max-Over-Generations N/A N/A N/A N/A N/A N/A 4.04 1.27 0.39 2.32 0.92 0.63

Su
pe

rv
is

ed BERT 2.69 0.73 0.66 4.29 1.27 0.38 2.72 0.63 0.64 3.00 0.43 0.82
Linear Probing N/S N/S N/S N/S N/S N/S 2.42 0.71 0.56 2.81 0.44 0.81
SFT Outputs N/S N/S N/S N/S N/S N/S 14.76 0.80 0.58 10.45 0.57 0.69

SFT Max-Over-Generations N/A N/A N/A N/A N/A N/A 4.15 0.72 0.57 4.87 0.54 0.73

Table 2: Distribution alignment scores for Llama3 70B Instruct on single and multi-label datasets between LLM and
human distributions. F1 ↑ is the example-F1 score. N/A: Not applicable to single-label setting. N/S: Not supplied
to avoid clutter, and due to environmental considerations, since single-label settings are not our focus.
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Figure 7: Micro F1 ↑ of linear probes trained and evaluated on gold labels (Gold), trained and evaluated on model
predictions (Pred), and evaluated on predictions beyond the first generated label (Pred 2+). For comparison, we
also show the performance of the model (Perf ). Embeddings are from the last layer for the first generated label.

multi-label case, each example can have an arbi-
trary number of labels, each of which has its own
binary probability of appearing (in practice, labels
are additionally correlated). Thus, multi-label dis-
tributions are |L| binary probabilities.

5.1.1 Human Distribution Estimation

Our underlying assumption is that given a task with
subjective labels and multiple interpretations, the
“truth” of the label is better represented as a confi-
dence distribution over a potential label set. In this

interpretation, for data point d, an annotation rep-
resents a single sample a ∼ H(d), where H is the
underlying human distribution. Then, denoting I as
the indicator function, for label l ∈ L, we approxi-
mate our empirical human-annotation distribution
using annotator set A as:

Ĥl(d;A) =
1

|A|
∑

ai∈A
I[l ∈ ai(d)]. (1)
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5.1.2 Distribution Alignment Metrics

We compute the negative log likelihood (NLL),
L1 distance, and example-F1 (Du et al., 2019) to
evaluate how well the empirical distribution aligns
with the LLM-derived distribution. Example-F1 is
a variant of F1 that can be evaluated per example.

NLL Conceptually, NLL measures if a distribu-
tion is confidently wrong about any answer. Given
a discrete probability distribution Qd and a set of la-
bels Gd = {gi| i ∈ [m], gi ∈ L}, we compute the
likelihood of Gd as

∏m
g∈Gd

PQd
(g), where PQd

(li)
is the probability of li under Qd. Taking the neg-
ative logarithm gives NLL. The best distribution
that explains a sample minimizes NLL.

L1 Distance One shortcoming of NLL is that it
disproportionately penalizes small differences near
0, e.g., penalizing a likelihood of 10−7 much more
than 10−2, despite their practical similarity. L1
distance solves this problem by comparing the ab-
solute difference of each label probability to its fre-
quency in the sample:

∑
l∈L |PQd

(l)− Ĥl(d;A)|.
L1 distance measures if the general shape of the
distributions match

5.2 LLM Distribution Methods

To investigate the task of distribution alignment in
the multi-label setting, we propose methods which
are categorized into three groups: baseline methods,
test-time methods, and supervised methods.

5.2.1 Baseline Methods

Compare-to-None We use the output distribu-
tion of the labels at the point at which the model
generates its first label token (excluding, for exam-
ple, formatting tokens). However, the individual
values of raw logits hold little interpretability as
their value is only meaningful in the context of the
rest of the tokens. We propose to compare the logit
score of each label to the logit score of the “none”
label to get an estimate of how likely that label is
to occur independent of the other logits, leveraging
the null prediction to contextualize the value of the
logits. Let S(li) be the logit score for label li; we
can therefore determine the logit score difference
for each label di = S(li)−S(lnone). We then apply
the sigmoid function to di for a valid probability:
P (li = 1|di) = σ(di).

Hard (Actual) Predictions We take the labels
that the model actually outputs autoregressively;

we set these values to 1−ϵ and otherwise ϵ to avoid
arithmetic issues with NLL.

5.2.2 Test-Time Methods
Findings from Niculescu-Mizil and Caruana (2005)
indicate that binary tasks are generally well-
calibrated. Even though modern LLMs are very
different from the basic neural networks tested in
this paper, we were inspired to design several dif-
ferent approaches that “break down” multi-label
classification into smaller steps. For these methods,
we investigated Monte Carlo sampling methods
but found this approach simply added noise over
directly calculating the label probabilities analyti-
cally.

Unary Breakdown: Label-wise Preference In
this approach, we create a binary classification
problem for each individual label, similar to the
approach taken by Li et al. (2020). Namely, for a
given example, we create a prompt that includes
the original document to be classified, but instead
we present a single label and query the model if
the label is “reasonable”. We directly extract the
probabilities for the “reasonable” label, which con-
forms to the independence property of multi-label
probabilities, because each label can be assigned a
value ∈ [0, 1] without constraints or normalization.
|L| runs (one per label) per document are required.

Binary Breakdown: Pair-wise Preference We
break down a single example into multiple binary
comparisons between all label pairs (

(|L|+1
2

)
runs

per example), and then leverage the outcomes of
these comparisons to derive probabilities for the
labels. Namely, for every pair of labels, we provide
both labels to the model and ask the model to select
one of them as better representing the input. We
derive the probabilities for the two labels by ap-
plying softmax on the two logits. We then use the
Bradley-Terry model (Bradley and Terry, 1952) to
rank the labels based on their pairwise performance.
Specifically, to estimate logit scores S with pair-
wise probabilities that label li is better than lj , we
have P (li is better than lj) = pi>j = σ(si − sj),
where σ is the sigmoid function. This is calculated
by minimizing the predictive loss L:

L = −1

2
(
∑

i,j

pi>j · log(σ(si − sj))

+ (1− pi>j) · log(σ(sj − si))).

(2)

In order to calculate the multi-label probabilities,
similar to compare-to-none, we introduce a “none”
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label into the label set and derive final probabilities
by comparing the Bradley-Terry logit scores of a
given label to the “none” logit score. We also con-
sider using strict 1’s and 0’s instead of probabilities,
similar to ELO ranking (Elo, 1978) in §C, but find
using probabilities to be more performant.

Max-Over-Generations We take the probabil-
ity distributions for every label generation step,
and the final probability for each label is equal to
the maximum value achieved over all distributions.
This approach is a soft version of the Hard Predic-
tions baseline, and requires access to model scores.

5.2.3 Supervised Methods
We compare our approach with three supervised
methods: Finetuned BERT, Linear probes (He-
witt and Liang, 2019) on the first label token of the
last layer, and SFT, all described in §A.5. We also
use Linear probes for interpretability purposes (Li
et al., 2021) to study the informational content of
the models’ embeddings.

5.3 Experimental Setup
We apply our methods on the same Llama models
(see §A.5). We test our proposed approaches on
the main test set (details in §A.4). We test on the
multi-label datasets of GoEmotions and MFRC
that contain individual annotator labels. We also
include evaluation on two single-label subjective
datasets (details in §A.3), HateXplain (Mathew
et al., 2021) and MSP-Podcast (Lotfian and Busso,
2019) to contextualize our multi-label findings.

5.4 Results
Distribution Alignment We report distribution
alignment results in Table 2 for Llama3 70B (re-
sults for 8B in §D.4). Overall, we find that Test-
Time and Supervised methods outperform both
baseline methods. We draw particular attention
to the max-over-generations method, which signifi-
cantly outperforms both baselines with little addi-
tional computational overhead other than storing
model scores across multiple generation steps. We
see that unary breakdown performs similarly well
to max-over-generations, as isolating each label’s
validity independently disentangles the bias of lan-
guage modeling from the classification task. As a
downside, unary breakdown incurs |L| times the
generations per example. Surprisingly, we find that
BERT performs the best of the supervised methods,
which we use as additional evidence that LLMs
classify labels one at a time, not simultaneously.

Linear Probing The linear probing method ranks
as the second best baseline, so the hidden states dur-
ing first-label generation alone seem, at first glance,
to contain enough information to perform well on
the tasks. However, in Figure 7, we present a more
detailed analysis with linear probes. In addition
to model and probing performance, we present the
probes’ capability of predicting the predictions of
the model themselves (i.e., the probes are trained
on the predictions). We present the performance
on the predictions on the Pred column, showing,
as expected, much higher performance. However,
when we look at how well the probes can predict
any label after the first (Pred 2+), we see a substan-
tial degradation in performance. Note that the task
in theory becomes easier as we remove a label from
the problem. This degradation suggests that linear
probing performs well mostly due to its high accu-
racy of the first label and has less predictive power
for any future labels, which aligns with our findings
that LLMs predict labels one at a time. Even after
supervised training, embeddings of the first label
generation do not contain enough information to
predict any subsequent labels.

Effect of Instruction Tuning In §D.5, we
demonstrate that finetuned models generally
achieve higher performance, yet their NLL is worse.
This result supports previous findings that finetuned
model are more confident, since NLL punishes con-
fidently wrong predictions more.

6 Conclusion

We provide the first account of how LLMs per-
form multi-label classification and find that LLMs
generate spiky probability distributions and appear
to predict labels one at a time rather than jointly.
We argue that language modeling interferes with
multi-label classification, making it difficult to in-
terpret model confidences for labels until they are
predicted. We provide supportive experimental
evidence, demonstrating that a full generation of
output is required to analyze LLMs’ label confi-
dences, and highlight the inconsistencies in the
label probabilities across generation steps. Finally,
we formulate the task of distribution alignment in
the multi-label setting and propose novel methods
and baselines to estimate better multi-label distri-
butions from language models. We conclude that
much work is still required in order to create distri-
butions from LLMs that match the human distribu-
tion in responses to subjective language tasks.
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7 Limitations

There are several potential limitations in this work.
First, our assumption of underlying empirical dis-
tributions derived from human annotator samples
relies on the fact that the annotators are in fact valid
and representative samples of the underlying true
distribution. This does not account for the possi-
bility that different annotators may be biased in
the same way and that combining their annotations
does not remove this bias. Additionally, we limit
our analysis to the Llama model family, which is
inherently constrained to these models’ specific
training and finetuning regimens. We acknowl-
edge the possibility that our insights into multi-
label generation for LLMs may differ for different
model families. Finally, our proposed methodolo-
gies of unary and binary breakdowns also increase
the computational cost when compared to a single
label generation, and that while these methods may
show improvement over single generations, this in-
creased cost is certainly a limitation towards their
adoption.
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A Additional Implementation Details

A.1 Label Probabilities

Throughout §5.2, we generate softmax probabili-
ties of the label set by constraining the logit scores
to just those of the initial tokens of labels. This
deviates slightly from the true label probabilities,
as we ignore all non-label token values during the
softmax; however we note that, in practice, the
softmax probabilities over just the label set do not
deviate much from their probabilities over the en-
tire vocabulary set, as the majority of top logits are
label tokens.

A.2 Multi-Label Datasets

GoEmotions The seven emotion “clusters” are:
admiration (includes pride, gratitude, relief, ap-
proval, realization), anger (includes disgust, an-
noyance, disapproval), fear (includes nervousness),
joy (includes amusement, excitement, love), opti-
mism (includes desire, caring), sadness (includes
remorse, embarrassment, disappointment, grief),
and surprise (includes confusion, curiosity). The
clustering was performed using the hierarchical
clustering algorithm, applied on the correlations
between emotions, as described in (Demszky et al.,
2020).

MFRC The six moral foundations are: care, pro-
portionality, equality, purity, authority, and loy-
alty.

SemEval The eleven emotion labels are: anger,
anticipation, disgust, fear, joy, love, optimism, pes-
simism, sadness, surprise, and trust.

A.3 Single-Label Datasets

HateXplain (Mathew et al., 2021) Benchmark
of hateful and offensive speech. Each document is
labeled as offensive, hateful, or normal, and where
necessary it also contains the target of that senti-
ment. Each sample was assigned to 3 annotators.

MSP-Podcast v1.11 (Lotfian and Busso, 2019)
Utterances from podcasts that have been labeled
for emotion. The dataset comes with ground truth
transcriptions, which we leverage to perform lan-
guage modeling. 5.3 annotators on average were
assigned to each sample.

A.4 Dataset splits

For Figures 2 and 3, we perform inference on the
Base and Instruct models on the entire training set

to get the largest population of data points we can.
However, for the SFT models, since we needed a
large enough training set, we use the train split to
finetune the model and perform inference on the
dev and test sets.

For the linear probes, we train on the train set
and evaluate on the dev and test sets.

For the rest of our experiments, and for each
dataset, we create two testing sets: a "multi-label
only" set, containing data that exclusively has mul-
tiple ground truth labels, which we use in §4; and a
main testing set, which contains a uniform number
of data across three label types (no label, single la-
bel, and multi-label) and annotator disagreements
(no disagreement and has disagreement) for our
experiments in §5. For each test set we select 200
data points per dataset due to exploding number of
runs we require for the methods we propose (e.g.,
unary requires a run per label). In the prompt, half
of the in-context examples contain multiple labels.

A.5 Models

We use the following models, all downloaded from
HuggingFace and implemented in PyTorch:

• Llama3 1B Instruct
(meta-llama/Llama-3.2-1B-Instruct)

• Llama3 8B Base
(meta-llama/Llama-3.1-8B)

• Llama3 8B Instruct
(meta-llama/Llama-3.1-8B-Instruct)

• Llama3 70B Base
(meta-llama/Llama-3.1-70B)

• Llama3 70B Instruct
(meta-llama/llama-3.3-70B-Instruct)

We used NVIDIA A100 80GB VRAM GPUs for
70B models, and NVIDIA A40 for smaller models.

SFT Our supervised finetuning pipeline simply
involves prompting an LLM with the same instruc-
tions and prompt template as the other models, but
without the 10 demonstrations that we otherwise
use. We used LoRA (Hu et al., 2022). During infer-
ence, because we noticed a tendency for the model
to respond with differing formats, we still used a
10-shot format to standardize the output.
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Unary breakdown We specifically use the term
"reasonable" given the subjective nature of the
tasks where multiple labels may be appropriate,
as we found that using "yes" or "no" directly some-
times causes the model to assign a more appropriate
label even if both labels are applicable.

BERT For the BERT results, we have used De-
mux (Chochlakis et al., 2023). We use the same
training regime as in the original paper, using the in-
tra loss with a coefficient of 0.2 for the multi-label
settings, but training only on the train set instead
of integrating the dev set in training after early
stopping. For the single-label settings, we simply
switch to using the cross-entropy loss instead of
the binary cross-entropy.

Linear Probes We derive the hidden state at the
last layer of the first label token that the model
generates. We normalize and downsample with a
factor of 4 using truncated SVD (to accommodate
for the smaller dataset size compared to the hidden
state dimension, especially of the 70B models). We
then train one logistic regression model per label
using scikit-learn’s Logistic Regression.

A.6 Caveat on NLL and L1

In the multi-label setting, since every possible la-
bel has the potential to be included in an exam-
ple, each sample technically contains data on every
label, with the majority of labels being set to 0
(i.e., not assigned to the example). In scenarios
where the majority of labels are 0, a degenerate
solution of a "fixed" distribution, where all values
are set to a constant such as 0.1, often performs
very well. Thus, it is important to evaluate pure
alignment metrics such as NLL and L1 in conjunc-
tion with performance metrics such as accuracy or
F1, as fixed distributions will perform very poorly
on those metrics.

B Prompt Examples

We present some prototypical prompts we use
throughout our whole study in Table 3.

C Binary Breakdown with Probabilities
vs. Outcomes

We investigate two methods of binary breakdown
in Figure 8: using the soft probabilities between 0
and 1 (i.e., p ∈ [0, 1] for preferring one label to the
other and using hard outcomes (i.e., p ∈ {0, 1}).

Prompt examples

Regular prompt (GoEmotions)
Classify the following inputs into none, one, or multiple
the following emotions per input: joy, optimism, admi-
ration, surprise, fear, sadness and anger. Output exactly
these emotions and no others.

Input: "Can I speak to the Suns’ manager?"
{"label": ["surprise"]}

Input: Problem is that picture is there before you
ever set foot in the cabin; [NAME] put it there. Just makes
it creepy.

Unary Breakdown Prompt Example (Hatexplain)
Classify the following question-label pairs as either "rea-
sonable" or "unreasonable". Output either "reasonable" or
"unreasonable" and nothing else.

Question: that or only date asians either way the
white race is dead
Label: offensive
Is the label reasonable: unreasonable

Question: i want to hate you but i can not
Label: normal
Is the label reasonable:

Binary Breakdown Prompt Example (MFRC)
Classify the following question into one of the two
following labels. Output either "a" or "b" depending on
which label is better and nothing else.

Question: It’s just capitalism is a pure distillation
of those bad traits
a. none
b. loyalty
Correct Label: b

Question: His abuse will get worse. He’s literally
already accusing you, what will he do if he doesn’t believe
you’re being faithful?
a. proportionality
b. loyalty
Correct Label:

Table 3: Example prompts

We find that using for L1 distance and F1, the pre-
ferred approach varies between datasets, but for
NLL, using probabilities is always preferred. We
find that when a single label is dominant, meaning
it is preferred to every other label, using probabili-
ties calibrates the breakdown better than using hard
outcomes, as dominant labels still never achieve
100% probability in their comparisons. We there-
fore conclude that using binary breakdown with
probabilities rather than outcomes is the better ap-
proach.
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Figure 8: Comparison of binary breakdown when using the pairwise probabilities (“binary”) versus using pairwise
outcomes (“binary_outcome”, i.e. rounding probabilities to 0 and 1).

D Additional Results on LLM Multilabel
Capabilities

D.1 Probabilities: Alternative view

For completeness, in Figure 9 we also present the
equivalent box plots of Figures 2 and 3.

D.2 Entropy of Predictions

We also present the entropies of the predictions in
Figure 10. Again, for all datasets but for MFRC,
we see that the trends are indistinguishable between
when the model will generate more labels com-
pared to when it predicts its last label, showing
little evidence for properly calibrated probability
distributions on multi-label tasks.

D.3 Inconsistencies in second highest label
scores

In this section, we report the probability that the
label associated with the second highest probabil-
ity at any given generation step is, in fact, never
predicted by the model if not predicted in the im-

mediate next step. We limit our evaluation only
to steps where the model does continue to predict
more labels afterward, skipping the instances where
the model stops predicting. In Table 4, we see that
the label does not appear in the predictions at least
78.4% of the time in SemEval, 91.3% in GoE-
motions, 89.9% in MFRC, and 56.8% in Boxes.
Note that, as shown in Figure 3, the second ranked
label is not predicted immediately after a large per-
centage of time, resulting overall in large inconsis-
tencies in the probabilities and the predictions of
LLMs.

In Figure 11, we study in more detail the con-
sistency of the second-highest probability label,
excluding the instances where it was not predicted
at all, and show the histograms for each generation
step. We find that increasing the model size im-
proves the rate at which that label is predicted right
after it is ranked second, as Llama3 70B Instruct
predicts the label with the second-highest probabil-
ity as the second label 65% of the time compared
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Figure 9: Top two probabilities at each generation step r (up to two for brevity) when the last label is generated,
or when a intermediate label is generated. Shown are for four datasets, one per row. In each row, the bottom
subfigure shows the top probability, and the top the second highest probability, in addition to the probability of the
label that was actually predicted next at the current step (r+1 pred), and the probability at the next generation step
of the second highest probability (intermediate @ r+1). Also shown is the percentage of cases the second-highest
probability label at r and the prediction at r+1 were the same. A single step only is shown when only up to labels
were generated for all examples in a specific setting.

8B Base 8B Instruct 8B SFT 70B Base 70B Instruct 70B SFT

SemEval 88.1 85.3 90.4 78.4 78.8 82.8
GoEmotions 99.3 95.4 91.3 92.9 93.4 96.7
MFRC 100 99.7 94.7 94.0 96.4 89.9
Boxes 86.1 70.8 - 72.4 56.8 -

Table 4: Percentage % of cases the second highest label in probability was not predicted at all at any subsequent
step when it was not predicted immediately afterward, despite the model predicting at least one more label.
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Figure 10: Entropies of prediction distributions at each generation step r when the last label is generated, or when
a intermediate label is generated, shown for the first two label generation steps. A single step only is shown when
only up to labels were generated for all examples in a specific setting.

to approximately 50% of the time with 8B Instruct.
This indicates that with scale, the relative ordering
of labels improves.

D.4 Alignment of Llama3 8B

We present results for the alignment of Llama3 8B
in addition to the 70B presented in the main text.
Results can be seen in Table 5. Our takeaways
are virtually identical to 70B, so we refrain from
repeating the analysis.

D.5 Effect of Finetuning on Distribution
Alignment

Previous research into LLM calibration has found
that RLHF (Ouyang et al., 2022) can make mod-
els more overconfident in their predictions (Leng
et al., 2025; Xie et al., 2024; Zhu et al., 2023).
In Figure 12, we compare the F1 and NLL of
Llama-2-70B (base model) and Llama-2-70B-chat
(instruction-tuned) for several distribution meth-
ods. As expected, the finetuned model generally
achieves higher F1 than the base model; however,
the NLL for the compare-to-none and max methods
(which are the two methods that directly examine
the label probabilities) is lower for the base model.
This corroborates the aforementioned findings that
the model gets more confident when finetuned –
NLL punishes highly confident, wrong answers
more than being more confident on correct answers.

The similar NLL on unary and binary breakdowns
demonstrates that these two methods are relatively
robust to different levels of confidence.

D.6 Attention to Input vs Labels

We present the average attention to tokens in the
prompt for models, when they generate the second
or higher label. We intend to examine how much
the models attend to the previous labels generated,
establishing empirically the intuition that because
of language modeling, the answers of the model
deviate from whatever can be gauged from the first
generated label token distribution. Table 6 shows
that, on average, an order of magnitude higher
weights are found in the label part of the prompt
compared to the input (which also includes other
labels because of the demonstrations). Attending
to the format of the response is a plausible con-
founder, so we also check the attention specifically
to the first label tokens. This suggests that, indeed,
subsequent labels are conditioned on the previous
generations. We note that even though average
attention is lower on the input, cumulative atten-
tion is still greater, with approximately a 80%/20%
split in favor of the input, which is usually an or-
der of magnitude or more longer than the labels
themselves, again suggesting that a lot of attention
weights are accumulated on the generated labels.
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Single-Label Datasets Multi-Label Datasets

Hatexplain MSPPodcast GoEmotions MFRC

NLL ↓ L1 ↓ F1 ↑ NLL ↓ L1 ↓ F1 ↑ NLL ↓ L1 ↓ F1 ↑ NLL ↓ L1 ↓ F1 ↑

B
as

el
in

e Compare-to-None 0.97 0.97 0.42 1.59 1.34 0.31 33.58 5.42 0.21 20.23 4.82 0.23
Hard Predictions 12.63 1.17 0.42 13.55 1.44 0.31 27.47 1.49 0.32 40.79 2.21 0.26

Te
st

-T
im

e Unary Breakdown 0.98 1.01 0.35 1.62 1.48 0.12 4.99 3.21 0.29 5.29 3.03 0.22
Binary Breakdown 0.99 1.01 0.23 1.61 1.48 0.17 4.84 3.18 0.23 8.33 3.83 0.23

Max-Over-Generations N/A N/A N/A N/A N/A N/A 3.00 1.44 0.34 2.87 1.58 0.39

Su
pe

rv
is

ed BERT 2.69 0.73 0.66 4.29 1.27 0.38 2.72 0.63 0.64 3.00 0.43 0.82
Linear Probing N/S N/S N/S N/S N/S N/S 2.57 0.70 0.57 2.49 0.39 0.83
SFT Outputs N/S N/S N/S N/S N/S N/S 14.76 0.80 0.58 10.45 0.57 0.69

SFT Max-Over-Generations N/A N/A N/A N/A N/A N/A 4.15 0.72 0.57 4.87 0.54 0.73

Table 5: Distribution alignment scores for Llama 3 8B on single and multi-label datasets between LLM and human
distributions. F1 ↑ is the example-F1 score. N/S: Not supplied to avoid clutter.

Model
GoEmotions MFRC SemEval Boxes

Input Label 1st Tokens Input Label 1st Tokens Input Label 1st Tokens Input Label 1st Tokens

8B Base 0.242 2.04 3.62 0.132 2.01 3.29 0.162 1.76 3.00 0.095 3.11 3.06
8B Instruct 0.242 2.08 3.48 0.242 2.08 3.48 0.163 1.74 2.84 0.094 2.92 2.69

Table 6: Average percentage % attention to Input and Label tokens. We also show the average attention to the 1st
Tokens of the labels only, avoiding formatting tokens and the rest of the generated tokens.

D.7 Results on Qwen

In this section, we replicate our main Llama find-
ings for the Qwen 2.5 (Team, 2024) family, and in
particular for:

• Qwen 2.5 7B Base (Qwen/Qwen2.5-7B)

• Qwen 2.5 7B Instruct
(Qwen/Qwen2.5-7B-Instruct)

• Qwen 2.5 72B Base (Qwen/Qwen2.5-72B)

• Qwen 2.5 72B Instruct
(Qwen/Qwen2.5-72B-Instruct)

We present our results for the top two probabili-
ties at each step in Figures 13 and 14, and our linear
probing results in Figure 15. We see identical with
the Llama family, and Qwen can even be said to be
more spiky.

D.8 Medusa: Multiple Decoding Heads

In this section, we present some re-
sults from a model with multiple de-
coding heads, Medusa (specifically
FasterDecoding/medusa-1.0-zephyr-7b-beta).
Shown in Figures 16, we see that this model shows
behavior similar to Llama 3 and Qwen 2.5.

D.9 Alphabetical Order
One potential confounding factor in the generation
of many labels is their alphabetical order. By de-
fault, the labels are presented in an alphabetical
order in the instructions and in the demonstrations,
as any other mode of presentation would require
justification. However, the strong alphabetical pri-
ors of the models coupled with the presentation in
alphabetical order might be a strong driver of the
phenomena we see. Therefore, in this section we
present an analysis on how often that happens, as
well as randomizing the order of the labels and ex-
amining whether the labels follow an alphabetical
order or the new order of the instructions. Results
are shown in Table 7, aggregated across Llama3 8B
Base and Instruct. We see that proper alphabetical
order ossifies the predictions of the model, but the
reverse alphabetical order, which is also a regular
patter, also does the same yet to a lesser extend.
Future research can examine whether randomizing
the prompt and aggregating across different orders
might help to extract probabilities from the first
logits, but this still requires multiple runs, making
it more expensive that Max-over-Generations.
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Figure 11: Comparing if the label probability distribu-
tion created while generating the first label is indica-
tive of what the model will actually predict for multi-
label generations on MFRC for Llama-3.1-8B (top) and
Llama-3.3-70B (bottom). The first index value is not
shown as this corresponds to the actual first label being
generated.
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Figure 12: Comparing the average example-F1 (top)
and Negative Log Likelihood (bottom) between the
base Llama-2-70B model and the instruction-finetuned
Llama-2-70B-chat model, averaged over MFRC and
GoEmotions.

Setting Alphabetical (%) Prompt (%)

Alphabetical 96.4 -
Random 35.2 40.1
Reverse 15.9 71.9

Table 7: Percentage of predictions that follow alphabeti-
cal order and the order of the labels in the instructions
in three settings: Alphabetical order of labels, Random
order of labels (3 different seed) and Reverse alphabeti-
cal order of labels.

2492



1 2
0.2

0.4

0.6

0.8

1.0
Qwen2.5 7B Base

1 2

Qwen2.5 7B Instruct

1 2

Qwen2.5 72B Base

1 2

Qwen2.5 72B Instruct
Top Probabilities for SemEval 2018 Task 1last intermediate

1 2
0.2

0.4

0.6

0.8

1.0
Qwen2.5 7B Base

1 2

Qwen2.5 7B Instruct

1 2

Qwen2.5 72B Base

1 2

Qwen2.5 72B Instruct
Top Probabilities for GoEmotions

1 2
0.2

0.4

0.6

0.8

1.0
Qwen2.5 7B Base

1 2

Qwen2.5 7B Instruct

1 2

Qwen2.5 72B Base

1 2

Qwen2.5 72B Instruct
Top Probabilities for MFRC

1 2
0.2

0.4

0.6

0.8

1.0
Qwen2.5 7B Base

1 2

Qwen2.5 7B Instruct

1 2

Qwen2.5 72B Base

1 2

Qwen2.5 72B Instruct
Top Probabilities for Boxes

Prediction Step r

Figure 13: Top probabilities at each generation step when the last or an intermediate label is generated. Patterns
are identical between the two settings, and bigger or finetuned models have clusters closer to 100%. A single step
only is shown when only up to labels were generated for all examples in a specific setting.

2493



0.0

0.2

0.4

0.6

0.8

1.0

same: 45.0% same: 53.6%

Qwen2.5 7B Base

same: 49.8% same: 53.1%

Qwen2.5 7B Instruct

same: 51.5% same: 63.3%

Qwen2.5 72B Base

same: 60.4% same: 70.7%

Qwen2.5 72B Instruct
Second-highest Probabilities for SemEval 2018 Task 1

last
intermediate

r+1 pred
intermediate @ r+1

0.0

0.2

0.4

0.6

0.8

1.0

same: 43.7% same: 79.3%

Qwen2.5 7B Base

same: 59.1% same: 58.6%

Qwen2.5 7B Instruct

same: 66.2% same: 68.2%

Qwen2.5 72B Base

same: 71.6% same: 84.1%

Qwen2.5 72B Instruct
Second-highest Probabilities for GoEmotions

0.0

0.2

0.4

0.6

0.8

1.0

same: 12.8% same: 69.6%

Qwen2.5 7B Base

same: 37.2% same: 46.3%

Qwen2.5 7B Instruct

same: 37.4% same: 62.8%

Qwen2.5 72B Base

same: 53.3% same: 72.6%

Qwen2.5 72B Instruct
Second-highest Probabilities for MFRC

0.0

0.2

0.4

0.6

0.8

1.0

same: 48.4% same: 76.5%

Qwen2.5 7B Base

same: 29.1% same: 37.5%

Qwen2.5 7B Instruct

same: 50.6% same: 90.1%

Qwen2.5 72B Base

same: 66.0% same: 74.9%

Qwen2.5 72B Instruct
Second-highest Probabilities for Boxes

Prediction Step r

Figure 14: Second-highest probabilities at each generation step when the last or an intermediate label is
generated. We also show the probability at the current step of the label that is actually predicted in the next step (r+1
pred), the probability at the next generation step of the second highest probability of the current step (intermediate
@ r+1), and the percentage of cases the second-highest probability label at step r and the prediction at r+1 is the
same. LLM distributions show poor relative ranking, and little distinction between the last and intermediate
settings. A single step only is shown when only up to labels were generated for all examples in a specific setting.
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Figure 15: Micro F1 ↑ of linear probes on Qwen 2.5 trained and evaluated on gold labels (Gold), trained and
evaluated on model predictions (Pred), and evaluated on predictions beyond the first generated label (Pred 2+). For
comparison, we also show the performance of the model (Perf ). Embeddings are from the last layer for the first
generated label.
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Figure 16: Top and second-highest probabilities at each generation step when the last or an intermediate label is
generated. We also show the probability at the current step of the label that is actually predicted in the next step (r+1
pred), the probability at the next generation step of the second highest probability of the current step (intermediate
@ r+1), and the percentage of cases the second-highest probability label at step r and the prediction at r+1 is the
same. Patterns are identical between the two settings, and bigger or finetuned models have clusters closer to 100%.
LLM distributions show poor relative ranking, and little distinction between the last and intermediate settings.
A single step only is shown when only up to labels were generated for all examples in a specific setting.

2496


