@inproceedings{jin-etal-2025-talon,
title = "{TALON}: A Multi-Agent Framework for Long-Table Exploration and Question Answering",
author = "Jin, Ruochun and
Wang, Xiyue and
Wang, Dong and
Zheng, Haoqi and
Qi, Yunpeng and
Yang, Silin and
Zhang, Meng",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1393/",
pages = "27385--27401",
ISBN = "979-8-89176-332-6",
abstract = "Table question answering (TQA) requires accurate retrieval and reasoning over tabular data. Existing approaches attempt to retrieve query-relevant content before leveraging large language models (LLMs) to reason over long tables. However, these methods often fail to accurately retrieve contextually relevant data which results in information loss, and suffer from excessive encoding overhead. In this paper, we propose TALON, a multi-agent framework designed for question answering over long tables. TALON features a planning agent that iteratively invokes a tool agent to access and manipulate tabular data based on intermediate feedback, which progressively collects necessary information for answer generation, while a critic agent ensures accuracy and efficiency in tool usage and planning. In order to comprehensively assess the effectiveness of TALON, we introduce two benchmarks derived from the WikiTableQuestion and BIRD-SQL datasets, which contain tables ranging from 50 to over 10,000 rows. Experiments demonstrate that TALON achieves average accuracy improvements of 7.5{\%} and 12.0{\%} across all language models, establishing a new state-of-the-art in long-table question answering. Our code is publicly available at: https://github.com/Wwestmoon/TALON."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jin-etal-2025-talon">
<titleInfo>
<title>TALON: A Multi-Agent Framework for Long-Table Exploration and Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruochun</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiyue</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dong</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haoqi</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunpeng</namePart>
<namePart type="family">Qi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Silin</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meng</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Table question answering (TQA) requires accurate retrieval and reasoning over tabular data. Existing approaches attempt to retrieve query-relevant content before leveraging large language models (LLMs) to reason over long tables. However, these methods often fail to accurately retrieve contextually relevant data which results in information loss, and suffer from excessive encoding overhead. In this paper, we propose TALON, a multi-agent framework designed for question answering over long tables. TALON features a planning agent that iteratively invokes a tool agent to access and manipulate tabular data based on intermediate feedback, which progressively collects necessary information for answer generation, while a critic agent ensures accuracy and efficiency in tool usage and planning. In order to comprehensively assess the effectiveness of TALON, we introduce two benchmarks derived from the WikiTableQuestion and BIRD-SQL datasets, which contain tables ranging from 50 to over 10,000 rows. Experiments demonstrate that TALON achieves average accuracy improvements of 7.5% and 12.0% across all language models, establishing a new state-of-the-art in long-table question answering. Our code is publicly available at: https://github.com/Wwestmoon/TALON.</abstract>
<identifier type="citekey">jin-etal-2025-talon</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1393/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>27385</start>
<end>27401</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TALON: A Multi-Agent Framework for Long-Table Exploration and Question Answering
%A Jin, Ruochun
%A Wang, Xiyue
%A Wang, Dong
%A Zheng, Haoqi
%A Qi, Yunpeng
%A Yang, Silin
%A Zhang, Meng
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F jin-etal-2025-talon
%X Table question answering (TQA) requires accurate retrieval and reasoning over tabular data. Existing approaches attempt to retrieve query-relevant content before leveraging large language models (LLMs) to reason over long tables. However, these methods often fail to accurately retrieve contextually relevant data which results in information loss, and suffer from excessive encoding overhead. In this paper, we propose TALON, a multi-agent framework designed for question answering over long tables. TALON features a planning agent that iteratively invokes a tool agent to access and manipulate tabular data based on intermediate feedback, which progressively collects necessary information for answer generation, while a critic agent ensures accuracy and efficiency in tool usage and planning. In order to comprehensively assess the effectiveness of TALON, we introduce two benchmarks derived from the WikiTableQuestion and BIRD-SQL datasets, which contain tables ranging from 50 to over 10,000 rows. Experiments demonstrate that TALON achieves average accuracy improvements of 7.5% and 12.0% across all language models, establishing a new state-of-the-art in long-table question answering. Our code is publicly available at: https://github.com/Wwestmoon/TALON.
%U https://aclanthology.org/2025.emnlp-main.1393/
%P 27385-27401
Markdown (Informal)
[TALON: A Multi-Agent Framework for Long-Table Exploration and Question Answering](https://aclanthology.org/2025.emnlp-main.1393/) (Jin et al., EMNLP 2025)
ACL