@inproceedings{de-bellis-etal-2025-type,
title = "Type-Less yet Type-Aware Inductive Link Prediction with Pretrained Language Models",
author = "De Bellis, Alessandro and
Bufi, Salvatore and
Servedio, Giovanni and
Anelli, Vito Walter and
Di Noia, Tommaso and
Di Sciascio, Eugenio",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1383/",
pages = "27181--27197",
ISBN = "979-8-89176-332-6",
abstract = "Inductive link prediction is emerging as a key paradigm for real-world knowledge graphs (KGs), where new entities frequently appear and models must generalize to them without retraining. Predicting links in a KG faces the challenge of guessing previously unseen entities by leveraging generalizable node features such as subgraph structure, type annotations, and ontological constraints. However, explicit type information is often lacking or incomplete. Even when available, type information in most KGs is often coarse-grained, sparse, and prone to errors due to human annotation. In this work, we explore the potential of pre-trained language models (PLMs) to enrich node representations with implicit type signals. We introduce TyleR, a Type-less yet type-awaRe approach for subgraph-based inductive link prediction that leverages PLMs for semantic enrichment. Experiments on standard benchmarks demonstrate that TyleR outperforms state-of-the-art baselines in scenarios with scarce type annotations and sparse graph connectivity. To ensure reproducibility, we share our code at https://github.com/sisinflab/tyler ."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="de-bellis-etal-2025-type">
<titleInfo>
<title>Type-Less yet Type-Aware Inductive Link Prediction with Pretrained Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">De Bellis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salvatore</namePart>
<namePart type="family">Bufi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Servedio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vito</namePart>
<namePart type="given">Walter</namePart>
<namePart type="family">Anelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tommaso</namePart>
<namePart type="family">Di Noia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eugenio</namePart>
<namePart type="family">Di Sciascio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Inductive link prediction is emerging as a key paradigm for real-world knowledge graphs (KGs), where new entities frequently appear and models must generalize to them without retraining. Predicting links in a KG faces the challenge of guessing previously unseen entities by leveraging generalizable node features such as subgraph structure, type annotations, and ontological constraints. However, explicit type information is often lacking or incomplete. Even when available, type information in most KGs is often coarse-grained, sparse, and prone to errors due to human annotation. In this work, we explore the potential of pre-trained language models (PLMs) to enrich node representations with implicit type signals. We introduce TyleR, a Type-less yet type-awaRe approach for subgraph-based inductive link prediction that leverages PLMs for semantic enrichment. Experiments on standard benchmarks demonstrate that TyleR outperforms state-of-the-art baselines in scenarios with scarce type annotations and sparse graph connectivity. To ensure reproducibility, we share our code at https://github.com/sisinflab/tyler .</abstract>
<identifier type="citekey">de-bellis-etal-2025-type</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1383/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>27181</start>
<end>27197</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Type-Less yet Type-Aware Inductive Link Prediction with Pretrained Language Models
%A De Bellis, Alessandro
%A Bufi, Salvatore
%A Servedio, Giovanni
%A Anelli, Vito Walter
%A Di Noia, Tommaso
%A Di Sciascio, Eugenio
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F de-bellis-etal-2025-type
%X Inductive link prediction is emerging as a key paradigm for real-world knowledge graphs (KGs), where new entities frequently appear and models must generalize to them without retraining. Predicting links in a KG faces the challenge of guessing previously unseen entities by leveraging generalizable node features such as subgraph structure, type annotations, and ontological constraints. However, explicit type information is often lacking or incomplete. Even when available, type information in most KGs is often coarse-grained, sparse, and prone to errors due to human annotation. In this work, we explore the potential of pre-trained language models (PLMs) to enrich node representations with implicit type signals. We introduce TyleR, a Type-less yet type-awaRe approach for subgraph-based inductive link prediction that leverages PLMs for semantic enrichment. Experiments on standard benchmarks demonstrate that TyleR outperforms state-of-the-art baselines in scenarios with scarce type annotations and sparse graph connectivity. To ensure reproducibility, we share our code at https://github.com/sisinflab/tyler .
%U https://aclanthology.org/2025.emnlp-main.1383/
%P 27181-27197
Markdown (Informal)
[Type-Less yet Type-Aware Inductive Link Prediction with Pretrained Language Models](https://aclanthology.org/2025.emnlp-main.1383/) (De Bellis et al., EMNLP 2025)
ACL