@inproceedings{kang-etal-2025-fairgen,
title = "{F}air{G}en: Controlling Sensitive Attributes for Fair Generations in Diffusion Models via Adaptive Latent Guidance",
author = "Kang, Mintong and
Kumar, Vinayshekhar Bannihatti and
Roy, Shamik and
Kumar, Abhishek and
Khosla, Sopan and
Narayanaswamy, Balakrishnan Murali and
Gangadharaiah, Rashmi",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1287/",
pages = "25347--25361",
ISBN = "979-8-89176-332-6",
abstract = "Text-to-image diffusion models often exhibit biases toward specific demographic groups, such as generating more males than females when prompted to generate images of engineers, raising ethical concerns and limiting their adoption. In this paper, we tackle the challenge of mitigating generation bias towards any target attribute value (e.g., ``male'' for ``gender'') in diffusion models while preserving generation quality. We propose FairGen, an adaptive latent guidance mechanism which controls the generation distribution during inference. In FairGen, a latent guidance module dynamically adjusts the diffusion process to enforce specific attributes, while a memory module tracks the generation statistics and steers latent guidance to align with the targeted fair distribution of the attribute values. Further, given the limitations of existing datasets in comprehensively assessing bias in diffusion models, we introduce a holistic bias evaluation benchmark HBE, covering diverse domains and incorporating complex prompts across various applications. Extensive evaluations on HBE and Stable Bias datasets demonstrate that FairGen outperforms existing bias mitigation approaches, achieving substantial bias reduction (e.g., 68.5{\%} gender bias reduction on Stable Diffusion 2). Ablation studies highlight FairGen{'}s ability to flexibly and precisely control generation distribution at any user-specified granularity, ensuring adaptive and targeted bias mitigation."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kang-etal-2025-fairgen">
<titleInfo>
<title>FairGen: Controlling Sensitive Attributes for Fair Generations in Diffusion Models via Adaptive Latent Guidance</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mintong</namePart>
<namePart type="family">Kang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vinayshekhar</namePart>
<namePart type="given">Bannihatti</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shamik</namePart>
<namePart type="family">Roy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhishek</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sopan</namePart>
<namePart type="family">Khosla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Balakrishnan</namePart>
<namePart type="given">Murali</namePart>
<namePart type="family">Narayanaswamy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rashmi</namePart>
<namePart type="family">Gangadharaiah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Text-to-image diffusion models often exhibit biases toward specific demographic groups, such as generating more males than females when prompted to generate images of engineers, raising ethical concerns and limiting their adoption. In this paper, we tackle the challenge of mitigating generation bias towards any target attribute value (e.g., “male” for “gender”) in diffusion models while preserving generation quality. We propose FairGen, an adaptive latent guidance mechanism which controls the generation distribution during inference. In FairGen, a latent guidance module dynamically adjusts the diffusion process to enforce specific attributes, while a memory module tracks the generation statistics and steers latent guidance to align with the targeted fair distribution of the attribute values. Further, given the limitations of existing datasets in comprehensively assessing bias in diffusion models, we introduce a holistic bias evaluation benchmark HBE, covering diverse domains and incorporating complex prompts across various applications. Extensive evaluations on HBE and Stable Bias datasets demonstrate that FairGen outperforms existing bias mitigation approaches, achieving substantial bias reduction (e.g., 68.5% gender bias reduction on Stable Diffusion 2). Ablation studies highlight FairGen’s ability to flexibly and precisely control generation distribution at any user-specified granularity, ensuring adaptive and targeted bias mitigation.</abstract>
<identifier type="citekey">kang-etal-2025-fairgen</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1287/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>25347</start>
<end>25361</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FairGen: Controlling Sensitive Attributes for Fair Generations in Diffusion Models via Adaptive Latent Guidance
%A Kang, Mintong
%A Kumar, Vinayshekhar Bannihatti
%A Roy, Shamik
%A Kumar, Abhishek
%A Khosla, Sopan
%A Narayanaswamy, Balakrishnan Murali
%A Gangadharaiah, Rashmi
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F kang-etal-2025-fairgen
%X Text-to-image diffusion models often exhibit biases toward specific demographic groups, such as generating more males than females when prompted to generate images of engineers, raising ethical concerns and limiting their adoption. In this paper, we tackle the challenge of mitigating generation bias towards any target attribute value (e.g., “male” for “gender”) in diffusion models while preserving generation quality. We propose FairGen, an adaptive latent guidance mechanism which controls the generation distribution during inference. In FairGen, a latent guidance module dynamically adjusts the diffusion process to enforce specific attributes, while a memory module tracks the generation statistics and steers latent guidance to align with the targeted fair distribution of the attribute values. Further, given the limitations of existing datasets in comprehensively assessing bias in diffusion models, we introduce a holistic bias evaluation benchmark HBE, covering diverse domains and incorporating complex prompts across various applications. Extensive evaluations on HBE and Stable Bias datasets demonstrate that FairGen outperforms existing bias mitigation approaches, achieving substantial bias reduction (e.g., 68.5% gender bias reduction on Stable Diffusion 2). Ablation studies highlight FairGen’s ability to flexibly and precisely control generation distribution at any user-specified granularity, ensuring adaptive and targeted bias mitigation.
%U https://aclanthology.org/2025.emnlp-main.1287/
%P 25347-25361
Markdown (Informal)
[FairGen: Controlling Sensitive Attributes for Fair Generations in Diffusion Models via Adaptive Latent Guidance](https://aclanthology.org/2025.emnlp-main.1287/) (Kang et al., EMNLP 2025)
ACL