@inproceedings{guo-etal-2025-profiler,
title = "Profiler: Black-box {AI}-generated Text Origin Detection via Context-aware Inference Pattern Analysis",
author = "Guo, Hanxi and
Cheng, Siyuan and
Jin, Xiaolong and
Zhang, Zhuo and
Shen, Guangyu and
Zhang, Kaiyuan and
An, Shengwei and
Tao, Guanhong and
Zhang, Xiangyu",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1265/",
pages = "24903--24923",
ISBN = "979-8-89176-332-6",
abstract = "With the increasing capabilities of Large Language Models (LLMs), the proliferation of AI-generated texts has become a serious concern. Given the diverse range of organizations providing LLMs, it is crucial for governments and third-party entities to identify the origin LLM of a given AI-generated text to enable accurate mitigation of potential misuse and infringement. However, existing detection methods, primarily designed to distinguish between human-generated and LLM-generated texts, often fail to accurately identify the origin LLM due to the high similarity of AI-generated texts from different LLMs. In this paper, we propose a novel black-box AI-generated text origin detection method, dubbed Profiler, which accurately predicts the origin of an input text by extracting distinct context inference patterns through calculating and analyzing novel context losses between the surrogate model{'}s output logits and the adjacent input context. Extensive experimental results show that Profiler outperforms 10 state-of-the-art baselines, achieving more than a 25{\%} increase in AUC score on average across both natural language and code datasets when evaluated against five of the latest commercial LLMs under both in-distribution and out-of-distribution settings."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="guo-etal-2025-profiler">
<titleInfo>
<title>Profiler: Black-box AI-generated Text Origin Detection via Context-aware Inference Pattern Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hanxi</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siyuan</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaolong</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhuo</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guangyu</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kaiyuan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shengwei</namePart>
<namePart type="family">An</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guanhong</namePart>
<namePart type="family">Tao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiangyu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>With the increasing capabilities of Large Language Models (LLMs), the proliferation of AI-generated texts has become a serious concern. Given the diverse range of organizations providing LLMs, it is crucial for governments and third-party entities to identify the origin LLM of a given AI-generated text to enable accurate mitigation of potential misuse and infringement. However, existing detection methods, primarily designed to distinguish between human-generated and LLM-generated texts, often fail to accurately identify the origin LLM due to the high similarity of AI-generated texts from different LLMs. In this paper, we propose a novel black-box AI-generated text origin detection method, dubbed Profiler, which accurately predicts the origin of an input text by extracting distinct context inference patterns through calculating and analyzing novel context losses between the surrogate model’s output logits and the adjacent input context. Extensive experimental results show that Profiler outperforms 10 state-of-the-art baselines, achieving more than a 25% increase in AUC score on average across both natural language and code datasets when evaluated against five of the latest commercial LLMs under both in-distribution and out-of-distribution settings.</abstract>
<identifier type="citekey">guo-etal-2025-profiler</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1265/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>24903</start>
<end>24923</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Profiler: Black-box AI-generated Text Origin Detection via Context-aware Inference Pattern Analysis
%A Guo, Hanxi
%A Cheng, Siyuan
%A Jin, Xiaolong
%A Zhang, Zhuo
%A Shen, Guangyu
%A Zhang, Kaiyuan
%A An, Shengwei
%A Tao, Guanhong
%A Zhang, Xiangyu
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F guo-etal-2025-profiler
%X With the increasing capabilities of Large Language Models (LLMs), the proliferation of AI-generated texts has become a serious concern. Given the diverse range of organizations providing LLMs, it is crucial for governments and third-party entities to identify the origin LLM of a given AI-generated text to enable accurate mitigation of potential misuse and infringement. However, existing detection methods, primarily designed to distinguish between human-generated and LLM-generated texts, often fail to accurately identify the origin LLM due to the high similarity of AI-generated texts from different LLMs. In this paper, we propose a novel black-box AI-generated text origin detection method, dubbed Profiler, which accurately predicts the origin of an input text by extracting distinct context inference patterns through calculating and analyzing novel context losses between the surrogate model’s output logits and the adjacent input context. Extensive experimental results show that Profiler outperforms 10 state-of-the-art baselines, achieving more than a 25% increase in AUC score on average across both natural language and code datasets when evaluated against five of the latest commercial LLMs under both in-distribution and out-of-distribution settings.
%U https://aclanthology.org/2025.emnlp-main.1265/
%P 24903-24923
Markdown (Informal)
[Profiler: Black-box AI-generated Text Origin Detection via Context-aware Inference Pattern Analysis](https://aclanthology.org/2025.emnlp-main.1265/) (Guo et al., EMNLP 2025)
ACL
- Hanxi Guo, Siyuan Cheng, Xiaolong Jin, Zhuo Zhang, Guangyu Shen, Kaiyuan Zhang, Shengwei An, Guanhong Tao, and Xiangyu Zhang. 2025. Profiler: Black-box AI-generated Text Origin Detection via Context-aware Inference Pattern Analysis. In Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 24903–24923, Suzhou, China. Association for Computational Linguistics.